SciELO - Scientific Electronic Library Online

 
vol.95 número1Priorizando las plantas silvestres comestibles con uso potencial para nuevos cultivos con base en el conocimiento tradicional del bosque caducifolioVariación morfológica en frutos y semillas de Ceiba aesculifolia y su relación con la germinación y la biomasa de las plántulas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Botanical Sciences

versão On-line ISSN 2007-4476versão impressa ISSN 2007-4298

Bot. sci vol.95 no.1 México Jan./Mar. 2017

https://doi.org/10.17129/botsci.683 

Ecology

Socioeconomics and temperature anomalies: drivers of introduced and native plant species composition and richness in the Canary Islands (1940-2010)

Aspectos socioeconómicos y anomalías de temperatura: responsables del incremento del número de especies introducidas en las Islas Canarias (1940-2010)

José Ramón Arévalo1 

José Luis Martín2  * 

Elizabeth Ojeda-Land3 

1 Department of Botany, Ecology and Plant Physiology, University of La Laguna, La Laguna, Tenerife, Spain.

2 Parque Nacional del Teide, Centro de Visitantes Telesforo Bravo, La Orotava, Spain.

3 Department for Protection of Natural Environment, Canary Islands Government, Canary Island, Spain.


Abstract:

Background:

Islands are particularly sensitive to biological invasions. The arrival of humans with their cohort of accompanying species has been cited as one of the primary causes for ecosystem change.

Question:

The introduction of these non-native species has been largely responsible for the tragic disappearance of native island biota and the dismantling of island ecosystems worldwide.

Methods:

Ordination analyses to determined changes in native and exotic species composition along the period analysed.

Results:

Mean temperature on the island of Tenerife has increased by around 0.6 °C in the last 70 years, while minimum temperature has risen by approx. 1.5 °C. Despite overall warming being milder than in the northern hemisphere, owing to the more sensitive biota these changes may have a strong influence on biodiversity. In addition, socioeconomic indicators have also changed significantly over the last 70 years with consequences for nature conservation. In this study, we analyse which parameters are best placed to explain the increase of introduced species, not just in terms of species richness, but also in species composition. We restrict the study to thermophile invasive and introduced species, as they respond more rapidly to climate change.

Conclusions:

We found that socioeconomic aspects of development are important elements that relate closely to the increase in richness and changes in species composition for native as well for introduced species. In the case of invasive species richness, the average minimum temperature is the most closely related variable. However, mean temperature anomalies did not reveal any relationship with these changes.

Key words: Canary Islands; CCA; DCA; correlation; global warming; introduced species

Resumen:

Antecedentes:

Las islas son particularmente sensibles a las invasiones. La llegada de humanos con sus especies acompañantes son una de las primeras causas de cambios ecosistémicos.

Pregunta:

¿Se relacionan las especies introducidas con la desaparición de especies a lo largo de los ecosistemas insulares del planeta?

Métodos:

Análisis de ordenación para determinar cambios de riqueza de especies nativas e introducidas a lo largo del periodo.

Resultados:

La temperatura media de la isla de Tenerife se ha incrementado en 0.6 °C en los últimos 70 años, mientras que la media de las temperaturas mínimas en aproximadamente 1.5 °C. A pesar de que el calentamiento es inferior al sufrido en el hemisferio norte, la mayor sensibilidad de la especies a estos cambios puede provocar negativos efectos en la diversidad. Por otro lado, los indicadores socieconómicos también han cambiado en los últimos 70 años con importantes cambios para el medio natural. En este trabajo analizamos que parámetros se relacionan mejor con el incremento de especies introducidas, no sólo en términos de riqueza, sino también de composición de especies. Restringimos el estudio a especies introducidas e invasoras termófilas.

Conclusiones:

Hemos encontrado que los parámetros indicadores de desarrollo son importante elementos relacionados con el cambio en riqueza y composición de especies tanto naturales como introducidas. En el caso de la riqueza de invasoras, la media de la temperatura media aparece como variable relacionada. Aunque no hemos encontrado relaciones de temperaturas medias (sólo con la media de las mínimas) con las variaciones en especies introducidas e invasoras.

Palabras clave: calentamiento global; CCA; DCA; correlación; especies introducidas; Islas Canarias

Introduction

Invasive species have been considered one of the main causes of habitat degradation (Gurevitch & Padilla 2004) and highly related to global change and globalization (Kaluza et al. 2010). The result is an increase in the number of these species in different ecosystem around the planet, reaching areas that were almost inaccessible a few decades ago and even threatening protected plant communities (i.e. high altitudinal areas or riparian areas; Pauchard et al. 2009, Alexander et al. 2011, Aguiar & Ferreira 2013). Specific elements of globalization that explain the spread of invasive species around the planet are global change (global warming, nitrogen deposition or habitat fragmentation; Dukes & Mooney 1999) and also socieconomic ones, such as gross domestic product (GDP; Sharma et al. 2010), transport (Westphal et al. 2008) or tourism (Sutherst 2000) among others. Ultimately, the economic (Pimentel et al. 2005), health (Levine & D’Antonio 2003), and ecological (Lockwood & McKinney 2001, Reaser et al. 2007) consequences can be substantial. For some areas, rapid economic development has accelerated biological invasions (Lin et al. 2007). Hulme (2009) argues that the best strategy for invasive species control is to regulate the mechanisms that govern globalization rather than direct species-by-species management. Globalization as a recent phenomenon has been one of the most substantial drivers behind the homogenization of insular biotas (Florencio et al. 2013) related to worldwide alien species expansion (Levine & d’Antonio 2003, Westphal et al. 2008, Pyšek et al. 2010).

Islands are particularly sensitive to biological invasions (Hulme 2004, Silva & Smith 2004). Humans’ arrival with their accompanying species has been cited as the primary cause for ecosystems change (Atkinson & Cameron 1993). The tragic disappearance of native island biota and dismantling of island ecosystems worldwide have been primarily caused by the introduction of non-native species (Donlan & Wilcox 2008, Kueffer et al. 2010). In addition, mean temperature on the island of Tenerife has increased by around 0.6 degrees, while this increase has been almost 1.5 degrees in the case of minimum temperature (mean of nocturnal minima) in the last 70 years (Martín et al. 2012). The overall warming is milder than in the northern hemisphere, however, the more sensitive biota means that small changes can have a strong influence on community species composition.

As islands are considered more vulnerable to invasions, we analyse which parameters are best placed to explain the increase in introduced species, in terms of species richness and composition. We restricted the study to thermophile invasive and non-invasive introduced species, as they respond faster and are more closely related to climate change. We selected common socioeconomic parameters related to development, and also temperature anomalies detected in the archipelago. We analysed data going back to the 40s, as we have reliable information about these variables from this period onwards. The main hypotheses to test are whether mean and minimum temperature anomalies are the best variables to explain changes in species composition and richness of introduced and invasive species or whether other socioeconomic variables are more closely related to these changes. Base in the results we will suggest management proposals.

We consider that an interdisciplinary work involving economy, climate and ecology is required to understand the roles all these variable play in biological invasion and to provide a way forward in our understanding of the entire scenario of the process.

Material and methods

Study site. The Canary Island Archipelago is composed of seven islands, 100 km off Northwest Africa (28º N, 16º W). The islands exhibit a broad spectrum of habitats with marked altitudinal belts and islands of varied sizes. The highest island, Tenerife reaches 3,718 m a.s.l. and the lowest, Lanzarote, 800 m. Tenerife also occupies the largest (2.059 km2) and Hierro the smallest (273 km2) surface areas. The lower elevations exhibit a Mediterranean type climate, with cool, mild winters and warm, dry summers (< 300 mm of ppt/year). Mid-altitudes experience persistent cloud cover that maintains cool and humid summers, and colder winters with increased precipitation (>700 mm/year). Over 1,500 m a.s.l. the climate is more continental and arid, with cold winters and very hot summers (< 500 mm ppt/year). Island altitude has substantial influence on local climate, but in general, the Canary Islands are considered temperate-subtropical.

The islands are a densely populated territory with more than 2 million residents, a busy tourist destination, and well connected to transport routes for trade in goods and services. Furthermore, the Canary Islands have been identified as a location subjected to the consequences of climate change (Sperling et al. 2004, del Arco 2008, Brito 2008, Martín et al. 2012). The region’s biodiversity is characterized by its uniqueness with 3,857 endemic species among the 2,554 terrestrial plant taxa registered in the official biodiversity data bank of the Canarian Government (Arechavaleta-Hernández et al. 2010). However, 1,567 of these species have been introduced into the archipelago, reducing native flora endemicity (in percentages with respect the total) from fifty percent of the biota a few centuries ago to one third of the species today.

The geographical position of Canary Islands is commercially influenced by Europe, Africa, and America, climatically by the temperate and tropical bands to the north and south, and ecologically by continental and oceanic systems to the east and west, respectively. This makes the islands particularly suitable for studying the influences of climate and global interconnectedness in island biological composition.

Biotic information. Following the criteria employed by the Canary Islands’ biodiversity data-bank (Arechavaleta-Hernández et al. 2010), wild plant species (it does not include cultivate species, only does that dispersed without human assistance) were classified into the following three categories: native species, invasive and non-invasive introduced species. Native are endemic species of the archipelago and non-endemic but considered that reached the archipelago naturally (Arechavaleta-Hernández et al. 2010). From the last two groups, we selected only the thermophile species (defined as species whose original range of distribution is in warmer climates than the Canary Islands; Köppen & Geiger 1928), which tend to be the most sensitive species to climate change.

The method of assignment of the species to each decade has some limitations in as much as some of the plants could have arrived much earlier in the archipelago than the date they were detected in the field. Also, the species catalogue is base in published lists of species, and it is not taking into account the evolution of the species along the decades, they can be change from introduce to invasive (Dietz & Edwards 2006), but the period of time is short in order to consider important changes. In spite of that, the large amount of data allows the analysis and identification of relevant general patterns. We should consider this study as an exploratory analysis of relationships about this information and the variables used in the analyses, and that we consider is consistent with changes in the species composition.

Native taxa in the Canary Islands are defined as species that arrived via dispersal means not associated with anthropogenic activity (some of them have been able to evolve in situ and become endemic), such as species with restricted distribution, limited to one of the natural Canary Island habitats. If the accidental or deliberate introduction of a species into the Canary Islands is known, but the species has not extended its range throughout the islands to cause significant changes to ecosystems and native species, it is considered introduced non-invasive. Invasive species are characterized as being exotic species established in natural or semi-natural habitats, causing significant changes in ecological systems and native biota, with the potential for permanent disruption of the ecological continuity of the local environment. The total number of species included in the study were 41 invasive (hereafter invasive), 189 introduced non-invasive (hereafter introduced) and 477 native endemic (hereafter native).

All species were assigned to an appearance decade ranging from 1940 to 2010 (many of them were cited earlier, but these have been assigned to the 1940s’ decade), on the basis of collection dates cited in bibliographical records. This method has the disadvantage of being subject to an unknown delay after the actual arrival and appearance date of the species, and subsequent report and publication date. Consequently, the number of species reported in our study for the last decade is likely to be less than the actual number of species present on the islands. Information on the presence of the species is accumulative, meaning that if the species is present in one year, it is assumed present in subsequent decades unless extinction or eradication has been documented.

Socioeconomic and climatic information. The majority of information has been extracted from the Canarian Institute of Statistics (ISTAC; http://www.gobiernodecanarias.org/istac), and the information has been grouped in decades to prepare the information for comparison with the biotic information.

The variables selected were number of tourists (before 1960 the information was extracted from Anonymous 1997; hereafter TOU), gross domestic product (before 1950 the information was obtained from Díaz 2003; hereafter GDP) and population density (hereafter POP). We took the value of the variables at the end of the decade, so 1940 took variable values from December 1949.

For mean temperature anomalies (hereafter TEM) and minimum temperature anomalies (hereafter mTEM), we used the information provided by Martín et al. (2012), using the average temperature anomalies for each decade. We consider that the average of the decade is more indicative than the value of the last year of the decade, in order to avoid the natural variability of the climatic information.

Statistical analyses. Ordination techniques help to explain community variation (Gauch 1982), and they can be used to evaluate trends over time as well as in space (Franklin et al., 1993, ter Braak & Šmilauer 1998). We used Detrended Correspondence Analysis (DCA; Hill & Gauch 1980, using CANOCO; ter Braak & Šmilauer 1998) to examine how species composition changed over time. Analyses were based on presence, and we analyzed the invasive, introduced and native species separately.

As a technique of direct gradient analysis, we used Canonical Correspondence Analysis (CCA; Hill & Gauch 1980) in CANOCO (ter Braak & Šmilauer 1998) to examine how species composition in different decades changed as a function of the independent matrix of information (TOU, GDP, POP, TEM and mTEM). We used a forward selection procedure to remove the variables that did not support a significant portion of the inertia reported by the analysis with a Monte Carlo permutation test (499 iterations for a p < 0.05) in CANOCO. Using this method we were able to estimate directly which variables were important to determine changes in species composition over these decades. Again, we proceeded by analyzing separately invasive, introduced and native species.

We correlated the site scores of the three DCA axis I and II with the five variables: TOU, GDP, POP, TEM and mTEM (using the Pearson correlation coefficient, for p < 0.05 and n = 7). Additionally, species richness of invasive, native and introduced was correlated with the indicated variables. For both analyses, we applied the Holm’s procedure for multiple testing.

Basic statistical methods followed those of Legendre & Legendre (1998) and were implemented using the SPSS statistical package (SPSS 1997).

Results

Values for richness of invasive, introduced and native species have been increasing over the last decades. This increase has been faster in the case of introduced (356 %) species followed by invasive (256 %) and finally endemic native species (130 %). Regarding invasive species, the fastest increase in richness is found between 1950 and1960; while for introduced ones the greatest rise was between 1980 and1990. For native endemic, the rate of increase in richness appears more continuous (Figure 1); Tables 1, 2 and Appendix 1 provide a list of the species included in the three groups: invasive, introduced and native species.

Figure 1 Species richness over decades for a) invasive thermophile b) introduced thermophile and c) native. 

Table 1 Pooled list of invasive thermophilic species for the decade in which were cited for the first time as indicated in Arechevaleta-Hernández et al. (2010)

Invasive exotic species Decade
Acacia farnesiana (L.) Willd. 1940
Agave americana L. 1940
Ageratina adenophora (Spreng.) R. M. King & H. Rob. 1940
Ageratina riparia (Regel) R. M. King & H. Rob. 1940
Anredera cordifolia (Ten.) Steenis 1940
Argemone mexicana L. 1940
Arundo donax L. 1940
Datura innoxia Mill. 1940
Datura stramonium L. 1940
Eleusine indica (L.) Gaertn. 1940
Lantana camara L. 1940
Melinis repens (Willd.) Zizka 1940
Nicotiana glauca R. C. Graham 1940
Nicotiana paniculata L. 1940
Opuntia maxima Mill. 1940
Tropaeolum majus L. 1940
Acacia cyanophylla Lindl. 1960
Cardiospermum grandiflorum Sw. 1960
Cyrtomium falcatum (L.) C. Presl 1960
Ipomoea cairica (L.) Sweet 1960
Mirabilis jalapa L. 1960
Nassella neesiana (Trin. & Rupr.) Barkworth 1960
Neurada procumbens L. 1960
Opuntia dillenii (Ker-Gawl.) Haw. 1960
Opuntia robusta H.L. Wendland 1960
Opuntia tomentosa Salm-Dyck 1960
Opuntia vulgaris Mill. 1960
Pennisetum setaceum (Forssk.) Chiov. 1960
Tradescantia fluminensis Vell. 1960
Acacia dealbata Link 1980
Caesalpinia spinosa (Molina) Kuntze 1980
Ipomoea indica (Burm. f.) Merr. 1980
Austrocylindropuntia exaltata (Berg) Backeb. 1990
Furcraea foetida (L.) Haw. 1990
Hylocereus undatus (Haw.) Britton & Rose 1990
Ipomoea purpurea (L.) Roth 1990
Kikoyuochloa clandestinum (Vhiov.) H.Scholz 1990
Leucaena leucocephala (Lam.) de Wit 1990
Maireana brevifolia (R. Br.) P.G. Wilson 1990
Wigandia caracasana Kunth 1990
Atriplex semilunaris Aellen 2000

Table 2 Pooled list of introduce thermophilic species for the decade in which were cited for the first time as indicated in Arechevaleta-Hernández et al. (2010)

Introduce thermophilic species Decade
Abutilon grandifolium (Willd.) Sweet 1940
Acacia farnesiana (L.) Willd. 1940
Achyranthes aspera L. 1940
Agave americana L. 1940
Ageratina adenophora (Spreng.) R. M. King & H. Rob. 1940
Ageratina riparia (Regel) R. M. King & H. Rob. 1940
Alternanthera caracasana “Humb., Bonpl. & Kunth“ 1940
Amaranthus deflexus L. 1940
Amaranthus hybridus L. 1940
Amaranthus lividus L. 1940
Amaranthus muricatus (Moq.) Hieron. 1940
Amaranthus viridis L. 1940
Anredera cordifolia (Ten.) Steenis 1940
Argemone mexicana L. 1940
Arundo donax L. 1940
Asclepias curassavica L. 1940
Atriplex semibaccata R. Br. 1940
Bidens pilosa L. 1940
Caesalpinia sepiaria Roxb. 1940
Calceolaria tripartita Ruiz & Pav. 1940
Carthamus tinctorius L. 1940
Ceratochloa catartica (Vall) Herter 1940
Chamaesyce prostrata (Aiton) Small 1940
Chenopodium ambrosioides L. 1940
Colocasia esculenta (L.) Schott 1940
Commelina benghalensis L. 1940
Commelina diffusa Burm. f. 1940
Conyza bonariensis (L.) Cronquist 1940
Conyza floribunda “Humb., Bonpl. & Kunth“ 1940
Conyza gouani (L.) Willd. 1940
Cyperus rotundus L. 1940
Datura innoxia Mill. 1940
Datura stramonium L. 1940
Einadia nutans (R. Br.) A. J. Scott 1940
Eleusine indica (L.) Gaertn. 1940
Hunnemannia fumariifolia Sweet 1940
Lantana camara L. 1940
Lepidium bonariense L. 1940
Lepidium sativum L. 1940
Lycopersicon esculentum Mill. 1940
Malvastrum coromandelianum (L.) Garcke 1940
Melianthus comosus Vahl 1940
Melinis repens (Willd.) Zizka 1940
Myrtus communis L. 1940
Nicandra physalodes (L.) Gaertn. 1940
Nicotiana alata Link & Otto 1940
Nicotiana glauca R. C. Graham 1940
Nicotiana paniculata L. 1940
Nicotiana tabacum L. 1940
Oenothera rosea L`Hér. ex Aiton 1940
Opuntia maxima Mill. 1940
Paspalum paspalodes (Michx.) Scribn. 1940
Pennisetum villosum R. Br. ex Fresen. 1940
Phylla nodiflora (L.) E.L. Greene 1940
Physalis peruviana L. 1940
Ricinus communis L. 1940
Salvia coccinea Juss. ex Murray 1940
Schinus molle L. 1940
Scorpiurus muricatus L. 1940
Senna bicapsularis (L.) Roxb. 1940
Senna occidentalis (L.) Link 1940
Sida acuta Burm. f. 1940
Sida rhombifolia L. 1940
Sigesbeckia orientalis L. 1940
Solanum pseudocapsicum L. 1940
Solanum robustum H.L. Wendl. 1940
Soliva stolonifera (Brot.) Sweet 1940
Sorghum halepense (L.) Pers. 1940
Tagetes minuta L. 1940
Tropaeolum majus L. 1940
Turbina corymbosa (L.) Raf. 1940
Verbena bonariensis L. 1940
Waltheria indica L. 1940
Xanthium spinosum L. 1940
Casuarina equisetifolia L. 1950
Cyperus involucratus Rottb. 1950
Opuntia tuna (L.) Mill. 1950
Salvia leucantha Cav. 1950
Solanum marginatum L. f. 1950
Acacia cyanophylla Lindl. 1960
Adiantum raddianum C. Presl 1960
Agave sisalana (Engelm.) Perr. 1960
Amaranthus quitensis “Humb., Bonpl. & Kunth“ 1960
Bidens aurea (Dryand.) Sherff 1960
Cardiospermum grandiflorum Sw. 1960
Chenopodium multifidum L. 1960
Ciclospermum leptophyllum (Pers.) Sprague 1960
Cotula australis (Siebold ex Spreng.) Hook. f. 1960
Cucurbita pepo L. 1960
Cyrtomium falcatum (L.) C. Presl 1960
Erigeron karvinskianus DC. 1960
Eucalyptus camaldulensis Dehnh. 1960
Galinsoga parviflora Cav. 1960
Galinsoga quadriradiata Ruiz & Pav. 1960
Guizotia abyssinica (L. f.) Cass. 1960
Ipomoea cairica (L.) Sweet 1960
Megathyrsus maximum (Jacq.) B.K. Simon & S.W.L. Jacobs 1960
Melia azedarach L. 1960
Mirabilis jalapa L. 1960
Nassella neesiana (Trin. & Rupr.) Barkworth 1960
Neurada procumbens L. 1960
Oenothera jamesii Torrey & A. Gray 1960
Opuntia dillenii (Ker-Gawl.) Haw. 1960
Opuntia robusta H.L. Wendland 1960
Opuntia tomentosa Salm-Dyck 1960
Opuntia vulgaris Mill. 1960
Oryza sativa L. 1960
Oxalis corymbosa DC. 1960
Oxalis latifolia Kunth 1960
Pennisetum purpureum Schumach. 1960
Pennisetum setaceum (Forssk.) Chiov. 1960
Petunia parviflora Juss. 1960
Phaseolus vulgaris L. 1960
Salpichroa origanifolia (Lam.) Baill. 1960
Sechium edule (Jacq.) Sw. 1960
Sedum dendroideum (Moq. & Sessé) ex DC. 1960
Selaginella kraussiana (Kunze) A. Braun 1960
Solanum jasminoides Paxton 1960
Stenotaphrum secundatum (Walter) Kuntze 1960
Symphyotrichum squamatum (Spreng.) G.L. Nesom 1960
Tagetes patula L. 1960
Tradescantia fluminensis Vell. 1960
Zebrina pendula Schnizl. 1960
Ageratum houstonianum Mill. 1970
Pennisetum thunbergii Kunth 1970
Acacia dealbata Link 1980
Adiantum hispidulum Sw. 1980
Azolla filiculoides Lam. 1980
Bougainvillea glabra Choisy 1980
Bryophyllum delagoÎnse (Eckl. & Zeyh.) Schinz 1980
Bryophyllum pinnatum (Lam.) Oken 1980
Caesalpinia spinosa (Molina) Kuntze 1980
Canna indica L. 1980
Casuarina cunninghamiana Miq. 1980
Catharanthus roseus (L.) Don 1980
Commicarpus helenae (Schult.) Meikle 1980
Eleusine tristachya (Lam.) Lam. 1980
Fuchsia boliviana Carrière 1980
Graptopetalum paraguayense (N. E. Br.) E. Walther 1980
Hyparrhenia arrhenobasis (Hochst. ex Steud.) Stapf 1980
Ipomoea indica (Burm. f.) Merr. 1980
Iris albicans Lange 1980
Leonotis nepetifolia (L.) R. Br. in Aiton 1980
Maurandya scandens (Cav.) Pers. 1980
Paspalum dilatatum Poir. 1980
Paspalum urvillei Steud. 1980
Pisum sativum L. 1980
Senna didymobotrya (Fresen.) H. S. Irwin & Barneby 1980
Setcreasea pallida Rose 1980
Agave ferox C. Koch 1990
Agave fourcroydes Lem. 1990
Alpinia zerumbet (Pers.) Burtt & R. M. Sm. 1990
Amaranthus caudatus L. 1990
Amaranthus cruentus L. 1990
Amaranthus standleyanus Parodi ex Covas 1990
Atriplex suberecta Verd. 1990
Austrocylindropuntia cylindrica (Lam.) Backeb. 1990
Austrocylindropuntia exaltata (Berg) Backeb. 1990
Bambusa vulgaris Schrad. 1990
Brugmansia suaveolens (Willd.) Bercht. & J. Presl 1990
Bryophyllum daigremontianum (Raym.-Hamet & Perr.) 1990
Bryophyllum proliferum Bowie ex Curtis 1990
Calliandra tweedii Benth. 1990
Calotropis procera (Aiton) W. T. Aiton 1990
Cicer arietinum L. 1990
Coffea arabica L. 1990
Conyza sumatrensis (Retz.) E.Walker 1990
Corchorus depressus (L.) Stocks 1990
Cortaderia selloana (Schult. & Schult. f.) Asch. & Graebn. 1990
Cyperus esculentus L. 1990
Desmanthus virgatus (L.) Willd. 1990
Euphorbia milii Des Moul. ex Boiss. 1990
Fuchsia coccinea Aiton 1990
Furcraea foetida (L.) Haw. 1990
Gossypium herbaceum L. 1990
Heliotropium curassavicum L. 1990
Hylocereus undatus (Haw.) Britton & Rose 1990
Hyparrhenia rufa (Nees) Stapf in Prain 1990
Impatiens olivieri C. H. Wright ex W. Watson 1990
Impatiens walleriana Hook. f. 1990
Imperata cylindrica (L.) Rauschel 1990
Ipomoea batatas (L.) Lam. 1990
Ipomoea hederacea Jacq. 1990
Ipomoea pes-caprae (L.) Sweet 1990
Ipomoea purpurea (L.) Roth 1990
Kikoyuochloa clandestinum (Vhiov.) H.Scholz 1990
Leucaena leucocephala (Lam.) de Wit 1990
Lippia canescens “Humb., Bonpl. & Kunth“ 1990
Maireana brevifolia (R. Br.) P.G. Wilson 1990
Montanoa bipinnatifida (Kunth) C. Koch 1990
Musa acuminata Colla 1990
Nephrolepis exaltata (L.) Schott 1990
Oenothera striata Ledeb. ex Link 1990
Oplismenus hirtellus (L.) P. Beauv. 1990
Parkinsonia aculeata L. 1990
Paspalum distichum L. 1990
Passiflora suberosa L. 1990
Phaedranthus buccinatorius (DC.) Miers 1990
Phyllanthus tenellus Roxb. 1990
Pistia stratiotes L. 1990
Pteris cretica L. 1990
Pteris multifida Poir. 1990
Pyrostegia venusta (Ker-Gawl.) Miers 1990
Saccharum officinarum L. 1990
Salvinia natans (L.) All. 1990
Sansevieria trifasciata Prain 1990
Sedum mexicanum Britton 1990
Senna corymbosa (Lam.) H. S. Irwin & Barneby 1990
Senna multiglandulosa (Jacq.) H. S. Irwin & Barneby 1990
Sesuvium portulacastrum (L.) L. 1990
Sidastrum paniculatum (L.) Fryxell 1990
Simmondsia chinensis (Link) C. K. Schneid. 1990
Solanum giganteum Jacq. 1990
Solanum gracile Otto 1990
Solanum mauritianum Scop. 1990
Solanum microcarpum (Pers.) Vahl 1990
Solanum nodiflorum Jacq. 1990
Solanum tuberosum L. 1990
Tithonia diversifolia (Hemsl.) A. Gray 1990
Tradescantia blossfeldiana Mildbr. 1990
Tripleurospermum inodorum (L.) Sch. Bip. 1990
Wigandia caracasana “Humb., Bonpl. & Kunth“ 1990
Xerochrysum bracteatum (Vent.) Tzvelec 1990
Zea mays L. 1990
Atriplex semilunaris Aellen 2000
Gnaphalium antillanum Urb. 2000
Nicotiana glutinosa L. 2000
Portulaca nicaraguensis (Danin & H. G. Baker) Danin 2000
Portulaca papillato-stellulata (Danin & H. G. Baker) Danin 2000
Suaeda fruticosa Forssk. ex J. F. Gmel. 2000

The information for TOU, GDP, POP, TEM, mTEM is presented in Table 3. The dramatic increase in GDP is particularly important from the decades 1940 to 1960. This was the period in which the Spanish dictatorship began to open up the economy ending decades of autarchy. This was followed by the tourist boom that started in the 60s. While the main increase in tourist numbers appeared in the 80s, the largest population increase (25 %) was in the decade of the 90s. With regard to temperature anomalies, the greatest rise in temperature appears in the last decade, while a constant but almost insignificant increase was the common pattern in the previous decades. The change in average temperature is more relevant in the case of minimum temperatures.

Table 3 Socioeconomic and climatic information (GDP: Gross domestic product in millions €; POP: Resident population; TOU: Millions of tourists; TEM: mean temperature anomalies; mTEM: minimum mean temperature anomalies). 

Decade GDP POP TOU TEM mTEM
1940 44 813290 15 -0.207 -0.473
1950 1.801 974989 73 -0.203 -0.495
1960 5.264 1137599 792 0.151 0.010
1970 10.191 1388243 2228 -0.155 -0.292
1980 19142 1621710 5459 0.044 0.090
1990 32059 1767867 9975 0.077 0.179
2000 42097 2219846 8611 0.344 0.463

The analysis of species composition for invasive species revealed that a few of the most aggressive ones were present during the first decade of this study such as Opuntia maxima, Opuntia dillenii, Agave americana, Acacia farnesiana or Arundo donax; whereas others arrived in the last few decades like Crassula multicava and Chasmanthe aethiopica. The greatest change in species composition occurred between 1950 and 1960 (Figure 2). In the case of introduced species, the DCA revealed a major change between 1950 and 1960, but also (base in DCA axis II) a change between 1990 and 2000. As for early arrivals, we found Bidens pilosa or Solanum jasminoides, and for late arrivals we have species like Nicotiana glutinosa or Portulaca nicaraguensis (Figure 3). Finally, for native species (Figure 4), only the decade coordinates are indicated (more than 500 species cannot be plotted), revealing a substantial change in species composition in the 1970s and 80s, possibly due to the foundation of the Faculty of Biology of the University of La Laguna (although this information has been not analyzed it agree with an increased with the number of publications that appeared in that decade).

Figure 2 Species and decade scores in the space defined by axes I and II of DCA based on the presence of the invasive thermophile species following the Arechavaleta-Hernández et. al (2010) check list. Eigenvalues of axes I and II were 1.330 and 0.511, respectively, and the cumulative percentage of variance explained by both axes was 65.2 %. The names of the species use the first three letters of the genus and the first three letters of the specific epithet (Table 1 for species full names). 

Figure 3 Species and decade scores in the space defined by axes I and II of DCA based on the presence of the introduced thermophile species following the Arechavaleta-Hernández et. al (2010) check list. Eigenvalues of axes I and II were 1.813 and 0.484, respectively, and the cumulative percentage of variance explained by both axes was 70.8 %. The names of the species use the first three letters of the genus and the first three letters of the specific epithet (Table 2 for species full names). 

Figure 4 Decade scores in the space defined by axes I and II of DCA based on the presence of the native species following the Arechavaleta-Hernández et. al (2010) check list. Eigenvalues of axes I and II were 0.672 and 0.195, respectively, and the cumulative percentage of variance explained by both axes was 69.8 %. 

When we correlated the decade coordinates of DCA- Axis I with the socioeconomic and temperature variables, the analysis revealed that native species are closely related to socioeconomic parameters over these decades. Additionally, with lower correlation strength, introduced species are also correlated with these variables and with mTEM; while invasive species revealed no correlation with any of the parameters used in the analysis. The DCA-Axis II did not reveal any correlation among these variables with the decade coordinates (Table 4).

Table 4 Pearson correlation coefficients for decades coordinates on axes I and II of DCA and socioeconomic and temperature anomaly variables. 

DCA - Axis I DCA - Axis II
Variables Invasive Introduce Native Invasive Introduce Native
GDB 0.843 0.943** 0.970** -0.793 -0.691 0.521
POP 0.887 0.948** 0.968** -0.725 -0.604 0.529
TUR 0.839 0.942* 0.967** -0.929 -0.856 0.267
TEM 0.809 0,819 0.779 -0.533 -0.413 0.589
mTEM 0.911 0.936** 0.918 -0.720 -0.598 0.478

After multiple test Holm´s procedure (*) p <0.01; (**) p < 0.05; n = 7.

The direct gradient analysis (CCA) also showed similar patterns to the DCA. In the case of invasive species, the Montecarlo Test for the decade scores of CCA-Axis I with respect to the 4 explanatory variables (499 iterations) indicated that the only variable explaining species composition all along the axis is TOU (F = 6.25; p < 0.001), with the same result for the introduced ones (F = 9.110; p < 0.01), while for native, GDP was the only variable (F = 9.01, p < 0.01).

The correlation of species richness with the variables revealed a similar pattern for native and introduced species, where GDP, POP and TOU were significantly correlated with the increase in species richness, while for invasive, the correlated variable explaining the variability of species richness of this group was mTEM (Table 5).

Table 5 Pearson correlation coefficients for species richness over the decades and socioeconomic and temperature anomalies variables. 

Variables Invasive Introduce Native
GDB 0.913 0.979* 0.946**
POP 0.931 0.942** 0.966*
TOU 0.906 0.970* 0.945**
TEM 0.832 0.802 0.782
mTEM 0.938** 0.913 0.918

After multiple test Holm´s procedure (*) p < 0.01; (**) p < 0.05; n = 7.

Discussion

Species invasions are governed by factors such as environmental conditions and species traits as well as human activities (Pyšek et al. 2010). It is well known that socioeconomic variables are driving forces of invasion across national and international boundaries (population, international trade, globalization economy, transport…); while aspects related to global warming and climate change appear to have less effect in some studies (Le Maitre et al. 2004) and as our results in this study demonstrate. The degree of development is directly related to the number of invasive species and the impact can be immediately evident or lag for a period over 100 years (Weber & Li 2008).

In our study, we have found a faster rate of increase in the number of invasive and introduced species than in the number of native species during these decades (Figure 1). Based on absolute numbers, introduced species is the group that has been increasing the fastest over the last seven decades. It is also true that we have centered the study on thermophile invasive and introduced species, as they have been considered more adaptable and responsive to global warming (Sobrino et al. 2001). Global warming is considered to affect ecophysiological processes of plant systems resulting in advances of thermophilic species and expansion of their ranges (Hilbert et al. 2001, Sobrino et al. 2001). Increases in CO2 and in temperature are determining factors related to the prevalence of invaders (Dukes & Mooney 1999).

In spite of the importance of global warming in favoring species to reach, up till now otherwise inhabitable areas (i.e. high altitudinal zones; Pauchard et al. 2009), we have found that socioeconomic aspects of development (GDP, POP and TOU) are important elements that better explain the increase in richness and changes in species composition. However, mTEM appears in these correlations as significant in the case of invasive species richness and in the case of DCA introduce species composition. The results are in some way similar to other studies, where economic variables similar to GDP (i.e. per capita real state) have been found as the most important variables to explain the distribution of non-native species (Taylor & Irwin 2004), as well as other indicators, such as the human development index (Weber & Li 2008) or population movements (Margolis et al. 2005). Population and tourism, in our case, have been revealed as the most consistent variables to explain species composition and species richness. In fact, these are the only variables that explain changes in invasive species composition and richness (Table 4) and are significant in other analyses, as demonstrated in other studies (Pyšek et al. 2010, Lockwood et al. 2005).

In our study, the increase in mTEM has only been significant in the case of invasive richness and introduced species composition. In other studies related to altitudinal gradients, minimum temperatures appear as a good predictor to displace the tree or other species line at higher altitudes (Dukes et al. 2009), including invasive ones, which have been revealed as another threat to well-protected altitudinal areas (Sheppard et al. 2014; Pauchard et al. 2009).

The number of tourist has not often been considered in studies about determinants that drive introduced species. In our case, it is very closely related to the number of introduced species, although it was also significant for the other groups of species richness as well as for explaining species composition. Tourism is the principal economic activity of the archipelago, with over 12 million visitors in 2012 (with an average stay of 10 days). We should consider the impact of tourism not just as a number, but also in terms of the numerous activities associated with tourism (excursions, spectacles, transport).

We expected that temperature anomalies (minimum) would play a more significant role in the changes in species composition and richness over the decades. In fact, we selected the thermophile species, expecting to favor the appearance of significant relationships. However, these relationships have been found to be very low, even when analyzing the data individually with species richness. In spite of these results, we still consider that temperature anomalies, as long as they follow IPCC predictions, will become an important driver of species invasion. Climatic changes predicted by the IPCC in the Mediterranean area are likely to determine significant changes in species forest composition. In fact, the moderate scenarios of the IPCC predict a severe decrease in precipitations and a rise of 3–4 °C in average temperatures (de Castro et al. 2004), with a similar scenario for Canary Islands based on the newest and most sensitive IPCC estimations (IPCC 2013). So far, changes detected over the past 70 years have not reached 2 °C. This could be the reason why this effect is not detectable yet, and also because of the great socioeconomic changes that affected the Canary Islands during these decades (tourism boom in the 60s, the arrival of democracy in 1974, joining the European Community 1984, etc.).

One of the results common to both native and introduced species is that they are affected by the same socioeconomic factors (although invasives were only significantly related to population), following the pattern that is known as “what it is good for native is also good for introduced species” (Stohlgren et al. 1999, Foster et al. 2002). In this case, despite the appearance of new of native or introduced species, we cannot relate this appearance to a “biological invasion crisis” but to a deeper economic development of the Canary Islands’ society that invests more in research and discovery of species. In fact, in the last five decades in Canary Islands has been described an average of three new species of terrestrial flora each year (Martín et al. 2005). It is also true that this economic development favors propagule dispersion at a faster rate than the appearance of native species, as found in our data, and this should be an important concern for environmental managers (Figure 1). As globalization is a force that favors propagule pressure (Lockwood et al. 2005), its association with the increase in the number of introduced species comes as no surprise. Something similar happens with the observed relationship between the invaders and mTEM; the less important the temperature is as a limiting factor, the greater the chances of survival, allowing better growth of alien species in the range introduced. This has been identified as one of the expected effects of climate change on biodiversity (Walther et al. 2009).

Climate change, including increased temperatures, decreased rainfall, and variation in daily/seasonal temperature ranges may facilitate the geographical extension of many invasive species, threatening native biodiversity (Caujape-Castells et al. 2010). Continuous monitoring and control of areas where non-native species are concentrated, including botanical gardens, personal gardens, landscaped public and government buildings, and commercial garden centers, among others, is recommended to prevent accidental escape and expansion of thermophile species favored by climate change in the near future, as has been recently suggested by McDougall et al. (2011). For Tenerife Island, golf courses are one of the main entrance of non-native species (Siverio 2012), becoming one of the main areas to control (not just the target species used for the field, also the involuntary introduce in the seeds and soil. The number of exotic species blacklisted should be expanded to include species that have an increased likelihood of becoming feral due to local warming. As it is revealed in this study, together with economic growth, the entrance of introduce species are expected to increase.

We cannot forget the importance of laws and regulation in order to control the movement an entrance of invasive and introduce species. A new Royal Decree Law (Real Decreto Ley 630/2013, 2013) has been enacted and approves to regulate the invasive and introduce species and stablishing strong limitations to the use.

Since 2007, the economic crisis has changed many socioeconomic variables in this study (study finished in 2010). Thus, in future studies, we will have a good opportunity to reveal the importance of the temperature anomalies (minimum and average) in species richness and composition. Clearly, multidisciplinary efforts will be necessary between ecologists and economists to reveal the external cost of the increasing presence of non-native species caused by economic growth. This will be valuable information before declaring and then facing battle against any future “biological invasion crises”.

Acknowledgments

This research contributes to the project CLIMAIMPACTO MAC/3/C159 within the MAC Transnational Cooperation Programme 2007-2013. CLIMAIMPACTO is supported by the Canary Islands Government Agency for Sustainable Development and Climate Change, in partnership with the Ministry of the Environment, Rural Development and Marine Resources of Cape Verde. The authors thank Professor Luis Cabrera of the Department of Spanish Economic History at the University of La Laguna for the Analysis of Variations in Gross Domestic Product in the Canary Islands. We thank Clive Tyrell for the help with the English edition of the manuscript.

Literature cited

Anonymous. 1997. Libro blanco del turismo Canario. Santa Cruz de Tenerife: Consejería de Turismo y Transporte. [ Links ]

Aguiar FCF, Ferreira MT. 2013. Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: A review. Plant Biosystems 147:1107-1119. DOI: 10.1080/11263504.2013.861539 [ Links ]

Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, MIREN Consortium. 2011. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences 108:656-661. DOI: 10.1073/pnas.1013136108. [ Links ]

Arechavaleta-Hernández M, Rodríguez-Núñez S, Zurita-Pérez N, García-Ramírez A. 2010. Lista de especies silvestres de Canarias. Hongos plantas y animales terrestres 2009. Santa Cruz de Tenerife: Gobierno de Canarias. [ Links ]

Atkinson IAE, Cameron EW. 1993. Human influence on the terrestrial biota and biotic communities of New Zealand. Trends in Ecology & Evolution 8:447–451. DOI: 10.1016/0169-5347(93)90008-D. [ Links ]

Brito A. 2008. Influencia del calentamiento global sobre la biodiversidad marina de las islas Canarias. In: Afonso-Carrillo J, ed. Naturaleza amenazada por los cambios en el clima Actas III Semana Científica Telesforo Bravo. Tenerife: Instituto de Estudios Hispánicos de Canarias, 141-161. [ Links ]

Caujapé-Castells J, Tye A, Crawford DJ, Santos-Guerra A, Sakai A, Beaver K, Lobin W, Florens FBV, Moura M, Jardim R, Gómes I, Kueffer C. 2010. Conservation of oceanic islands floras: Present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics 12:107-129. DOI: 10.1016/j.ppees.2009.10.001. [ Links ]

deCastro M, Gallardo C, Calabria S. 2004. Regional IPCC Projections until 2100 in the Mediterranean Area. In: Marquina A, ed. Environmental Challenges in the Mediterranean 2000-2050., Proceeding of the NATO Advanced Research Workshop on Environmental Challenges in the Mediterranean 2000-2005 Madrid, Spain 2-5 October 2002. Dordrecht: Springer Netherlands, 75—90. [ Links ]

delArco-Aguilar M. 2008. La flora y la vegetación canaria ante el cambio climático actual. In: Afonso-Carrillo J, ed. Naturaleza amenazada por los cambios en el clima Actas III Semana Científica Telesforo Bravo, pp, Tenerife: Instituto de Estudios Hispánicos de Canarias, 105-140. [ Links ]

Díaz-Hernández R. 2003. Caracterización de la población Canaria a comienzos del siglo XXI. Una Perspectiva de la sociedad insular desde la demogeografía. Anuario de Estudios Atlánticos 49:351-429. [ Links ]

Dietz H, Edwards PJ. 2006. Recognition of changing processes during plant invasions may help reconcile conflicting evidence of the causes. Ecology 87:1359-1367. DOI: 10.1614/IPSM-07-054.1. [ Links ]

Donlan CJ, Wilcox C. 2008. Diversity, invasive species and extinctions in insular ecosystems. Journal of Applied Ecology 45:1114–1123. DOI: 10.1111/j.1365-2664.2008.01482.x. [ Links ]

Dukes JS, Mooney HA. 1999. Does global change increase the success of biological invaders? Trends in Ecology & Evolution 14:135-139. DOI: 10.1016/S0169-5347(98)01554-7. [ Links ]

Florencio M, Cardoso P, Lobo JM, Brito de Azevedo E, Borges PAV. 2013. Arthropod assemblage homogenization in oceanic islands: the role of indigenous and exotic species under landscape disturbance. Diversity and Distributions 19:1450-1460. DOI: 10.1111/ddi.12121. [ Links ]

Foster BL, Smith VH, Dickson TL, Hilderbrand T. 2002. Invasibility and compositional stability in a grassland community: relationships to diversity and extrinsic factors. Oikos 99:300–307. [ Links ]

Franklin SB. Robertson PA., Fralish JS. and Kettler SM. 1993. Overstory vegetation and successional trends of land between the Lakes, USA. Journal of Vegetation Science 4:509-520. [ Links ]

Gauch HG Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge: Cambridge University Press. [ Links ]

Gurevitch J, Padilla D. 2004. Are invasive species a major cause of extinctions? Trends in Ecology & Evolution 19:470-474. DOI: 10.1016/j.tree.2004.07.005. [ Links ]

Hilbert DW, Ostendorf B, Hopkins M. 200. Sensitivity of tropical forests to climate change in the humid tropics of North Queensland. Austral Ecology 26:590–603. DOI: 10.1046/j.1442-9993.2001.01137.x. [ Links ]

Hill MO. and Gauch HG Jr. 1980. Detrended Correspondence Analysis, an improved ordination technique. Vegetatio 42:47-58. DOI: 10.1007/BF00048870. [ Links ]

Hulme PE. 2004. Invasions, islands and impacts: A Mediterranean perspective. In: Fernandez-Palacios JM, Morici C, eds. Island Ecology. La Laguna: Asociación Española de Ecología Terrestre 337–361. [ Links ]

Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46:10–18. DOI: 10.1111/j.1365-2664.2008.01600.x. [ Links ]

IPCC. 2013. Summary for Policymakers. In: Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P.M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. New York. DOI:10.1017/CBO9781107415324.004. [ Links ]

Kaluza P, Kölzsch A, Gastner MT, Blasius B. 2010. The complex network of global cargo ship movements. Journal of the Royal Society Interface 7:1093–1103. DOI: 10.1098/rsif.2009.0495. [ Links ]

Kueffer C, Daehler CC, Torres-Santana CW. Lavergne C, Meyer J-Y, Otto R, Silva L. 2010. A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematic 12:145–161. DOI: 10.1016/j.ppees.2009.06.002. [ Links ]

Köppen W, Geiger R. 1928. Klimakarte der Erde. Gotha: Verlag Justus. [ Links ]

Legendre P, Legendre L. 1998. Numerical Ecology. Amsterdam: Elsevier Science. [ Links ]

LeMaitre DC, Richardson DM, Chapman RA. 2004. Alien plant invasions in South Africa: driving forces ant the human dimensions. South African Journal of Sciences 100:103-112. [ Links ]

Levine JM, D’Antonio CM. 2003. Forecasting biological invasions with increasing international trade. Conservation Biology 17:322-326. DOI: 10.1046/j.1523-1739.2003.02038.x. [ Links ]

Lin W, Zhou G, Cheng X, Xu R. 2007. Fast economic development accelerates biological invasions in China. PLoS ONE 2(11)e1208. DOI: 10.1371/journal.pone.0001208. [ Links ]

Lockwood JL, McKinney ML, eds. 2001. Biotic Homogenization. New York: Springer. [ Links ]

Lockwood JL, Cassey P, Blackburn T. 2005. The role of prapagule pressure in explaining species invasions. Trends in Ecology & Evolution 20: 223–28. DOI: 10.1016/j.tree.2005.02.004. [ Links ]

Martín-Esquivel JL, Marrero Gómez M del C, Zurita Pérez N, Arechavaleta Hernández M, Izquierdo Zamora I. 2005. Biodiversidad en gráficas. Especies silvestres de las Islas Canarias. Tenerife: Consejería de Medio Ambiente y Ordenación Territorial del Gobierno de Canarias. [ Links ]

Martín JL, Bethencourt J, Cuevas-Agulló E. 2012. Assessment of global warming in the Canary Islands. Trends since 1944 in the maximum and minimum annual temperatures on the island of Tenerife (Spain). Climatic Change 114:343-355. DOI: 10.1007/s10584-012-0407-7. [ Links ]

McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C. 2011. Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Diversity and Distributions 17:103-111. DOI: 10.1111/j.1472-4642.2010.00713.x. [ Links ]

Margolis M, Shogren JF, Fischer C. 2005. How trade politics affect invasive species control. Ecological Economics 52:305-313. DOI: 10.1016/j.ecolecon.2004.07.017. [ Links ]

Pauchard A, Kueffer C, Dietz H, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T. 2009. Ain’t not mountain high enough: Plant invasions reaching new elevations? Frontiers in Ecology and the Environment 7:479-486. DOI: 10.1890/080072. [ Links ]

Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental an economic cost associated with alien-invasive species in the United States. Ecological Economy 52:273-288. DOI: 10.1016/j.ecolecon.2004.10.002. [ Links ]

Pyšek P, Chytrý M, Jarošik V. 2010. Habitats and land-use as determinants of plant invasions in the temperate zone of Europe. In: Perrings C, Mooney HA, Williamson M, eds. Bioinvasions and Globalization: Ecology, Economics, Management and Policy. Oxford: Oxford University Press, 66–79. [ Links ]

Real Decreto Ley 630/2013. 2013. Catálogo español de especies exóticas invasoras. Boletín Oficial del Estado, 185, 56764-56786. [ Links ]

Reaser JK, Meyerson LA, Cronk Q, De Poorter M, Eldrege LG, Green E, Kairo M, Latasi P, Mack RN, Mauremootoo J, O’Dowd D, Orapa W, Sastroutomo S, Saunders A, Shine C, Thrainsson S, Vaiutu L. 2007. Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environmental Conservation 34:98–111. DOI: 10.1017/S0376892907003815. [ Links ]

Siverio AMN. 2012. Aportación al conocimiento y control de la flora arvense de jardines, espacios públicos ajardinados y áreas deportivas de la isla de Tenerife. PhD Thesis. Universidad de La Laguna. URL: ftp://h3.bbtk.ull.es/ccppytec/cp435.pdf. [ Links ]

Sperling FN, Washington R, Whittaker RJ. 2004. Future climate change of the subtropical North Atlantic: implications for the cloud forest of Tenerife. Climate Change 65:103–123. DOI: 10.1023/B:CLIM.0000037488.33377.bf. [ Links ]

SPSS Inc. 1997. SPSS Base 7.5 for Windows. User’s Guide. SPSS Chicago, © SPSS Inc. [ Links ]

Sharma GP, Esler KJ, Blignaut JN. 2010. Determining the relationship between invasive alien species density and a country´s socio-economic status. South Africa Journal of Sciences 106:1-6. DOI: 10.4102/sajs.v106i3/4.113. [ Links ]

Sheppard CS, Burns BR, Stanley MC. 2014. Predicting plant invasions under climate change: are species distribution models validated by field trials? Global Change Biology 20:2800-2814. DOI: 10.1111/gcb.12531. [ Links ]

Silva L, Smith CW. 2004. A characterization of the non-indigenous flora of the Azores Archipelago. Biological Invasions 6:193-204. DOI: 10.1023/B:BINV.0000022138.75673.8c [ Links ]

Sobrino-Vesperinas E, González-Moreno A, Sanz-Elorza M, Dana Sánchez E, Sánchez-Mata, Gavilán R. 2001. The expansion of thermophilic plants in the Iberian Peninsula as a sign of climatic change. In: Walther GR, Burga CA, Edwards P. Eds. Fingerprints’ of climate change –Adapted behavior and shifting species ranges. New York: Springer, 163- 184. [ Links ]

Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y. 1999. Exotic plant species invade hot spots of native plant diversity. Ecological Monographs 69:25–46. DOI: 10.2307/2657193. [ Links ]

Sutherst RW. 2000. Climate change and invasive species: A conceptual framework. In: Mooney HA, Hobbs RJ, eds. Invasive Species in a Changing World. Washington DC: Island Press, 211–240. [ Links ]

Taylor BW, Irwin RE. 2004. Linking economic activities to the distribution of exotic plants. Proceedings of the National Academy of Sciences USA 101:17725–17730. DOI: 10.1073/pnas.0405176101. [ Links ]

ter Braak CJF, Šmilauer P. 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Ithaca: Microcomputer Power. [ Links ]

Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet Ch, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J. 2009. Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution 24: 686-693. DOI: 10.1016/j.tree.2009.06.008. [ Links ]

Weber E, Li B. 2008. Plant Invasions in China: What is to be expected in the wake of economic development? Bioscience 58:437-444. DOI: 10.1641/B580511. [ Links ]

Westphal MI, Browne M, MacKinnon K, Noble I. 2008. The link between international trade and the global distribution of invasive alien species. Biological Invasions 10:391-398. DOI: 10.1007/s10530-007-9138-5. [ Links ]

Appendix 1

Native endemic species Decade
Andryala pinnatifida Aiton 1940
Andryala webbii Sch. Bip. ex Christ 1940
Argyranthemum adauctum (Link) Humphries 1940
Argyranthemum broussonetii (Pers.) Humphries 1940
Argyranthemum callichrysum (Svent.) Humphries 1940
Argyranthemum coronopifolium (Willd.) Humphries 1940
Argyranthemum escarrei (Svent.) Humphries 1950
Argyranthemum filifolium (Sch. Bip.) Humphries 1940
Argyranthemum foeniculaceum (Willd.) Webb ex Sch. Bip. 1940
Argyranthemum frutescens (L.) Sch. Bip. 1940
Argyranthemum gracile Sch. Bip. 1940
Argyranthemum haouarytheum Humphries & Bramwell 1940
Argyranthemum hierrense Humphries 1940
Argyranthemum lemsii Humphries 1940
Argyranthemum lidii Humphries 1940
Argyranthemum maderense (D. Don) Humphries 1940
Argyranthemum sundingii L. Borgen 1990
Argyranthemum sventenii Humphries & Aldridge 1980
Argyranthemum tenerifae Humphries 1940
Argyranthemum webbii Sch. Bip. 1940
Argyranthemum winteri (Svent.) Humphries 1940
Artemisia ramosa C. Sm. in Buch 1940
Artemisia thuscula Cav. 1940
Asteriscus intermedius (DC.) Pit. & Proust 1940
Asteriscus sericeus (L. f.) DC. 1940
Atractylis arbuscula Svent. & Michaelis 1940
Atractylis preauxiana Sch. Bip. 1940
Carduus baeocephalus Webb 1940
Carduus bourgeaui Kazmi 1940
Carduus clavulatus Link 1940
Carduus volutarioides Reyes-Betancort 2000
Carlina canariensis Pit. 1940
Carlina falcata Svent. 1940
Carlina texedae Marrero Rodr. 1980
Carlina xeranthemoides L. f. 1940
Crepis canariensis (Sch. Bip.) Babc. 1940
Erigeron calderae A. Hansen 1980
Helichrysum alucense “García-Casanova, S. Scholz & Hernández” 1990
Helichrysum gossypinum Webb 1940
Helichrysum monogynum Burtt & Sunding 1970
Hypochoeris oligocephala (Svent. & Bramwell) Lack 1960
Kleinia neriifolia Haw. 1940
Lactuca palmensis Bolle 1940
Laphangium teydeum Wildpret & Greuter 1940
Onopordon carduelium Bolle 1940
Onopordon nogalesii Svent. 1950
Pericallis appendiculata (L. f.) B. Nord. 1940
Pericallis cruenta (L`Hér.) Bolle 1940
Pericallis echinata (L. f.) B. Nord. 1940
Pericallis hadrosoma (Svent.) B. Nord. 1940
Pericallis hansenii (G. Kunkel) Sunding 1980
Pericallis lanata (L`Hér.) B. Nord. 1940
Pericallis multiflora (L`Hér.) B. Nord. 1940
Pericallis murrayi (Bornm.) B. Nord. 1940
Pericallis papyracea (DC.) B. Nord. 1940
Pericallis steetzii (Bolle) B. Nord. 1940
Pericallis tussilaginis (L`Hér.) D. Don in Sweet 1940
Pericallis webbii Sch. Bip. & Bolle 1940
Phagnalon umbelliforme DC. 1940
Pulicaria canariensis Bolle 1940
Reichardia crystallina (Sch. Bip.) Bramwell 1940
Reichardia famarae Bramwell & G. Kunkel ex Gallego & Talavera 1940
Reichardia ligulata (Vent.) G. Kunkel & Sunding 1940
Schizogyne glaberrima DC. 1940
Senecio bollei Sunding & G. Kunkel 1940
Senecio hermosae Pit. 1940
Senecio palmensis (C. Sm. in Buch) Link 1940
Senecio teneriffae Sch. Bip. 1940
Sonchus acaulis Dum. Cours. 1940
Sonchus bornmuelleri Pit. 1960
Sonchus brachylobus Webb & Berthel. 1940
Sonchus canariensis (Sch. Bip.) Boulos 1940
Sonchus congestus Willd. 1940
Sonchus fauces-orci Knoche 1940
Sonchus gandogeri Pit. 1940
Sonchus gomerensis Boulos 1950
Sonchus gummifer Link 1940
Sonchus hierrensis (Pit.) Boulos 1940
Sonchus lidii Boulos 1940
Sonchus ortunoi Svent. 1950
Sonchus palmensis (Sch. Bip.) Boulos 1940
Sonchus pitardii Boulos 1960
Sonchus radicatus Aiton 1940
Sonchus tectifolius Svent. 1960
Sonchus tuberifer Svent. 1940
Sonchus wildpretii U. Reifenberger & A. Reifenberger 1980
Stemmacantha cynaroides (C. Sm. in Buch) Dittrich 1940
Tanacetum ferulaceum (Webb) Sch. Bip. 1940
Tanacetum oshanahanii “Marrero Rodr., Febles & Suárez” 1980
Tanacetum ptarmiciflorum (Webb) Sch. Bip. 1940
Tolpis calderae Bolle 1940
Tolpis crassiuscula Svent. 1940
Tolpis glabrescens Kämmer 1940
Tolpis laciniata (Sch. Bip. ex Webb & Berthel.) Webb 1940
Tolpis lagopoda C. Sm. in Buch 1940
Tolpis proustii Pit. 1940
Tolpis webbii Sch. Bip. ex Webb & Berthel. 1940
Volutaria bollei (Sch. Bip. ex Bolle) A. Hansen & G. Kunkel 1940
Volutaria canariensis Wagenitz 1940
Lavatera acerifolia Cav. 1940
Lavatera phoenicea Vent. 1940
Adenocarpus foliolosus (Aiton) DC. 1940
Adenocarpus ombriosus Ceballos & Ortuño 1940
Adenocarpus viscosus (Willd.) Webb & Berthel. 1940
Anagyris latifolia Brouss. ex Willd. 1940
Chamaecytisus proliferus (L. f.) Link 1940
Cicer canariense A. Santos & G. P. Lewis 1960
Dorycnium broussonetii (Choisy ex Ser. in DC.) Webb & Berthel. 1940
Dorycnium eriophthalmum Webb & Berthel. 1940
Dorycnium spectabile (Choisy ex Ser. in DC.) Webb & Berthel. 1940
Genista benehoavensis (Bolle ex Svent.) del Arco 1940
Lotus arinagensis Bramwell 1960
Lotus berthelotii Masf. 1940
Lotus callis-viridis Bramwell & D. H. Davis 1950
Lotus campylocladus Webb & Berthel. 1940
Lotus dumetorum Webb ex R. P. Murray 1940
Lotus emeroides R. P. Murray 1940
Lotus eremiticus A. Santos 1990
Lotus genistoides Webb 1970
Lotus hillebrandii Christ 1940
Lotus holosericeus Webb & Berthel. 1940
Lotus kunkelii (Esteve) Bramwell & D. H. Davis 1940
Lotus lancerottensis Webb & Berthel. 1940
Lotus maculatus Breitf. 1980
Lotus mascaensis Burchard 1940
Lotus pyranthus P. Pérez 1980
Lotus sessilifolius DC. 1940
Lotus spartioides Webb & Berthel. 1940
Ononis angustissima Lam. 1940
Ononis christii Bolle 1940
Ononis hebecarpa Webb & Berthel. 1940
Retama rhodorhizoides Webb & Berthel. 1940
Teline canariensis (L.) Webb & Berthel. 1940
Teline microphylla (DC.) P. E. Gibbs & Dingwall 1940
Teline nervosa (Esteve) A. Hansen & Sunding 1980
Teline osyrioides (Svent.) P. E. Gibbs & Dingwall 1940
Teline pallida (Poir.) G. Kunkel 1940
Teline rosmarinifolia Webb & Berthel. 1940
Teline salsoloides del Arco & Acebes 1980
Teline splendens (Webb & Berthel.) del Arco 1940
Vicia chaetocalyx Webb & Berthel. 1940
Vicia cirrhosa C. Sm. ex Webb & Berthel. 1940
Vicia filicaulis Webb & Berthel. 1960
Vicia nataliae U. Reifenberger & Reifenberger 1990
Vicia scandens R. P. Murray 1940
Justicia hyssopifolia L. 1940
Camptoloma canariense (Webb & Berthel.) Hilliard 1940
Campylanthus salsoloides (L. f.) Roth 1940
Isoplexis canariensis (L.) J. W. Loudon 1940
Isoplexis chalcantha Svent. & O’Shan. 1940
Isoplexis isabelliana (Webb & Berthel.) Masf. 1940
Kickxia pendula (G. Kunkel) G. Kunkel 1960
Kickxia scoparia (Brouss. ex Spreng.) G. Kunkel & Sunding 1940
Scrophularia calliantha Webb & Berthel. 1940
Scrophularia glabrata Aiton 1940
Scrophularia smithii Hornem. 1940
Orobanche berthelotii Webb & Berthel. 1990
Orobanche gratiosa (Webb & Berthel.) Linding. 1940
Globularia ascanii Bramwell & G. Kunkel 1980
Globularia sarcophylla Svent. 1950
Plantago asphodeloides Svent. 1940
Plantago famarae Svent. 1940
Plantago webbii Barnéoud 1940
Bosea yervamora L. 1940
Cerastium sventenii Jalas 1940
Herniaria canariensis Chaudhri 1960
Herniaria hartungii Parl. 1940
Minuartia platyphylla (Gay ex Christ) McNeill 1940
Minuartia webbii McNeill & Bramwell 1940
Paronychia canariensis (L. f.) Juss. 1940
Polycarpaea aristata (Aiton) DC. 1940
Polycarpaea carnosa C. Sm. ex Buch 1940
Polycarpaea divaricata (Aiton) Poir. 1940
Polycarpaea filifolia Webb ex Christ 1940
Polycarpaea latifolia Willd. 1940
Polycarpaea robusta (Pit.) G. Kunkel 1990
Polycarpaea smithii Link 1940
Polycarpaea tenuis Webb ex Christ 1940
Silene berthelotiana Webb 1940
Silene bourgeaui Webb ex Christ 1940
Silene canariensis Willd. 1990
Silene lagunensis C. Sm. ex Christ 1940
Silene nocteolens Webb & Berthel. 1940
Silene sabinosae Pit. 1940
Silene tamaranae Bramwell 1940
Chenopodium coronopus Moq. in DC. 1940
Patellifolia webbiana “(Moq.) A. J. Scott, Ford-Lloyd & J. T. Williams” 1940
Salsola divaricata Masson ex Link in Buch 1940
Aeonium appendiculatum A. Bañares 1940
Aeonium arboreum (L.) Webb & Berthel. 1940
Aeonium balsamiferum Webb & Berthel. 1940
Aeonium canariense (L.) Webb & Berthel. 1940
Aeonium castello-paivae Bolle 1940
Aeonium ciliatum (Willd.) Webb & Berthel. 1940
Aeonium cuneatum Webb & Berthel. 1940
Aeonium davidbramwellii H. Y. Liu 1940
Aeonium decorum Webb ex Bolle 1940
Aeonium gomerense (Praeger) Praeger 1940
Aeonium goochiae (Webb & Berthel.) Webb & Berthel. 1940
Aeonium haworthii (Salm-Dyck ex Webb & Berthel.) Webb & Berthel. 1940
Aeonium hierrense (R. P. Murray) Pit. & Proust 1940
Aeonium lancerottense (Praeger) Praeger 1940
Aeonium lindleyi Webb & Berthel. 1940
Aeonium nobile (Praeger) Praeger 1940
Aeonium percarneum (R. P. Murray) Pit. 1940
Aeonium pseudourbicum A. Bañares 1940
Aeonium saundersii Bolle 1940
Aeonium sedifolium (Webb ex Bolle) Pit. & Proust 1940
Aeonium simsii (Sweet) Stearn 1940
Aeonium smithii (Sims) Webb & Berthel. 1940
Aeonium spathulatum (Hornem.) Praeger 1940
Aeonium tabulaeforme (Haw.) Webb & Berthel. 1940
Aeonium undulatum Webb & Berthel. 1940
Aeonium urbicum (C. Sm. ex Buch) Webb & Berthel. 1940
Aeonium valverdense (Praeger) Praeger 1940
Aeonium volkerii Hernández & A. Bañares 1940
Aichryson bethencourtianum Bolle 1940
Aichryson bituminosum A. Bañares 1940
Aichryson bollei Webb ex Bolle 1940
Aichryson brevipetalum Praeger 1940
Aichryson laxum (Haw.) Bramwell 1940
Aichryson pachycaulon Bolle 1940
Aichryson palmense Webb ex Bolle 1940
Aichryson parlatorei Bolle 1940
Aichryson porphyrogennetos Bolle 1940
Aichryson punctatum (C. Sm. ex Buch) Webb & Berthel. 1940
Aichryson tortuosum (Aiton) Webb & Berthel. 1940
Monanthes anagensis Praeger 1940
Monanthes brachycaulos (Webb in Webb & Berthel.) Lowe 1940
Monanthes icterica (Webb ex Bolle) Christ 1940
Monanthes laxiflora (DC.) Bolle 1940
Monanthes minima (Bolle) Christ 1940
Monanthes muralis (Webb ex Bolle) Hook. f. 1940
Monanthes pallens (Webb ex Christ) Christ 1940
Monanthes polyphylla Haw. 1940
Monanthes wildpretii A. Bañares & S. Scholz 1980
Bencomia brachystachya Svent. ex Nordborg 1940
Bencomia exstipulata Svent. 1950
Bencomia sphaerocarpa Svent. 1940
Marcetella moquiniana (Webb & Berthel.) Svent. 1940
Rubus palmensis A. Hansen 1970
Ruta microcarpa Svent. 1940
Ruta oreojasme Webb 1940
Ruta pinnata L. f. 1940
Bystropogon canariensis (L.) L`Hér. 1940
Bystropogon odoratissimus Bolle 1940
Bystropogon origanifolius L`Hér. 1940
Bystropogon plumosus (L. f.) L`Hér. 1940
Bystropogon wildpretii La Serna 1960
Lavandula bramwellii Upson & S. Andrews 1980
Lavandula buchii Webb 1940
Lavandula canariensis Mill. 1940
Lavandula minutolii Bolle 1940
Micromeria benthamii Webb & Berthel. 1940
Micromeria glomerata P. Pérez 1970
Micromeria helianthemifolia Webb & Berthel. 1940
Micromeria herpyllomorpha Webb & Berthel. 1940
Micromeria hyssopifolia Webb & Berthel. 1940
Micromeria lachnophylla Webb & Berthel. 1940
Micromeria lanata (C. Sm. ex Link) Benth. 1940
Micromeria lasiophylla Webb & Berthel. 1940
Micromeria lepida Webb & Berthel. 1940
Micromeria leucantha Svent. ex P. Pérez 1980
Micromeria pineolens Svent. 1940
Micromeria rivas-martinezii Wildpret 1980
Micromeria teneriffae (Poir.) Benth. 1940
Micromeria tenuis (Link) Webb & Berthel. 1940
Nepeta teydea Webb & Berthel. 1940
Salvia broussonetii Benth. 1940
Salvia canariensis L. 1940
Salvia herbanica A. Santos & M. Fernández 1980
Sideritis amagroi Marrero Rodr. & Navarro 1990
Sideritis barbellata Mend.-Heuer 1940
Sideritis brevicaulis Mend.-Heuer 1940
Sideritis canariensis L. 1940
Sideritis cretica L. 1940
Sideritis cystosiphon Svent. 1960
Sideritis dasygnaphala (Webb & Berthel.) Clos emend. Svent. 1940
Sideritis dendro-chahorra Bolle 1940
Sideritis discolor Bolle 1940
Sideritis eriocephala Marrero Rodr. ex Negrín & P. Pérez 1940
Sideritis ferrensis P. Pérez & Negrín 1950
Sideritis gomerae Bolle 1940
Sideritis infernalis Bolle 1940
Sideritis kuegleriana Bornm. 1940
Sideritis lotsyi (Pit.) Bornm. 1940
Sideritis macrostachys Poir. 1940
Sideritis marmorea Bolle 1940
Sideritis nervosa (Christ) Linding. 1940
Sideritis nutans Svent. 1950
Sideritis oroteneriffae Negrín & P. Pérez 1940
Sideritis pumila (Christ) Mend.-Heuer 1940
Sideritis soluta Clos 1940
Sideritis sventenii (G. Kunkel) Mend.-Heuer 1970
Thymus origanoides Webb & Berthel. 1940
Brassica bourgeaui (Webb ex Christ) Kuntze 1940
Crambe arborea Webb ex Christ 1940
Crambe gomerae Webb ex Christ 1940
Crambe laevigata DC. ex Christ 1940
Crambe microcarpa A. Santos 1980
Crambe pritzelii Bolle 1940
Crambe santosii Bramwell 1940
Crambe scaberrima Webb ex Bramwell 1940
Crambe scoparia Svent. 1950
Crambe strigosa L`Hér. 1940
Crambe sventenii Pett. ex Bramwell & Sunding 1950
Crambe tamadabensis A. Prina & Á. Marrero 1980
Crambe wildpretii A. Prina & Bramwell 1960
Descurainia artemisioides Svent. 1940
Descurainia bourgeauana (E. Fourn.) O. E. Schulz 1940
Descurainia gilva Svent. 1940
Descurainia gonzalesii Svent. 1940
Descurainia lemsii Bramwell 1940
Descurainia millefolia (Jacq.) Webb & Berthel. 1940
Descurainia preauxiana (Webb) O. E. Schulz 1940
Erucastrum canariense Webb & Berthel. 1940
Erysimum albescens (Webb & Berthel.) Bramwell 1940
Erysimum scoparium (Brouss. ex Willd.) Wettst. 1940
Matthiola bolleana Webb ex Christ 1940
Reseda crystallina Webb & Berthel. 1940
Reseda scoparia Brouss. ex Willd. 1940
Ammodaucus nanocarpus (E. Beltrán) P. Pérez & A. Velasco 1940
Bupleurum handiense (Bolle) G. Kunkel 1940
Cryptotaenia elegans Webb ex Bolle 1940
Ferula lancerottensis Parl. 1940
Ferula latipinna A. Santos 1980
Ferula linkii Webb 1940
Pimpinella anagodendron Bolle 1940
Pimpinella cumbrae Link 1940
Pimpinella dendrotragium Webb 1940
Pimpinella junoniae Ceballos & Ortuño 1940
Pimpinella rupicola Svent. 1940
Seseli webbii Coss. 1940
Echium acanthocarpum Svent. 1950
Echium aculeatum Poir. 1940
Echium auberianum Webb & Berthel. 1940
Echium bethencourtii A. Santos 1980
Echium bonnetii Coincy 1940
Echium brevirame Sprague & Hutch. 1940
Echium callithyrsum Webb ex Bolle 1940
Echium decaisnei Webb 1940
Echium gentianoides Webb ex Coincy 1940
Echium giganteum L. f. 1940
Echium handiense Svent. 1940
Echium hierrense Webb ex Bolle 1940
Echium lancerottense Lems & Holzapfel 1940
Echium leucophaeum Webb ex Sprague & Hutch. 1940
Echium onosmifolium Webb 1940
Echium pininana Webb & Berthel. 1940
Echium simplex DC. 1940
Echium strictum L. f. 1940
Echium sventenii Bramwell 1960
Echium triste Svent. 1940
Echium virescens DC. 1940
Echium webbii Coincy 1940
Echium wildpretii Pearson ex Hook. f. 1940
Euphorbia aphylla Brouss. ex Willd. 1940
Euphorbia atropurpurea (Brouss.) Webb & Berthel. 1940
Euphorbia berthelotii Bolle 1940
Euphorbia bourgeauana Gay ex Boiss. in DC. 1940
Euphorbia bravoana Svent. 1940
Euphorbia canariensis L. 1940
Euphorbia handiensis Burchard 1940
Euphorbia lamarckii Sweet 1940
Euphorbia lambii Svent. 1950
Arbutus canariensis Veill. 1940
Erica platycodon (Webb & Berthel.) Rivas-Mart. & al. 1940
Fumaria coccinea Lowe ex Pugsley 1980
Ceropegia dichotoma Haw. 1940
Ceropegia fusca Bolle 1940
Phyllis viscosa Webb ex Christ 1940
Normania nava (Webb & Berthel.) Franc.-Ort. & R. N. Lester 1940
Solanum lidii Sunding 1960
Solanum vespertilio Aiton 1940
Convolvulus canariensis L. 1940
Convolvulus caput-medusae Lowe 1940
Convolvulus floridus L. f. 1940
Convolvulus fruticulosus Desr. 1940
Convolvulus glandulosus (Webb) Hallier f. 1940
Convolvulus lopezsocasi Svent. 1940
Convolvulus perraudieri Coss. 1940
Convolvulus scoparius L. f. 1940
Convolvulus subauriculatus (Burchard) Linding. 1940
Convolvulus volubilis Link in Buch 1940
Bryonia verrucosa Dryand. 1940
Campanula occidentalis Y. Nyman 1940
Canarina canariensis (L.) Vatke 1940
Forsskaolea angustifolia Retz. 1940
Gesnouinia arborea (L. f.) Gaudich. 1940
Parietaria filamentosa Webb & Berthel. 1940
Urtica stachyoides Webb & Berthel. 1940
Pterocephalus dumetorus (Brouss. ex Willd.) Coult. 1940
Pterocephalus lasiospermus Link ex Buch 1940
Pterocephalus porphyranthus Svent. 1940
Pterocephalus virens Webb & Berthel. 1940
Sambucus palmensis Link 1940
Viburnum rigidum Vent. 1940
Cistus asper Demoly & R. Mesa 2000
Cistus chinamadensis A. Bañares & P. Romero 1980
Cistus horrens Demoly 1960
Cistus ocreatus C. Sm. in L. von Buch 1940
Cistus osbeckiifolius Webb & Christ 1940
Cistus palmensis Bañares & Demoly 2000
Cistus symphytifolius Lam. 1940
Helianthemum bramwelliorum Marrero Rodr. 1990
Helianthemum broussonetii Dunal ex DC. 1940
Helianthemum bystropogophyllum Svent. 1950
Helianthemum gonzalezferreri Marrero Rodr. 1990
Helianthemum inaguae “Marrero Rodr., González-Martín & González-Artiles” 1980
Helianthemum juliae Wildpret 1980
Helianthemum teneriffae Coss. 1940
Helianthemum tholiforme “Bramwell, J. Ortega & B. Navarro” 1980
Helianthemum thymiphyllum Svent. 1950
Viola anagae Gilli 1980
Viola cheiranthifolia Humb. & Bonpl. 1940
Viola palmensis Webb & Berthel. 1940
Rumex lunaria L. 1940
Geranium reuteri Aedo & Muñoz Garm. 1940
Hypericum coadunatum C. Sm. ex Link 1940
Hypericum reflexum L. f. 1940
Olea cerasiformis Rivas-Mart. & del Arco 1940
Limonium arborescens (Brouss.) Kuntze 1940
Limonium benmageci Marrero Rodr. in Marrero Rodr. & Almeida 2000
Limonium bourgeaui (Webb ex Boiss.) Kuntze 1940
Limonium brassicifolium (Webb & Berthel.) Kuntze 1940
Limonium dendroides Svent. 1950
Limonium fruticans (Webb) Kuntze 1940
Limonium imbricatum (Webb ex Girard) C. F. Hubb. 1940
Limonium macrophyllum (Brouss.) Kuntze 1940
Limonium perezii (Stapf) C. F. Hubb. 1940
Limonium preauxii (Webb & Berthel.) Kuntze 1940
Limonium puberulum (Webb) Kuntze 1940
Limonium redivivum (Svent.) G. Kunkel & Sunding 1950
Limonium relicticum R. Mesa & A. Santos 2000
Limonium spectabile (Svent.) G. Kunkel & Sunding 1940
Limonium sventenii A. Santos & M. Fernández 1970
Limonium vigaroense Marrero Rodr. & Almeida 2000
Maytenus canariensis (Loes.) G. Kunkel & Sunding 1940
Myrica rivas-martinezii A. Santos 1980
Rhamnus crenulata Aiton 1940
Rhamnus integrifolia DC. 1940
Sideroxylon canariensis “T. Leyens, W. Lobin & A. Santos” 1940
Arrhenatherum calderae A. Hansen 1940
Avena canariensis “R. Baum, Rajhathy & D. R. Sampson” 1940
Brachypodium arbuscula Knoche 1940
Dactylis metlesicsii Schönfelder & Ludwig 1980
Festuca agustinii Linding. 1940
Lolium edwardii “H. Scholz, Stierstorfer & v.Gaisberg” 1940
Melica teneriffae Hack. ex Christ 1940
Oropetium capense Stapf 2000
Poa pitardiana H. Scholz 1940
Trisetaria lapalmae H. Scholz 1980
Asparagus arborescens Willd. 1940
Asparagus fallax Svent. 1940
Asparagus plocamoides Webb ex Svent. 1940
Semele gayae (Webb) Svent. & G. Kunkel 1940
Pancratium canariense Ker-Gawl. 1940
Dracaena tamaranae “Marrero Rodr., Almeida-Pérez & González-Martín” 1980
Scilla dasyantha Webb & Berthel. 1940
Scilla haemorrhoidalis Webb & Berthel. 1940
Androcymbium hierrense A. Santos 1980
Androcymbium psammophilum Svent. 1940
Dracunculus canariensis Kunth 1940
Carex canariensis Kük. 1940
Carex perraudieriana Gay ex Bornm. 1940
Luzula canariensis Poir. 1940
Habenaria tridactylites Lindl. 1940
Himantoglossum metlesicsianum (W. P. Teschner) P. Delforge 1970
Serapias mascaensis “H. Kretzschmar, G. Kretzschmar & Kreutz” 1990
Phoenix canariensis Chabaud 1940
Pinus canariensis C. Sm. ex DC. in Buch 1940
Asplenium terorense G. Kunkel 1960
Dryopteris oligodonta (Desv.) Pic.-Serm. 1940

Received: November 18, 2015; Accepted: March 31, 2016

* Corresponding author: José Luis Martín, e-mail: jmaresq@gobiernodecanarias.org

Author Contributions: José Ramón Arévalo conceived, designed the experiments, analyzed the data and wrote the paper. José Luis Martín conceived and designed the experiments, selected the data, prepared the data base and reviewed drafts of the paper. Elizabeth Ojeda-Land conceived the study, selected the data, prepared the data base and reviewed drafts of the paper.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License