SciELO - Scientific Electronic Library Online

 
vol.25 número2Percepción de factores de riesgo ocupacional en aserraderos de la región de El Salto, Durango, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.25 no.2 Chapingo may./ago. 2019  Epub 19-Feb-2021

https://doi.org/10.5154/r.rchscfa.2019.01.006 

Scientific article

Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1985-2015) and their relationship with droughts

Rosalinda Cervantes-Martínez1 

Julián Cerano-Paredes2  * 

Guillermo Sánchez-Martínez3 

José Villanueva-Díaz2 

Gerardo Esquivel-Arriaga2 

Víctor H. Cambrón-Sandoval4 

Jorge Méndez-González5 

Luis U. Castruita-Esparza6 

1Universidad Juárez del Estado de Durango, Facultad de Agricultura y Zootecnia, División de Estudios de Posgrado. Carretera Gómez Palacio-Tlahualilo km 32. C. P. 35000. Venecia, Durango, México.

2 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias CENID-RASPA. km. 6.5 Margen Derecha del Canal Sacramento. C. P. 35140. Gómez Palacio, Durango. México.

3Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Campo Experimental Pabellón. C. P. 20670. Pabellón de Arteaga, Aguascalientes, México.

4Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales. C. P. 76230. Querétaro, México.

5Universidad Autónoma Agraria Antonio Narro, Departamento Forestal. C. P. 25315. Saltillo, Coahuila, México.

6Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales. C. P. 33000. Delicias, Chihuahua, México.


Abstract

Introduction:

In the United States of America, forest pests are associated with climate variability. Such studies are scarce in Mexico.

Objectives:

To create a data base of historical outbreaks of bark beetles and analyze their relationship with drought.

Materials and methods:

Historical records of outbreaks of bark beetles were obtained from official documents in Mexico, Guatemala, and Honduras. Dendroclimatic indices were used as a climate proxy. The relationship between pest outbreaks and climate was analyzed with the Superpose Epoch Analysis (SEA).

Results and discussion:

A database of 120 years (1895-2015) of bark beetle outbreaks was created. The most frequent species were Dendroctonus mexicanus Hopkins, Dendroctonus frontalis Zimmermann and Dendroctonus adjunctus Blandford. A total of 106 records of outbreaks in 15 states of Mexico were recorded during the period 1903-2015; 16 outbreaks in Guatemala during the period 1895-2013, and 15 outbreaks in Honduras during the period 1962-2015. Historically, outbreaks were recorded in years with below-average precipitation (550 mm) and have increased since 1970. The SEA determined that bark beetle outbreaks in Mexico, Guatemala and Honduras were recorded during dry years (P < 0.05) with non-significant positive values (P > 0.05) of NIÑO 3 and PDSI (Palmer Drought Severity Index) and significant negative indices (P < 0.01) of NIÑO 3 and PDSI in the year prior to the outbreak, conditions involving intense drought.

Conclusion:

A significant relationship was determined between bark beetle outbreaks and drought conditions for the last 120 years.

Keywords: Dendroctonus; conifers; climate variability; El Niño Southern Oscillation; Palmer Drought Severity Index

Resumen

Introducción:

En Estados Unidos de América, las plagas forestales se asocian a la variabilidad climática. Este tipo de estudios son escasos en México.

Objetivos:

Generar una base de datos de brotes históricos de descortezadores y analizar su relación con la sequía.

Materiales y métodos:

Se obtuvieron registros históricos de brotes de descortezadores de documentos oficiales en México, Guatemala, y Honduras. Como proxy del clima se emplearon índices dendroclimáticos. La relación entre los brotes de plagas y el clima se analizó con el programa Superpose Epoch Analysis (SEA).

Resultados y discusión:

Se generó una base de datos de brotes de descortezadores de 120 años (1895-2015), siendo las especies más frecuentes Dendroctonus mexicanus Hopkins, Dendroctonus frontalis Zimmermann y Dendroctonus adjunctus Blandford. Se documentaron 106 registros de brotes en 15 estados de la república en el periodo 1903-2015; 16 brotes en Guatemala durante el periodo 1895-2013, y 15 brotes en Honduras en el periodo 1962-2015. Históricamente, los brotes se registraron en años con precipitación por debajo de la media (550 mm) e incrementaron a partir de 1970. El SEA determinó que los brotes en México, Guatemala y Honduras se registraron durante años secos (P < 0.05) con valores positivos no significativos (P > 0.05) de NIÑO 3 y PDSI (Palmer Drought Severity Index) e índices negativos significativos (P < 0.01) de NIÑO 3 y PDSI en el año previo al brote, condiciones que implican intensa sequía.

Conclusión:

Para los últimos 120 años se determinó una relación significativa entre brotes de descortezadores y condiciones de sequía.

Palabras clave: Dendroctonus; coníferas; variabilidad climática; El Niño Southern Oscillation; Palmer Drought Severity Index

Introduction

The temperate forests of the Mexican Republic form a very important forest resource both for the extraction of wood and for the production of environmental services. These ecosystems host great biological diversity of flora and fauna, regulate the hydrological cycle, conserve the soil, and participate in carbon sequestration and storage, which contributes to regulating the climate and mitigating global warming (Segura-Warnholtz, 2014). However, these communities are affected by accelerated deforestation, habitat fragmentation and reduced forest density; moreover, many wooded areas are being displaced by bushes or are intended for other land use, either agricultural or livestock (Márquez-Linares, Jurado-Ybarra, & González-Elizondo, 2006).

In recent years, productive activity has intensified globally, which has contributed to the acceleration of climate change; an increase in temperature; changes in the intensity, spatial and temporal distribution of precipitation; and an increase in more extreme hydrometeorological phenomena (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2015). Temperate forest areas are considered the most sensitive to these changes (Villers-Ruiz & Trejo-Vázquez, 2004) and, according to vegetation change projections based on climate models (González-Elizondo, González-Elizondo, Tena-Flores, Ruacho-González, & López-Enríquez, 2012; Villers-Ruiz & Trejo-Vázquez, 2004), this is the type of vegetation that will lose more surface.

In recent decades, the observation of droughts in the national territory has gained relevance as a result of the discovery of the strong influence of the climate phenomenon El Niño Southern Oscillation (ENSO), which causes changes in the known climate cycles (Bitrán, 2001). Decreasing precipitation and increasing temperature are factors that weaken forests, making them susceptible to pests and diseases. On the other hand, pest outbreaks are also associated with tree stress due to factors such as competition, disease, insect defoliation, age and fire (Fetting et al., 2007). In Mexico, forest pests are considered one of the main causes of disturbance in temperate forests; currently there are records of about 70 species of insects and pathogens affecting trees (SEMARNAT, 2015). Climate change is modifying the biological cycle and distribution of forest pests in boreal coniferous forests and temperate regions, increasing the vulnerability of trees (Ayres & Lombardero, 2000).

In the United States of America and Canada (Allen, 2007; Berg, Henry, Fastie, De Volder, & Matsuoka, 2006; Breshears et al., 2005) and in European countries (Kozlov, 2008; Rouault et al., 2006), studies have been conducted on the indirect relationship of the effects of climate on the increase of bark beetle populations. Such studies are scarce in Mexico, a situation attributed to the lack of extensive climate information and the absence of historical records of pest outbreaks. Under such circumstances, this study proposes to generate a database of historical outbreaks of bark beetles in Mexico; analyze their historical relationship with droughts; and determine the influence of ENSO and the condition of the Palmer Drought Severity Index (PDSI) on the modulation of climate condition, for the historical incidence of pest outbreaks.

Materials and methods

Historical outbreaks of bark beetles

A literature review was conducted to gather information on historical records of outbreaks of bark beetles in northern, central, and southern Mexico, and in Guatemala and Honduras (Figure 1). The information was obtained from scientific and technical articles, scientific and technical brochures, scientific and technical notes, seminars and technical reports. Information from unofficial sources was discarded.

A database was created including the following variables: year and place of the outbreak, genus and species of bark beetles, species of conifer affected, and reference of the person who recorded the outbreak. Historical documents reporting significant droughts in Mexico were also consulted. The following variables were used as climate proxy:

    1). A reconstruction of the precipitation for the southwest of the state of Chihuahua (winter-summer) based on growth rings of Pinus arizonica Engelm. including the period 1850-2015.

    2). Dendroclimatic indices: for the north, a chronology of P. arizonica which comprises the period 1647-2015; for the center, a chronology of Pseudotsuga menziesii (Mirb.) Franco which comprises the period 1720-2013; and for the south, a chronology of Pinus patula Schiede ex Schltdl. & Cham. which comprises the period 1786-2015.

    3). The winter index (December-February) NIÑO 3 Sea Surface Temperature (SST) (Cook, 2000).

    4). Finally, the Palmer Drought Severity Index (PDSI) for June, July and August (JJA) for all Mexico (Stahle et al., 2016).

Data analysis

A first analysis consisted in relating, with a graphic, the historical database of outbreaks of bark beetles and the annual climate variability that characterizes the north of Mexico. Because the observed records are not extensive, winter-summer rainfall reconstruction was used for the southwestern state of Chihuahua. This analysis allowed us to see a first relationship between the outbreaks of bark beetles and droughts.

In a second phase, the relationship between the dates of the outbreaks of bark beetles per region (north, center and south of the country, this last region includes the data from Guatemala and Honduras) and the climate variability that characterizes each of the regions was analyzed statistically with the routine SEA (Superpose Epoch Analysis) of program FHX2 version 3.2 (Grissino-Mayer, 2001).

Each of the climate variables (dendroclimatic indices, NIÑO 3 index and PDSI) was analyzed separately with the bark beetle outbreaks, a procedure that consisted in comparing the climate conditions during the year of the outbreak, five years before and two years after the outbreak. To assess the statistical significance of the SEA analysis, confidence intervals (95, 99 and 99.9 %) were estimated using the "bootstrapped" distribution of climate data with 1 000 replications.

Finally, drought maps (PDSI) were generated to analyze the climate conditions prior to and during the outbreak, using The Mexican Drought Atlas (MXDA) (Stahle et al., 2016).

Results and discussion

Historical records of bark beetle outbreaks

It was possible to compile a database of 106 records of bark beetle outbreaks in 15 states of Mexico, distributed in the north, center and south of the country during the period 1903-2015 (Figure 1; Appendix 1), where Dendroctonus mexicanus Hopkins, Dendroctonus frontalis Zimmermann and Dendroctonus adjunctus Blandford were the most frequent species. Guatemala recorded 16 events during the period 1895-2013, D. frontalis and D. adjunctus were the most important species; and Honduras recorded 15 outbreaks of D. frontalis during the period 1962-2015 (Figure 1; Appendix 1).

Figure 1 Geographical distribution of bark beetle outbreaks recorded in the last 120 years (1895-2015). 

The history of bark beetles outbreak in Mexico is 113 years (1903-2015) (Figure 2b). The lack of information on bark beetle infestations prior to 1900 and scarce records prior to the 1970s are attributed to the fact that, for these periods, the true magnitude, location, and characterization of the pest were not yet defined.

Relationship between pest outbreaks and droughts

Figure 2 shows with a graphic the relationship between bark beetle outbreaks and droughts in the study area. Outbreaks have been historically recorded in years with below-average precipitation (550 mm) (Figure 2a). During the last 40 years (1972-2012), the number of bark beetle outbreaks increased throughout Mexico, which is associated with very severe droughts. In the 1990s, the number of outbreaks increased from 1996, with 1999 being the year with the greatest impact. In the first decade of the 21st century, the presence of bark beetle outbreaks worsened in 2000, 2001, 2002, 2009, 2011 and 2012 (Figure 2b).

Figure 2 Record of bark beetle outbreaks in Mexico, Guatemala and Honduras. (a) Reconstructed winter-summer precipitation for southwestern Chihuahua; the gray bottom line represents annual variability, the black line is a flexible 10-year scale curve for analyzing dry and wet events, and the dotted horizontal line indicates regional average precipitation. Historical outbreaks of bark beetles. Horizontal lines represent states and black vertical bars indicate years of outbreaks; as the line becomes continuous it indicates outbreaks on a larger geographic scale. Vertical red lines show the relationship between the frequency of pest outbreaks and below-average precipitation (droughts). 

Each of the periods reported with the highest incidence of outbreaks, from the 1970s to the first decade of the 21st century, synchronize with droughts documented in dendroclimatic reconstructions in northern and central Mexico (Cerano-Paredes et al., 2009; Cleaveland, Stahle, Therrell, Villanueva, & Burns, 2003; Therrell, Stahle, Cleaveland, & Villanueva-Díaz, 2002; Villanueva, Fulé, Cerano, Estrada, & Sánchez, 2009).

One of the periods with intense drought throughout the country is that of the mid-twentieth century (Cerano-Paredes, Villanueva-Díaz, Valdez-Cepeda, Méndez-González, & Constante-García, 2011; Stahle et al., 2009), as an extreme drought occurred in the 1950s that impacted Mexico and much of the southwestern United States of America (Florescano, 1980); however, no reports were found for this period that indicate pest outbreaks in Mexico (Figure 2). This lack of information is attributed to the fact that, in 1950, the importance of forest pests was still not properly documented, either due to lack of vigilance, lack of knowledge or simply because large forest stands were not yet affected; infestations by bark beetles began to attract attention in the 1960s (Islas-Salas, 1980).

During the 1970s, reports of forests affected by bark beetles increased, a situation that prompted addressing the problem and proceeding with the study and control of the pest (Islas-Salas, 1980). This is attributed to the fact that, from 1970 to the beginning of the 1980s, intense droughts were documented for Mexico in which the droughts recorded in 1971, 1972, 1974, 1975, 1976 and 1977 stand out. The droughts of 1974 and 1975 were recorded throughout the Americas, while the drought of 1977 is classified as extremely severe (Florescano, 1980). Historical reconstructions of precipitation variability throughout the country have reported these same periods with significant decreases in precipitation (Cardoza-Martínez et al., 2014; Cerano-Paredes et al., 2009, 2014; Cleaveland et al., 2003; Stahle et al., 2016; Villanueva et al., 2009).

For the last decade of the 20th century (1994 to 2000) and the years 2001 to 2003, 2006, 2009, 2011 and 2012 of the 21st century, both the observed records of weather stations (Instituto Mexicano de Tecnología del Agua [IMTA], 2009) and the dendroclimatic reconstructions for northern and central Mexico (Cardoza-Martínez et al., 2014; Cerano-Paredes et al., 2009, 2014; Villanueva et al., 2009) detected high-intensity droughts. This is in accordance with the records of outbreaks of bark beetles reported in recent decades in coniferous forests of North and Central America; high temperatures combined with drought, together with factors such as logging and forest fires, have contributed to generating a higher incidence of bark beetle outbreaks, whose damage has increased, particularly since 2000 (Moore & Allard, 2009).

Pest outbreaks-climate variability

The SEA between bark beetle outbreaks and climate indices indicates that documented pest outbreaks in the regions of Mexico, Guatemala, and Honduras have historically been recorded during significantly dry years (P < 0.05) and with index values below average (dry) from five, four, and two years prior to the outbreak to the north, center, and south of the country, respectively (Figure 3).

Below-average climate conditions during previous years cause trees to weaken, making them susceptible to attack. The direct effects of warm temperatures on the reproductive capacity of bark beetles generate the ideal conditions for an outbreak (Bentz et al., 2010; Brunelle, Rehfeldt, Bentz, & Munson, 2008). The results obtained coincide with what has been reported by several authors (Breshears et al., 2005; Islas-Salas, 1980; Negrón, McMillin, Anhold, & Coulson, 2009; Raffa, Aukema, Erbilgin, Klepzig, & Wallin, 2005; Williams et al., 2013), who point out that drought events are an important factor for an imbalance; in the particular case of bark beetles, the population increases under these conditions. Also Mattson and Haack (1987) mention that droughts lead to bark beetle outbreaks by creating a more favorable thermal environment; plants stressed by drought are more attractive and physiologically susceptible to these insects, by negatively influencing resin production mechanisms in conifers, their main means of defense. The probability of a successful attack increases under drought conditions, also because it favors the reduction of carbon assimilation and water transport, affecting the capacity of the tree to produce non-structural carbohydrates and mobilize secondary metabolites for the production of defenses (Safranyik & Carroll, 2006).

Figure 3 Relationship between historical pest outbreaks and regional climate variability (north, center and south) in Mexico, through the SEA (Superpose Epoch Analysis) of the program FHX2. The southern region also includes data from Guatemala and Honduras. The year of the outbreak is indicated by 0, climate conditions five years before the outbreak (negative values) and two years after the outbreak (positive values). The top and bottom three lines represent the 95 %, 99 % and 99.9 % confidence intervals. The shaded bar indicates the climate index values (statistically significant drought) during the years of bark beetle outbreaks in the study area. 

Pest outbreaks-ENSO-PDSI

Figure 4 shows the SEA between the bark beetle outbreaks and the ENSO and PDSI climate indices. Outbreaks in Mexico, Guatemala and Honduras have historically been recorded in years with non-significant positive indices (P > 0.05) of NIÑO 3 and PDSI, after highly significant drought conditions (P < 0.01) in the previous year and with negative indices of NIÑO 3 and PDSI.

Figure 4 SEA (Superpose Epoch Analysis) between the historical outbreaks of bark beetles and el NIÑO 3 SST (Sea Surface Temperature) and PDSI (Palmer Drought Severity Index) for the months of June, July and August (JJA). The shaded bar shows the statistically significant drought conditions (negative indices) one year prior (-1) to the bark beetle outbreaks. The dotted line indicates the year of the outbreak under non-significant positive index conditions. 

Mexico is highly vulnerable to extreme climate events, especially in mid-latitudes and subtropical areas (Martínez-Austria & Patiño-Gómez, 2012). The climate phenomenon known as ENSO is one of the most important circulatory atmospheric patterns that affect the climate variability of the country and is directly related to the occurrence of droughts (Magaña, Vásquez, Pérez, & Pérez, 2003). Since the 21st century, bark beetle outbreaks have increased in frequency, severity and extent (Raffa et al., 2008). The climate variability in the last decades has been pointed out as one of the causes of the recent increase in the outbreaks of bark beetles in the United States and Canada (Hicke, Logan, Powell, & Ojima, 2006; Thomson, 2009). In Honduras, the degree of aggressiveness and intensity of bark beetles in recent years has been influenced by the presence of ENSO, which has produced prolonged drought events (Comisionado Nacional de los Derechos Humanos [CONADEH], 2016).

Outbreaks of many bark beetle species are occurring simultaneously throughout western North America. The variety of factors involved is diverse, with drought-induced changes in host susceptibility (Breshears et al., 2005), management practices (Keane, 2001), and the direct effects of warm temperatures on beetle reproductive capacity (Berg et al., 2006).

Unexpected changes in climate conditions have a direct influence on bark beetle outbreaks (Brunelle et al., 2008). Drought conditions for one or two consecutive years lead to a state of physiological stress on trees, making them more susceptible to bark beetle attack and causing epidemic outbreaks on a wide geographic scale (Figures 4 and 5). A documented example is El Niño of 1998 which represents one of the driest years of the 1990s, in which a large number of fires were recorded in the forests of Mexico. The report of fires that occurred in 1998 exceeded the forecasts of the institutions in charge of fire prevention and firefighting in the national territory (Bitrán, 2001). Both variables, drought and fires caused stress in plants, an attractive and physiologically condition for bark beetles (Mattson & Haack, 1987). This disturbance favored the development of a large number of bark beetle outbreaks in 1999, from the north to the south of Mexico (Sánchez-Salas & Torres-Espinosa, 2007). Like this event, in 1895 and 1972 a similar behavior was determined; in other words, extreme drought conditions modulated by ENSO (negative values of PDSI), previous to the important outbreaks of bark beetles (Figure 5).

Figure 5 Drought maps created with the Mexican Drought Atlas (Stahle et al., 2016) available at http://drought.memphis.edu/MXDA/. The values on the -6 scale indicate the most severe drought condition and 6 the most humid condition. PDSI: Palmer Drought Severity Index for June, July and August (JJA). 

In Mexico, it has been documented that the growth of conifers is regulated and limited by water availability (Cardoza-Martínez et al., 2014; Cerano-Paredes et al., 2014; Chávez-Gándara et al., 2017; Villanueva et al., 2009); therefore, when important decreases in rainfall are recorded, trees weaken and are more susceptible to bark beetle attack. Regarding these results and the report of the Intergovernmental Panel on Climate Change (IPCC, 2014) that projects greater drought as a consequence of the decrease in precipitation and increase in temperature, periods of drought and greater risk for forests can be inferred in the face of an increase in bark beetle outbreaks.

Conclusions

Climate is a factor that modulates the increase in bark beetle populations. In the face of climatic scenarios that project a condition of greater drought, it is evident that pest outbreaks can be magnified. Because of this, it is necessary to take appropriate precautions in forests that are susceptible to demographic pressure and those that have very dense conditions, mainly when there are one to two consecutive years of droughts. Likewise, it is important to monitor forests after fires, since there is a direct relationship with the presence of pest outbreaks after a fire attributed to the physiological stress to which trees are subjected. Understanding ENSO's influence on inter-annual and multiannual climate variability and determining drought indices can contribute to establishing preventive measures to minimize the impact of bark beetles on Mexican forests.

Acknowledgements

This study was made possible thanks to CONAFOR-CONACYT funding through the project "Climate variability and interaction with other factors affecting the population dynamics of bark beetles in threatened forests in Mexico" with record CONAFOR-2014, C01-234547. We also thank the anonymous reviewers for their comments and suggestions that contributed to improving this document.

References

Allen, C. D. (2007). Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems, 10(5), 797-808. doi: 10.1007/s10021-007-9057-4 [ Links ]

Ayres, M. P., & Lombardero, M. J. (2000). Assessing de consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262(3), 263-286. Retrieved from https://pdfs.semanticscholar.org/8594/7d04a5044fde1f9634e1dbbacb3b60a7b67c.pdfLinks ]

Bentz, B. J., Regniere, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., …Seybold, S. J. (2010). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60(8), 602-613. doi: 10.1525/bio.2010.60.8.6 [ Links ]

Berg, E. E., Henry, J. D., Fastie, C. L., De Volder, A. D., & Matsuoka, S. M. (2006). Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227(3), 219-232. doi: 10.1016/j.foreco.2006.02.038 [ Links ]

Bitrán, D. B. (2001). Características del impacto socioeconómico de los principales desastres ocurridos en México en el período 1980-99. México: Centro Nacional de Prevención de Desastres. Retrieved from http://www.proteccioncivil.gob.mx/work/models/ProteccionCivil/Resource/375/1/images/no_1.pdfLinks ]

Breshears, D., Cobb, N., Rich, P., Price, K., Allen, C., Balice, R., Romme, W., …Meyer, C. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, 102(42), 15144-15148. doi: 10.1073/pnas.0505734102 [ Links ]

Brunelle, A., Rehfeldt, G. E., Bentz, B., & Munson, A. S. (2008). Holocene records of Dendroctonus bark beetles in high elevation pine forests of Idaho and Montana, USA. Forest Ecology and Management, 255(3-4), 836-846. doi: 10.1016/j.foreco.2007.10.008 [ Links ]

Cardoza-Martínez, G. F., Cerano-Paredes, J., Villanueva-Díaz, J., Cervantes-Martínez, R., Guerra-de la Cruz, V., & Estrada-Ávalos, J. (2014). Reconstrucción de la precipitación anual para la región oriental del Estado de Tlaxcala. Revista Mexicana de Ciencias Forestales, 5(23), 110-127. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S2007-11322014000300009&script=sci_arttextLinks ]

Cerano-Paredes, J., Villanueva-Díaz, J., Fulé, P. Z., Arreola-Ávila, J. G., Sánchez-Cohen, I., & Valdez-Cepeda, R. D. (2009). Reconstrucción de 350 años de precipitación para el suroeste de Chihuahua, México. Madera y Bosques, 15(2), 27-44. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S1405-04712009000200002&script=sci_arttext&tlng=enLinks ]

Cerano-Paredes, J., Villanueva-Díaz, J., Valdez-Cepeda, R. D., Méndez-González, J., & Constante-García, V. (2011). Sequías reconstruidas en los últimos 600 años para el noreste de México. Revista Mexicana de Ciencias Agrícolas, 2(2), 235-249. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S2007-09342011000800006&script=sci_arttextLinks ]

Cerano-Paredes, J., Villanueva-Díaz, J., Cervantes-Martínez, R., Vázquez-Selem, L., Trucios-Caciano, R., & Guerra-De la Cruz, V. (2014). Reconstrucción de precipitación invierno-primavera para el Parque Nacional Pico de Tancítaro, Michoacán. Investigaciones Geográficas, 83, 41-54. doi: 10.14350/rig.35190 [ Links ]

Chávez-Gándara, M. P., Cerano-Paredes, J., Nájera-Luna, J. A., Pereda-Breceda, V., Esquivel-Arriaga, G., Cervantes-Martínez, R., …Corral-Rivas, S. (2017). Reconstrucción de la precipitación invierno-primavera con base en anillos de crecimiento de árboles para la región de San Dimas, Durango, México. Bosque, 38(2), 387-399. doi: 10.4067/S0717-92002017000200016 [ Links ]

Cleaveland, M. K., Stahle, D. W., Therrell, M. D., Villanueva, D. J., & Burns, B.T. (2003). Tree-ring reconstructed winter precipitation in Durango, Mexico. Climatic Change, 59(3), 369-388. doi: 10.1023/A: 1024835630188 [ Links ]

Comisionado Nacional de los Derechos Humanos (CONADEH). (2016). Informe especial el gorgojo descortezador del pino y otras graves amenazas ambientales a la vida digna de los hondureños y hondureñas. Retrieved from http://conadeh.hn/wp-content/uploads/2016/05/Informe-Especial-Gorgojo-del-Pino-y-Amenazas-Ambientales.pdfLinks ]

Cook, E. R. (2000). Niño 3 index reconstruction. International Tree-Ring Data Bank. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series Number 2000-052. NOAA/NGDC Paleoclimatology Program, Boulder, Colorado, USA. Retrieved March 9, 2015 from https://www.ncdc.noaa.gov/data-access/paleoclimatology-dataLinks ]

Fetting, C. J., Klepzig, K. D., Billings, R. F., Munson, A. F., Nebeker, T. E., Negrón, J. F., & Nowat, J. T. (2007). The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecology and Management, 238, 24-53. doi: 10.1016%2Fj.foreco.2006.10.011 [ Links ]

Florescano, E. M. (1980). Análisis histórico de las sequías en México. México: Secretaría de Agricultura y Recursos Hidráulicos (SARH). [ Links ]

González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-Enríquez, I. L. (2012). Vegetación de la sierra madre occidental, México: Una síntesis. Acta Botánica Mexicana, 100, 351-403. Retrieved from http://scielo.org.mx/scielo.php?pid=s0187-71512012000300012&script=sci_arttextLinks ]

Grissino-Mayer, H. D. (2001). FHX2 - software for analyzing temporal and spatial patterns in fire regimes from tree rings. Tree-Ring Research, 57(1), 115-124. Retrieved from https://www.researchgate.net/publication/247570899_FHX2-Software_for_analyzing_temporal_and_spatial_patterns_in_fire_regimes_from_tree_ringsLinks ]

Hicke, J. A., Logan, J. A., Powell, J., & Ojima, D. S. (2006). Changing temperatures influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the western United States. Journal of Geophysical Research, 111, G02019. doi: 10.1029/2005JG000101 [ Links ]

Instituto Mexicano de Tecnología del Agua (IMTA). (2009). Extractor Rápido de Información Climatológica III (ERIC), Software. México: SEMARNAT. Retrieved August 3, 2018 from https://www.imta.gob.mx/es/productos/software/eric-iii-version-3-2-extractor-rapido-de-informacion-climatolo-detailLinks ]

Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: Author. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdfLinks ]

Islas-Salas, F. (1980). Observaciones sobre la biología y el combate de los escarabajos descortezadores de los pinos: Dendroctonus adjuntus Blf; D. mexicanus Hpk. y D. frontalis Zimm., en algunas regiones de la República Mexicana. Retrieved from http://www.era-mx.org/Estudios_y_proyectos/Descortezador/Islas_Salas_1980.pdfLinks ]

Keane, R. E. (2001). Successional dynamics: Modeling an anthropogenic threat. In D. F. Tomback, S. F. Arno, & R. E. Keane (Eds.), Whitebark pine communities (159-189). Washington, DC, USA: Island Press. [ Links ]

Kozlov, M. V. (2008). Losses of birch foliage due to herbivory along geographical gradients in Europe: a climate-driven pattern? Climatic Change, 87, 107-117. doi: 10.1007/s10584-007-9348-y [ Links ]

Magaña, O. V., Vásquez, J. L., Pérez, J. L., & Pérez, J. B. (2003). Impact of El Niño on precipitation in Mexico. Geofísica Internacional, 42, 313-330. Retrieved from https://www.redalyc.org/articulo.oa?id=56842304Links ]

Márquez-Linares, M. A., Jurado-Ybarra, E., & González-Elizondo, S. (2006). Algunos aspectos de la biología de la manzanita (Arctostaphylos pungens HBK.) y su papel en el desplazamiento de bosques templados por chaparrales. Ciencia UANL, 9(1), 57-64. Retrieved from http://eprints.uanl.mx/1741/Links ]

Martínez-Austria, P. F., & Patiño-Gómez, C. (2012). Efectos del cambio climático en la disponibilidad de agua en México. Tecnología y Ciencias del Agua, 3(1), 5-20. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222012000100001Links ]

Mattson, W. J., & Haack, R. A. (1987). The role of drought in outbreaks of plant-eating insects. BioScience, 37(2), 110-118. doi: 10.2307/1310365 [ Links ]

Moore, B., & Allard, G. (2009). Los impactos del cambio climático en la sanidad forestal. Documentos de trabajo sobre sanidad y bioseguridad forestal. Italy: Food and Agriculture Organization (FAO). [ Links ]

Negrón, J. F., McMillin, J. D., Anhold, J. A., & Coulson, D. (2009). Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. Forest Ecology and Management, 257(4), 1353-1362. doi: 10.1016/j.foreco.2008.12.002 [ Links ]

Raffa, K. F., Aukema, B. H., Erbilgin, N., Klepzig, K. D., & Wallin, K. F. (2005). Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Advances in Phytochemistry, 39, 80-118. Retrieved from https://www.srs.fs.usda.gov/pubs/ja/ja_raffa001.pdfLinks ]

Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G., & Romme, W. H. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience, 58, 501-517. doi: 10.1641/B580607 [ Links ]

Rouault, G., Candau, J. N., Lieutier, F., Nageleisen, L. M., Martin, J. C., & Warzée, N. (2006). Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science, 63(6), 613-624. Retrieved from https://hal.archives-ouvertes.fr/hal-00884014/documentLinks ]

Safranyik, L., & Carroll, A. L. (2006). The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In L. Safranyik, & W. R. Wilson (Eds.), The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine. Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 3-66. Retrieved from http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/26039.pdfLinks ]

Sánchez-Salas, J. A., & Torres-Espinosa, L. M. (2007). Biología y hábitos del descortezador Dendroctonus mexicanus Hopkins y estrategias de control en Pinus teocote en Nuevo León. México: CIRNE Campo Experimental Saltillo. Retrieved from http://biblioteca.inifap.gob.mx:8080/xmlui/bitstream/handle/123456789/989/216.pdf?sequence=1Links ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2015). Informe de la situación del medio ambiente en México. Retrieved from http://apps1.semarnat.gob.mx/dgeia/informe15/Links ]

Segura-Warnholtz, G. (2014). Quince años de políticas públicas para la acción colectiva en comunidades forestales. Revista Mexicana de Sociología, 76, 105-135. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0188-25032014000600005&lng=pt&nrm=isoLinks ]

Stahle, D. W., Cook, E. R., Villanueva-Diaz, J., Fye, F. K., Burnette, D. J., Griffin, R. D., & Heim, Jr. R. R. (2009). Early 21st-century drought in Mexico. Eos, 90(11), 89-100. doi: 10.1029/2009EO110001 [ Links ]

Stahle, D. W., Cook, E. R., Burnette, D. J., Villanueva, J., Cerano, J., Burns, J. N., & Szejner, P. (2016). The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-hispanic, colonial, and modern eras. Quaternary Science Reviews, 149, 34-60. doi: 10.1016/j.quascirev.2016.06.018 [ Links ]

Therrell, M. D., Stahle, D. W., Cleaveland, M. K., & Villanueva‐Diaz, J. (2002). Warm season tree growth and precipitation over Mexico. Journal of Geophysical Research: Atmospheres, 107(D14), ACL 6-1-ACL 6-8. doi: 10.1029/2001JD000851 [ Links ]

Thomson, A. J. (2009). Climate indices and mountain pine beetle killing temperatures. The Forestry Chronicle, 85(1), 105-109. Retrieved from http://pubs.cif-ifc.org/doi/pdfplus/10.5558/tfc85105-1Links ]

Villanueva, D. J., Fulé, P. Z., Cerano, P. J., Estrada, A. J., & Sánchez, C. I. (2009). Reconstrucción de la precipitación estacional para el barlovento de la Sierra Madre Occidental. Revista Ciencia Forestal en México, 34(105), 37-69. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S140535862009000100003Links ]

Villers-Ruiz, L., & Trejo-Vázquez, I. (2004). Evaluación de la vulnerabilidad en los ecosistemas forestales. In J. Martínez, & A. Fernández (Eds.), Cambio climático: Una visión desde México (pp. 239-254). México: Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología. Retrieved from http://www.data.sedema.cdmx.gob.mx/cambioclimaticocdmx/images/biblioteca_cc/Cambio-climatico-una-vision-desde-Mexico-(Julia-Martinez-y-Adrian-Fernandez-Bremauntz-compilado.pdfLinks ]

Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., …McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292-297. doi: 10.1038/NCLIMATE1693 [ Links ]

Appendix 1

Historical bark beetle outbreaks in Mexico, Guatemala and Honduras. 

Year Bark beetles Place of outbreak Species affected Referencia
MÉXICO
1903 Dendroctonus mexicanus Hopkins Amecameca, Edo. de México Pinus leiophylla Schiede ex Schltdl. & Cham., Pinus oocarpa Schiede ex Schltdl., Pinus teocote Schiede ex Schltdl. & Cham., Pinus michoacana Martínez, Pinus montezumae Lamb., Pinus herrerai Martínez, Pinus hartwegii Lindl., Pinus patula Schiede ex Schltdl. & Cham. and Pinus pinceana Gordon & Glend. Perusquía-Ortiz (1979)
1936 D. mexicanus Estado de México (Tlamanalco, Ozumba, San Rafael 1973-1974) P. leiophylla, P. oocarpa, P. teocote, P. michoacana, P. montezumae, P. herrerai, P. hartwegii, P. patula and P. pinceana Perusquía-Ortiz (1979); González (1979)
1940 and 2011-2012 D. mexicanus Hidalgo (Zimapán, Valle del Mezquital) P. leiophylla, P. oocarpa, P. teocote, P. michoacana, P. montezumae, P. herrerai, P. hartwegii, P. patula, P. pinceana and Pinus cembroides Zucc. Perusquía-Ortiz (1979); SEMARNAT-UACh (2014)
1955-1965 Dendroctonus adjunctus Blandford Several states P. hartwegii, P. montezumae, Pinus rudis Lindl., Pinus ponderosa Douglas ex C. Lawson, Pinus chihuahuana Schiede ex Schltdl. & Cham., Pinus pseudostrobus Lindl., Pinus arizonica Engelm., Pinus ayacahuite Ehrenb. ex Schltdl., Pinus durangensis Martínez, P. michoacana and Pinus lawsonii Roezl ex Gordon. Verduzco (1976); Rodríguez (1990)
1958 D. adjunctus Nevado de Colima, Jalisco P. hartwegii Villa-Castillo (1985)
1961 D. mexicanus and D. adjunctus Central and southern part of the country (Jalisco, Puebla, Edo. de México, Michoacán, Oaxaca and Chiapas), Sierra Nevada and Sierra del Ajusco P. leiophylla, P. oocarpa, P. teocote, P. michoacana, P. montezumae, P. herrerai, P. hartwegii, P. patula and P. pinceana Perusquía-Ortiz (1979); Villa-Castillo (1985)
1968, 1975-1979 Dendroctonus frontalis Zimmermann Tixtlancingo, Coyuca de Benítez, Guerrero Pinus pringlei Shaw, P. herrerai and Pinus douglasiana Martínez González (1979)
1955,1961, 1978 and 1979 D. frontalis Sola de Vega, Oaxaca. P. oocarpa, P. pringlei, P. herrerai González (1979)
1972-1973 D. mexicanus Michoacán, Ciudad de México and Estado de México (Zoquiapan, Parque Nacional Ixta-Popo) Pinus spp. Sánchez-Salas, Torres-Espinosa, Cano, and Martínez (2003)
1977-1978 D. mexicanus Michoacán, Ciudad de México and Edo. de México (Zoquiapan, Ixta-Popo, Desierto de los Leones) Pinus spp. Sánchez-Salas et al. (2003)
1975-1977 Ips cribicollis and D. mexicanus Jalisco (Los Pozos and Cd. Guzmán) P. oocarpa, P. leiophylla P. teocote, P. pseudostrobus, P. ayacahuite and Pinus tenuifolia Benth. Perusquía-Ortiz (1979)
1976-1979 D. frontalis Chipinque and Cumbres de Monterrey, Nuevo León P. montezumae, P. pringlei and P. teocote Perusquía-Ortiz (1979); Martínez-González, (1979)
1978-1979 Lagunas de Montebello, Chiapas Pinus spp. Martínez-González (1979)
1981-1982 D. adjuntus Nevado de Colima, Jalisco P. hartwegii Villa-Castillo (1985)
1980, 1995-1996 Dendroctonus rhizophagus Thomas & Bright Guachochi and Madera, Chihuahua. Pinus engelmannii Carr. Sánchez-Martínez (S/F)
1992 and 1996 - Baja California - SEMARNAT (2005)
1993 D. adjunctus Parque Nacional Nevado de Colima, Jalisco P. hartwegii Iñiguez (1999)
1993 D. frontalis Oaxaca P. oocarpa, P. pseudostrobus, P. teocote, Pinus oaxacana Mirov and Pinus maximinoi H. E. Moore Iñiguez (1999)
1993 D. frontalis Guerrero P. oocarpa, P. pseudostrobus, P. teocote, P. oaxacana and P. maximinoi Iñiguez (1999)
1995-2004 Dendroctonus spp. Oaxaca Pinus spp. SEMARNAT-CONAFOR (2007)
1997-2002 D. mexicanus Nuevo León P. teocote, P. cembroides and P. pseudostrobus Sánchez-Salas and Torres-Espinoza (2007)
1998-2003 Dendroctonus spp. Baja California (Sierra Juárez and San pedro Mártir) Pinus jeffreyi Balf., Pinus lambertiana Douglas, Pinus contorta Douglas, Pinus monophylla Torr. & Frém. and Abies concolor (Gordon) Lindley ex Hildebr. Tapia-Landeros (2003)
1999 D. frontalis Lagunas de Montebello and Motozintla, Chiapas. P. oocarpa, P. maximinoii Altúzar (2010)
1999-2000 Dendroctonus pseudotsugae Hopkins, D. adjuntus, D. mexicanus, Dendroctonus brevicomis LeConte, Dendroctonus. parallelocollis Chapuis, D. valens LeConte Coahuila (La Roja, La Carbonera, Los Lirios, San Juan de los Dolores, Jamé, San Antonio de las Alazanas and Amargos) and Nuevo León (Galeana, Iturbide, Zaragoza, Aramberri, Santa Catarina and Santiago) Pseudotsuga menziesii (Mirb.) Franco, Abies vejarii Martínez, P. rudis, P. teocote, P. pseudostrobus, P. arizonica and Cupressus arizonica Greene Sánchez-Salas et al. (2003)
1999-2002 D. adjunctus Sierra de Arteaga, Coahuila P. rudis Torres-Espinosa and Sánchez-Salas (2006)
1999-2000 D. mexicanus Sierra Gorda de Guanajuato P. cembroides Alvarado (2013)
2000-2005 Dendroctonus spp. Estado de México (Texcoco, Tejupilco, Coatepec de Harinas and Valle de Bravo) Pinus sp. and Abies sp. Rescala (2009)
2000-2005, 2009 Ips spp. and D. mexicanus Chihuahua Narváez, Guevara, García, and Silva (2012)
2001-2002 D. mexicanus Sierra Fría, Aguascalientes P. leiophylla and P. teocote Sánchez-Martínez (2004); Díaz-Nuñez, Sánchez Martínez, Gillette (2006); Sánchez-Martínez, Torres-Espinosa, Vázquez-Collazo, González-Gaona, and Narváez-Flores (2007); Moreno-Rico, Sánchez-Martínez, Marmolejo-Monsiváis, Pérez-Hernández, and Moreno-Manzano (2015)
2001-2007 (more intense in 2005) D. adjunctus Sierra “La Raspadura”, Namiquima, Chihuahua P. arizonica Sánchez-Martínez and Silva (2008)
2002 Ips spp. and D. mexicanus Chihuahua P. arizonica, P. engelmannii, P. durangensis, P. leiophylla and P. cembroides Narváez et al. (2012)
2002-2003 D. adjunctus Communal towns, Oaxaca P. rudis FAO (2007)
2002-2006 D. pseudotsugae Guanaceví, Durango and Balleza, Ocampo, Guadalupe and Calvo, Chihuahua P. menziesii Sánchez-Martínez (S/F)
2004-2011 (more intense in 2006, 2007 and 2008) D. adjunctus, D. frontalis and D. mexicanus Communal towns (Lachatao, Amatlán and Yavesía), Oaxaca P. rudis, P. patula, P. pseudostrobus, P. douglasiana, P. oaxacana and P. teocote Castellanos-Bolaños, Ruiz-Martínez, Gómez-Cárdenas, and González-Cubas (2013)
2005 and 2009 D. adjunctus Estado de México (APFF Nevado de Toluca Zinacantepec, Calimaya, Coatepec Harinas and Toluca) P. hartwegii, P. pseudostrobus and P. montezumae Agramont, Maass, Bernal, Hernández, and Fredericksen (2012); Guadarrama de Nova (2017)
2005 D. adjunctus Estado de México (Nevado de Toluca) P. hartwegii Guadarrama de Nova (2017)
2007 Ips spp. and D. mexicanus Papigochic Flora and Fauna Protection Area, Chihuahua P. arizonica, P. engelmannii, P. durangensis and P. leiophylla Narváez et al. (2012)
2007 and 2012 D. rhizophagus San Juanito, Bocoyna, Chihuahua P. arizonica, P. durangensis, P. engelmannii and P. leiophylla Narváez et al. (2012)
2008-2009 Scolytus mundus Wood Monarch Butterfly Biosphere Reserve, Michoacán Abies religiosa (Kunth) Schltdl. & Cham. Manzo-Delgado, López-García, and Alcántara-Ayala (2014)
2008-2012 D. mexicanus Aramberri, Nuevo León P. cembroides and P. pseudostrobus Cuéllar-Rodríguez et al. (2012)
2009-2010 D. frontalis and D. adjunctus Chiapas (Acacoyahua) P. oocarpa and P. oaxacana Propietarios de Chiapas, A. C. (2010)
2012 D. frontalis and D. mexicanus Biosphere Reserve of the Sierra Gorda de Querétaro P. patula and Pinus greggii Engelm. & Parl. López-Gómez, Torres-Huerta, Reséndiz-Martínez, Sánchez- Martínez, and Gijón- Hernández (2017)
2012 Ips lecontei Swaine and D. mexicanus Balleza, Guachochi, Bocoyna, Chihuahua P. arizonica, P. engelmannii, P. durangensis, P. leiophylla and P. cembroides Benet (2014); CONAFOR (2014); Sánchez-Martínez et al. (2017)
2012 and 2013 I. lecontei and D. mexicanus Durango (Ejido Estación de Otinapa, San Carlos, San Pedro de la Máquina, Rodríguez Puebla) and San Dimas (ejido Vencedores and annexes) P. leiophylla and Pinus cooperi C. E. Blanco Sánchez-Martínez, Reséndiz-Martínez, and Santana-Espinoza (2017)
2013 I. lecontei and D. mexicanus Balleza, Guachochi, Bocoyna, Chihuahua P. arizonica, P. durangensis, P. leiophylla, P. engelmannii and P. cembroides Benet (2014); CONAFOR (2014); Sánchez-Martínez et al. (2017)
2013, 2014 and 2015 D. frontalis, D. mexicanus, D. adjunctus, Scolytus sp. Pseudohylesinus sp.e Ips sp. Michoacán (Ario de Rosales, Madero, Salvador Escalante, Tancítaro, Tacámbaro, Uruapan, Ocampo, Tocumbo, Periban, Morelia, Los Reyes, Cotija, Zitácuaro and Pátzcuaro). P. oocarpa, P. pringlei, P. lawsonii and P. leiophylla. SEMARNAT-CONAFOR-COFOM (2015)
2014 I. lecontei and D. mexicanus Balleza, Guachochi, Chihuahua P. arizonica, P. engelmannii, P. durangensis and P. leiophylla Sánchez-Martínez et al. (2017)
GUATEMALA
1895 Dendroctonus spp. Alta Verapaz and Totonicapán Pinus caribaea Morelet, P. oocarpa, P. maximinoii, P. pseudostrobus and P. montezumae Castañeda (2001)
1928 and 1936 D. adjunctus Totonicapán P. hartwegii, P. maximinoi, P. montezumae, P. ayacahuite, P. pseudostrubus and P. oocarpa Medina (1980); Castañeda (2002); Hernández (2003)
1964 Ips calligraphus (Germar) and D. frontalis Petén P. caribaea Leyva (1980)
1973-1977 D. frontalis, D. adjunctus, D. valens and D. parallelocollis Alta Verapaz, Petén, Huehuetenango, Quiché, San Marcos, Xela, Solola, Totonicapán P. hartwegii. P. herrerai, P. rudis, P. michoacana, P. pinceana, P. moctezumae and P. oocarpa Leyva (1980)
1977 and 1980 Dendroctonus spp., D. adjunctus Quetzaltenango, Quiché, Huehuetenango, Totonicapán, Sololá and San Marcos P. rudis, P. ayacahuite, P. hartwegii, P. maximinoi, P. montezumae, P. pseudostrubus, P. oocarpa Pitoni (1980); Castañeda (2002); Hernández-Dávila (2003)
1998 D. frontalis P. caribaea, P. maximinoi, P. montezumae and P. oocarpa Revista Forestal Centroamericana (2001)
1997 and 2001 D. frontalis Petén P. caribaea Castañeda (2002); Hernández-Dávila (2003)
2007-2013 (more intense in 2008) D. adjunctus Totonicapán, Quetzaltenango P. rudis
HONDURAS
1962-1965 D. frontalis Eastern and Western Departments Western Central and Eastern Region P. oocarpa and P. caribaea CESPAD (2015)
1982-1984 D. frontalis (Departaments Francisco Morazán, El Paraíso, and Olancho; Intibucá, Comayagua, La Paz) P. oocarpa and P. caribaea COHDEFOR (2002)
1998-2003 D. frontalis Yoro, Comayagua, La Paz, Intibucá, Francisco Morazán, Santa Bárbara and El Paraíso P. oocarpa and P. caribaea Carias-Arias, Barrios, Espino, and Oquelí (2017)
2001 D. frontalis From the south of Mexico to the north of Nicaragua P. oocarpa, P. caribaea, P. maximinoi, Pinus tecunumanii F. Schwerdtf. ex Eguiluz & J. P. Perry, P. ayacahuite and P. pseudostrobus COHDEFOR (2002)
2002-2003 D. frontalis Western and Eastern Central Region (departaments Francisco Morazán, El Paraíso, and Olancho; Intibucá, Comayagua, La Paz) P. caribaea, P. oocarpa, P. maximinoi, P. tecumumanii and P. ayacahuite COHDEFOR (2002)
2012-2014 D. frontalis Olancho, Comayagua, El Paraíso, Francisco Morazán and Yoro P. oocarpa and P. caribaea CESPAD (2015)
2015 D. frontalis Olancho, Comayagua, El Paraíso, Francisco Morazán and Yoro Pinus spp. CONADEH (2016)

References

Agramont, A. R. E., Maass, S. F., Bernal, G. N., Hernández, J. I. V., & Fredericksen, T. S. (2012). Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. Journal of Forestry Research, 23(1), 39-44.

Alvarado, V. O. (2013). Evaluación de los factores asociados a las infestaciones de descortezadores (Coleóptera: Scolytinae) en bosques de piñones (Pinus cembroides) en la Reserva de la Sierra Gorda de Guanajuato. Tesis de Mestría, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro.

Altúzar, M. R. (2010). Implementación de un sistema de trampeo para el monitoreo de Dendroctonus frontalis en el Parque Nacional Lagunas de Montebello. Tesis, Universidad Autónoma Agraria Antonio Narro, Coahuila, México. Retrieved from http://repositorio.uaaan.mx:8080/xmlui/bitstream/handle/123456789/956/61276s.PDF?sequence=1&isAllowed=y

Benet, K. R. (2014). La atención a la contingencia fitosanitaria de Chihuahua 2012-2014. Estudio de caso. Alianza México para la reducción de emisiones por deforestación y degradación. Retrieved from http://www.monitoreoforestal.gob.mx/repositoriodigital/files/original/4b46a8f7c5ddcae85f5076a8cbf58074.pdf

Castañeda, C. (2001). Informe final: diagnóstico y rápida evaluación de ataque del gorgojo del pino en pinares de Poptún, Petén, Guatemala. Guatemala: INAB.

Castañeda, C. (2002). El gorgojo del pino Dendroctonus y sostenibilidad de bienes y servicios de los pinares de Guatemala. Guatemala: Congreso Forestal Latinoamericano.

Carias-Arias, A. B., Barrios, J. A., Espino, V., & Oquelí, R. O. (2017). Estrategias de mitigación del ataque del gorgojo descortezador de pino en Honduras periodo 2014-2016. Revista Ciencias Espaciales, 10(1), 198-215.

Castellanos-Bolaños, J. F., Ruiz-Martínez, E. O., Gómez-Cárdenas, M., & González-Cubas, R. (2013). Fundamentos técnicos para el control de insectos descortezadores de pinos en Oaxaca. Santo Domingo Barrio Bajo, Villa de Etla, Oaxaca, México: Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro de Investigación Regional Pacifico Sur, Campo Experimental Valles Centrales de Oaxaca.

Centro de Estudio para la Democracia (CESPAD). (2015). El gorgojo descortezador, entre los efectos del cambio climático y la débil gobernanza forestal del Estado de Honduras. Retrieved from http://cespad.org.hn/wp-content/uploads/2017/06/Monitoreo-RRNN-oct-1.pdf

Comisionado Nacional de los Derechos Humanos (CONADEH). (2016). Informe especial el gorgojo descortezador del pino y otras graves amenazas ambientales a la vida digna de los hondureños y hondureñas. Retrieved from http://conadeh.hn/wp-content/uploads/2016/05/Informe-Especial-Gorgojo-del-Pino-y-Amenazas-Ambientales.pdf

Corporación Hondureña de Desarrollo Forestal (COHDEFOR). (2002). Manejo integral de plagas y enfermedades forestales. Tegucigalpa, Honduras: Autor.

Comisión Nacional Forestal (CONAFOR). (2014). Base de datos: predios afectados por Ips confusus. Chihuahua, México: Departamento de Sanidad Forestal.

Cuéllar-Rodríguez, G., Equihua-Martínez, A., Estrada-Venegas, E., Méndez-Montiel, T., Villa-Castillo, J., & Romero-Nápoles, J. (2012). Fluctuación poblacional de Dendroctonus mexicanus en el noreste de México. Boletín del Museo de Entomología de la Universidad del Valle, 13(2), 12-19.

Díaz-Núñez, V., Sánchez- Martínez, G., & Gillette, N. (2006). Respuesta de Dendroctonus mexicanus (Hopkins) a dos isómeros ópticos de verbenona. Agrociencia, 40(3), 349-354.

Food and Agriculture Organization (FAO). (2007). Overview of forest pests Mexico. Rome, Italy: Forest Health and Biosecurity Working Papers. Forestry Department.

González, V. C. E. (1979). Documentación científica y popular sobre plagas y enfermedades forestales. 1.a reunión sobre plagas y enfermedades forestales. Publicación especial núm. 32. México: Instituto Nacional de Investigaciones Forestales-SARH.

Guadarrama de Nova, C. (2017). Identificación de brotes de descortezadores en el "Área de protección de flora y fauna del Nevado de Toluca". Tesis, Universidad Autónoma del Estado de México, México.

Hernández-Dávila, A. (2003). Estimación de la efectividad de control del Dendroctonus. Guatemala: USAC, Facultad de Agronomía.

Iñiguez, H. G. (1999). Sistemas de clasificación de riesgo para Dendroctonus frontalis y D. mexicanus en "El Manzano" en Villa de Santiago, Nuevo León, México. Tesis de Maestría, UANL, Linares, Nuevo León, México.

Leyva, P. J. M. (1980). El gorgojo del pino (Dendroctonus sp.) en los bosques de coníferas de Guatemala. Turrialba, Costa Rica: CATIE.

López- Gómez, V., Torres- Huerta, B., Reséndiz-Martínez, J. F., Sánchez- Martínez, G., & Gijón- Hernández, A. R. (2017). Influencia de parámetros climáticos sobre las fluctuaciones poblacionales del complejo Dendroctonus frontalis Zimmerman, 1868 y Dendroctonus mexicanus Hopkins, 1909. Revista Mexicana de Ciencias Forestales, 8(41), 7-29.

Manzo-Delgado, L., López-García, J., & Alcántara-Ayala, I. (2014). Role of forest conservation in lessening land degradation in a temperate region: The Monarch Butterfly Biosphere Reserve, Mexico. Journal of Environmental Management, 138, 55-66.

Martínez-González, F. (1979). Evaluación de la situación sanitaria forestal. 1.ª reunión sobre plagas y enfermedades forestales. Publicación Especial Núm. 32. México: SARH-Instituto Nacional de Investigaciones Forestales.

Medina, G. E. A. (1980). Susceptibilidad de los bosques de coníferas al ataque del gorgojo del pino Dendroctonus (Coleóptera: Scolytidae) en función de la composición, edad y densidad de los mismos. Tesis, USAC, Guatemala.

Moreno-Rico, O., Sánchez-Martínez, G., Marmolejo-Monsiváis, J. G., Pérez-Hernández, K., & Moreno-Manzano, C. E. (2015). Diversidad de hongos Ophiostomatoides en pinos de la sierra Fría de Aguascalientes, México, asociados con Dendroctonus mexicanus. Revista Mexicana de Biodiversidad, 86(1), 1-8. doi: 10.7550/rmb.46751

Narváez, F. R., Guevara, R. A., García, R. M. G., & Silva, R. S. (2012). Manual de los principales insectos y enfermedades forestales del área de protección de flora y fauna Papigochi. Chihuahua, Chihuahua, México: SEMARNAT-CONANP.

Perusquía, O. J. (1979). Principales plagas forestales. 1.a reunión sobre plagas y enfermedades forestales. Publicación especial núm. 32. México: SARH-Instituto Nacional de Investigaciones Forestales.

Pitoni, A. (1980). Planificación del control de la plaga del Dendroctonus y del aprovechamiento de la madera dañada. Guatemala: FAO.

Propietarios de Chiapas, A. C. (2010). Estudio regional forestal UMAFOR 0701 Centro. Chiapas, México.

Rescala, P. J. (2009). Historia del sector forestal. In G. Ceballos, R. List, G. Garduño, R. López, M. J. Muñozcano, E. Collado, & J. E. San Román. La diversidad biológica del Estado de México. Estudio de Estado (pp. 319-330). México: Gobierno del Estado de México. Retrieved from https://www.biodiversidad.gob.mx/region/EEB/pdf/EEB_EDOMEX_baja.pdf

Revista Forestal Centroamericana. (2001). La vulnerabilidad y los retos para el desarrollo sostenible. Costa Rica: CATIE.

Rodríguez, L. R. (1990). Plagas forestales y su control en México. México: Universidad Autónoma Chapingo.

Sánchez-Martínez, G. (S/F). Comportamiento de insectos descortezadores y recomendaciones para su control en la Sierra Madre Occidental. Aguascalientes, México: Campo Experimental Pabellón de Arteaga, INIFAP.

Sánchez-Martínez, G. (2004). Diagnóstico fitosanitario de los bosques de pino, pino-encino y encino-pino en la sierra Fría, Aguascalientes. Aguascalientes, Aguascalientes: Campo Experimental de Pabellón de Arteaga, INIFAP.

Sánchez-Martínez, G., Torres-Espinosa, L. M., Vázquez-Collazo, I., González-Gaona, E., & Narvaéz-Flores, R. (2007). Monitoreo y manejo de insectos descortezadores de coníferas. Aguascalientes, México. INIFAP-CIRNOC.

Sánchez-Martínez, G., & Silva, R. S. (2008). Caracterización de un brote de Dendroctonus adjuntus registrado en el estado de Chihuahua. Aguascalientes, México: INIFAP-CIRNOC.

Sánchez-Martínez, G., Reséndiz-Martínez, J. F., Santana-Espinoza, S. (2017). Fundamentos para el uso de semioquímicos en el manejo integral de insectos descortezadores de coníferas en México. INIFAP-CIRNOC. Campo Experimental Pabellón de Arteaga, Aguascalientes. Folleto Técnico Num.74. Aguascalientes, México.

Sánchez-Salas, J. A., Torres-Espinosa, L. M., Cano, A. P., & Martínez, B. O. U. (2003). Daños y diversidad de insectos descortezadores de coníferas del noreste de México. Ciencia Forestal, 28(93), 41-56.

Sánchez-Salas, J. A., & Torres-Espinosa, L. M. (2007). Biología y hábitos del descortezador Dendroctonus mexicanus Hopkins y estrategias de control en Pinus teocote en Nuevo León. Coahuila, México: INIFAP-CIRNE. Retrieved from http://biblioteca.inifap.gob.mx:8080/xmlui/bitstream/handle/123456789/989/216.pdf?sequence=1

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2005). Compendio de estadísticas ambientales. México: Autor.

Secretaría de Medio Ambiente y Recursos Naturales-Comisión Nacional Forestal (SEMARNAT-CONAFOR). (2007). Programa estratégico forestal del estado de Oaxaca 2007-2030. Retrieved from http://www.conafor.gob.mx:8080/documentos/docs/12/187Programa%20Estrat%C3%A9gico%20Forestal%20del%20Estado%20de%20Oaxaca.pdf

Secretaría de Medio Ambiente y Recursos Naturales-Comisión Nacional Forestal-Comisión Forestal del Estado de Michoacán (SEMARNAT- CONAFOR- COFOM). (2015). Diagnóstico fitosanitario forestal del estado de Michoacán. Retrieved from http://cofom.michoacan.gob.mx/wp-content/uploads/2016/05/DIAGN%C3%93STICO-FITOSANITARIO-DEL-ESTADO-DE-MICHOAC%C3%81N-FINAL-1.pdf

Secretaría de Medio Ambiente y Recursos Naturales-Universidad Autónoma Chapingo (SEMARNAT-UACh). (2014). Sanidad forestal para la evaluación de la avispa y control de descortezadores, muérdagos y heno motita. Retrieved from https://es.scribd.com/doc/268966886/Informe-Final-Proyecto-Sanidad-Forestal-Hidalgo1-pdf

Tapia-Landeros, A. (2003). ¿Resquicio legal para una... Tala ilegal disfrazada? O, cómo vender en el extranjero, lo que era de la nación. Retrieved from https://www.researchgate.net/profile/Alberto_Landeros2/publication/282022550_Resquicio_legal_para_talar_en_Baja_California_Mexico/links/56018f9e08aed98518278eb1/Resquicio-legal-para-talar-en-Baja-California-Mexico.pdf

Torres-Espinosa, L. M., & Sánchez-Salas, J. A. (2006). Determinación de la fluctuación estacional de Dendroctonus adjunctus Blandford en Pinus rudis mediante el uso de feromonas. Coahuila, México: INIFAP-CIRNE.

Verduzco, G. J. (1976). Protección forestal. Chapingo, México: Escuela Nacional de Agricultura-Patena, A. C.

Villa-Castillo, J. (1985). Enemigos naturales y organismos asociados al descortezador de pinos Dendroctonus adjunctus blandford en el Nevado de Colima. México: INIFAP.

Received: January 15, 2019; Accepted: March 19, 2019

*Corresponding author: cerano.julian@inifap.gob.mx, tel.: +52 (871) 159 0104.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License