SciELO - Scientific Electronic Library Online

 
vol.25 número1Optimización de un sistema de cultivo in vitro basado en cotiledones maduros para la inducción de callos embriogénicos en algarrobo (Ceratonia siliqua L.)Obtención de microorganismos en suelos de un bosque de niebla, para la degradación de hidrocarburos aromáticos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.25 no.1 Chapingo ene./abr. 2019  Epub 15-Feb-2021

https://doi.org/10.5154/r.rchscfa.2018.06.046 

Technical note

Germination of two varieties of Ochroma pyramidale (Cav. ex Lam.) Urb. from the Lacandon Jungle, Chiapas

Karina A. Toledo-González1  * 

Samuel I. Levy-Tacher1 

Pedro A. Macario-Mendoza2 

José A. de Nova-Vázquez3 

1El Colegio de la Frontera Sur, Departamento de Conservación de la Biodiversidad. Carretera Panamericana y Periférico Sur s/n. C. P. 29290. San Cristóbal de Las Casas, Chiapas, México.

2El Colegio de la Frontera Sur, Departamento de Agricultura, Sociedad y Ambiente. Av. Centenario km 5.5. C. P. 77014. Chetumal, Quintana Roo, México.

3Universidad Autónoma de San Luis Potosí, Instituto de Investigación de Zonas Desérticas. Altair núm. 200, Colonia del Llano. C. P. 78377. San Luis, San Luis Potosí, México.


Abstract

Introduction:

Ochroma pyramidale (Cav. ex Lam.) Urb. is a fast-growing native species of economic and ecological importance. It is currently the only species in the genus Ochroma.

Objective:

To determine the effect of seven pre-germination treatments applied on seeds of O. pyramidale in its typical variety and O. pyramidale var. bicolor (Rowlee) Brizicky in the Lacandon Jungle.

Materials and methods:

Seven germination treatments were evaluated: control, soaking in water at room temperature (Soaking12h and Soaking24h), immersion in boiling water at 100 °C (Boiling3s and Boiling10s) and immersion in boiling water and soaking in coconut water (Boiling3s + Soaking24h, and Boiling10s + Soaking24h). Coconut water was used as a natural source of cytokinins.

Results and discussion:

Germination of O. pyramidale in its typical variety (62 to 69 %) was statistically higher (P = 0.05) with treatments that included immersing the seeds in boiling water. In the case of O. pyramidale var. bicolor, the highest germination values were obtained by the Boiling3s (64 %) and Boiling3s + Soaking24h (59 %) treatments. The O. pyramidale var. bicolor seeds were susceptible to the boiling water immersion time, since germination was statistically greater (P = 0.05) at 3 s than at 10 s.

Conclusions:

Treatments that included immersion in boiling water had a greater effect on germination. Coconut water had no significant effect on the variable; therefore, the use of synthetic cytokinins is suggested in order to control the phytohormone dosage and thus verify its effect on germination.

Keywords: dormancy; imbibition; seed cover; cytokinins; coconut water

Resumen

Introducción:

Ochroma pyramidale (Cav. ex Lam.) Urb. es una especie nativa de crecimiento rápido con importancia económica y ecológica. Actualmente, es la única especie del género Ochroma.

Objetivo:

Determinar el efecto de siete tratamientos pregerminativos aplicados en semillas de O. pyramidale en su variedad típica y O. pyramidale var. bicolor (Rowlee) Brizicky en la Selva Lacandona.

Materiales y métodos:

Se evaluaron siete tratamientos germinativos: testigo (control), remojo en agua a temperatura ambiente (Remojo12h y Remojo24h), inmersión en agua en ebullición a 100 °C (Ebullición3s y Ebullición10s) e inmersión en agua en ebullición y remojo en agua de coco (Ebullición3s + Remojo24h, y Ebullición10s + Remojo24h). El agua de coco se utilizó como fuente natural de citocininas.

Resultados y discusión:

La germinación de O. pyramidale en su variedad típica (62 a 69 %) fue estadísticamente mayor (P = 0.05) con los tratamientos que incluyeron inmersión de las semillas en agua en ebullición. En el caso de O. pyramidale var. bicolor, los valores más altos de germinación corresponden a los tratamientos Ebullición3s (64 %) y Ebullición3s + Remojo24h (59 %). Las semillas de O. pyramidale var. bicolor fueron susceptibles al tiempo de inmersión de agua en ebullición, ya que la germinación fue estadísticamente mayor (P = 0.05) a los 3 s que a los 10 s.

Conclusión:

Los tratamientos que incluyeron inmersión en agua en ebullición tuvieron mayor efecto sobre la germinación. El agua de coco no tuvo efecto significativo sobre la variable; por tanto, se sugiere el uso de citocininas sintéticas, con el fin de controlar la dosis de la fitohormona y así constatar su efecto en la germinación.

Palabras clave: latencia; imbibición; episperma; citocininas; agua de coco

Introduction

Ochroma pyramidale (Cav. ex Lam.) Urb. is a fast-growing pioneer tree native to America (Sandi & Flores, 2010). The species is distributed from southeastern Mexico, Central America, Colombia, Venezuela, Ecuador, Peru, Bolivia and the Antilles to Brazil (Sandi & Flores, 2010). Based on its distribution, the tree has acquired several common names, with balsa, balso, corcho and pochote standing out (Pennington & Sarukhán, 2005; Sandi & Flores, 2010). Ochroma pyramidale has ecological importance because it is used for the rehabilitation of degraded areas, while its commercial importance is due to the high strength and low density of the wood, which makes it one of the lightest and most useful for making aircraft parts, toys and handicrafts (González-Osorio, Cervantes, Torres, Sánchez, & Simba, 2010; Sandi & Flores, 2010).

The seeds of the species O. pyramidale are orthodox; that is, they are tolerant to dehydration (Ríos-García, Orantes-García, Moreno-Moreno, & Farrera-Sarmiento, 2018; Romero-Saritama, 2016). In addition, they present physical dormancy, so that even when favorable conditions are present, they are unable to germinate (Fang, Enhe, Qinli, & Zhuhong, 2016; Jiménez et al., 2017). This is an adaptive property present in some seeds that allows them to survive in unfavorable conditions (Doria, 2010). Dormancy is common in other tropical species, which causes variation in the percentage and speed of germination in their natural environment and in nursery conditions, generating strong heterogeneity in the growth of individuals (Galán-Larrea, Vargas-Hernández, & Rodríguez-Laguna, 2000). As for the genus Ochroma, studies have been carried out on the characteristics of its seeds and their germination, highlighting issues of viability (Ríos-García, Orantes-García, Moreno-Moreno, & Farrera-Sarmiento, 2016), morphophysiological characterization (Romero-Saritama, 2016; Vázquez-Yañes, 1976) and pre-germination treatments (Herrera & Alizaga, 1999; Jiménez et al., 2017; Vázquez-Yañes, 1974, 1975).

In the community of Lacanha Chansayab, located in the Lacandon Jungle, Lacandon peasants or small-scale farmers recognize two variants of the genus Ochroma, chac chujum (Ochroma pyramidale in its typical variety) and sac chujum (Ochroma pyramidale var. bicolor [Rowlee] Brizicky). These variants are distinguished in the field by the colour of their petioles and the size of their fruit. Morphological differences include the size, colour and shape of structures such as the stem, crown, flower, fruit, petioles, and upper face and underside of the leaf and seeds. However, at present, it is known that the genus Ochroma is monophyletic, so the morphological differences that the species presented led taxonomists and botanists to propose different species and varieties for the genus. Both varieties are used by traditional Mayan Lacandons for the early recovery of their acahuales.

This study aimed to determine the effect of seven pre-germination treatments applied on seeds of O. pyramidale in its typical variety and O. pyramidale var. bicolor in the Lacandon Jungle. The species presents dormancy and it is known that, in the Lacandon Jungle, the seeds of the O. pyramidale varieties begin to germinate after slash-and-burn; therefore, it is expected that the application of treatments will increase the germination percentage of the seeds, mainly in those where temperatures of 100 °C are applied.

Materials and methods

Study area

The Lacandon Jungle covers approximately one million hectares, including 53 % of the Usumacinta River basin (Secretaría de Medio Ambiente, Recursos Naturales y Pesca [SEMARNAP], 2000); it is located in the extreme east of the state of Chiapas in southern Mexico (16° 05’ - 17° 15’ N; 90° 25’ - 91° 45’ W) (Mendoza & Dirzo, 1999). The dominant vegetation is high evergreen forest (Pennington & Sarukhán, 2005). The collection site is located in the Lacanha Chansayab locality, within the area comprising the Lacandon Jungle, at geographic coordinates 16º 45’ 59’’ N and 91º 07’ 59’’ W. The germination treatments were evaluated in the Germplasm Laboratory of the "Dr. Faustino Miranda" Botanical Garden, operated by the Secretariat of the Environment and Natural History (SEMAHN) and located in Tuxtla Gutiérrez, Chiapas.

Seed collection

The fruits of chac chujum (Ochroma pyramidale) and sac chujum (O. pyramidale var. bicolor) were collected in Lacanha Chansayab (16° 45’ 59’’ N and 91° 07’ 59’’ W) in April 2014. Ten trees of each variety were selected, obtaining 10 fruits from each individual. The trees selected for harvesting the fruits had the following characteristics: diameter at chest height (DBH) greater than 60 cm, upper height of 18 m, abundance of ripe fruit and good phytosanitary status. The fruits were placed in the sun for drying, in order to encourage dehiscence. Subsequently, the seeds were obtained and mixed to homogenize the sample. The seeds were stored and kept in an airtight container in dark conditions, temperature of 4 to 5 °C and humidity of 4.5 to 8 %, to protect them from humidity, direct sunlight, insects and fungal or bacterial diseases.

Germination

Germination treatments were evaluated in February 2015 when the seeds had been stored for 10 months. Seeds from a previous year were used because balsa trees fructify from March to June. Table 1 shows the seven treatments chosen for their low cost. The treatments, with the exception of the control, were divided into three groups in order to break the dormancy of the seed through the permeability of the seed coat: 1) imbibition of the seed by water immersion; 2) thermal impact by boiling water at 100 °C and 3) thermal impact (100 °C) plus immersion in coconut water in a state of tender maturity. This water has been used in other species (Patiño, Mosuera, & Tulio, 2011; Quinto, Martínez-Hernández, Pimentel-Bribiesca, & Rodríguez-Trejo, 2009) because it contains nutrients and cytokinins that favor seed germination.

The experimental units were 90 x 15 mm Petri dishes, where 25 seeds were planted on filter paper and cotton. The dishes were introduced into a precision germinator (Seedburo, Equipment Company), programmed to illuminate 24 hours with 90 % relative humidity and a constant temperature of 27 °C. The number of germinated seeds was counted three times per week in a 56-day period. Due to the experiment’s logistical limitations, the number of seeds evaluated for germination was not adjusted in accordance with the rules of the International Seed Testing Association (ISTA). Rojas-Rodríguez and Torres-Córdoba (2009) report that some Ochroma seeds continue to germinate until 54 days; for this reason, germination was evaluated until that time. The emergence of the radicle defined the germinated seeds (Vázquez, Orozco, Rojas, Sánchez, & Cervantes, 1997). The Petri dishes were watered every other day and two applications of Captan (N-[trichloromethylthio]cyclohex-4-ene-1,2-dicarboximide) diluted at 5 % (fungicide) were made for fungal control; the first one was on March 9 and the second on April 8, 2015.

Table 1 Pre-germination treatments used for the experimental management of seeds of two varieties of balsa (Ochroma pyramidale). 

Treatment Description Replicates Seeds per replicate
Control Control 4 25
Soaking12h Soaking in water (12 h) at room temperature 4 25
Soaking24h Soaking in water (24 h) at room temperature 4 25
Boiling3s Boiling at 100 °C for 3 s 4 25
Boiling10s Boiling at 100 °C for 10 s 4 25
Boiling3s + Soaking24h Boiling (3 s) and soaking in coconut water (24 h) 4 25
Boiling10s + Soiling24h Boiling (10 s) and soaking in coconut water (24 h) 4 25

Statistical analysis

A randomized block experimental design was used with four replicates. The data were normalized using Arc sen (Rodríguez-Sosa, Valdés-Roblejo, & Rodríguez-Lías, 2012) in order to meet the assumptions of homogeneity of variance (Levene’s test). Subsequently, the data were interpreted using an analysis of variance (P = 0.05), which allows more than two means to be contrasted. In addition, a Tukey multiple comparison test (P = 0.05) was performed to know the difference between the groups. The analysis was performed with the SPSS statistical program version 15.0 (IBM SPSS Statistics, 2009).

Results and discussion

For the two varieties of the genus Ochroma, the effect of the treatments on seed germination was statistically different (Table 2). The treatments that favored germination were those that included immersing the seeds in boiling water. In the case of the O. pyramidale typical variety, the four treatments that included thermal impact generated the greatest germination and were statistically similar (P = 0.05), while for O. pyramidale var. bicolor, the Boiling3s and Boiling3s + Soaking24h treatments were the best (Figure 1). The percentages are similar to those reported by Herrera and Alizaga (1999), who obtained 68 % germination with water at 80 °C for 3 min. Vázquez-Yañes (1976) mentions that germination of the genus Ochroma is favored by high temperatures because the seeds have adapted to the occurrence of fire in the areas where they grow.

Table 2 Representation of analysis of varance statistical test of pre-germination treatments evaluated in Ochroma pyramidale seeds.  

Germination percentage Sum of squares Degrees of freedom Root mean square F Significance
Inter-groups 38 878.857 13 2 990.681 35.443 .000
Intra-groups 3 544.000 42 84.381
Total 42 422.857 55

The lowest germination percentage was recorded in the control, Soaking12h and Soaking24h, treatments, being statistically similar (Figure 1). The low germination percentages in the control treatment agree with those obtained by Herrera-Quirós and Alizaga-López (1999) and Jiménez et al. (2017). This contrasts with the study by Ríos-García et al. (2016), who evaluated the viability of seeds at 0, 3, 6, 9 and 12 months of storage, without application of treatments, and obtained approximately 97.3 % germination at 0 months and 66 % at 12 months. However, although Ríos-García et al. (2016) did not use pre-germination treatments, they did use coconut powder and agrolite (1:2) in the substrate. Ayala-Sierra and Váldez-Aguilar (2008) also evaluated the effectiveness of coconut coir dust substrate combined with perlite and vermiculite (70:20:10) in six commercial species and concluded that germination was favorable compared to substrates combined with peat moss. Coconut coir dust is likely to have increased the germination percentage in O. pyramidale seeds, as observed in the coconut water treatments evaluated by Patiño et al. (2011) and Quinto et al. (2009).

In both varieties, the Soaking12h and Soaking24h treatments generated low germination percentages (Figure 1). These results are similar to those obtained by Rodríguez-Sosa et al. (2012), who evaluated nine pre-germination water immersion treatments at different intervals (3 to 27 h) in Colubrina ferruginosa Brong seeds. These researchers obtained that, after 12 h, the treatments presented a similar germination percentage as the control (39.7 %), decreasing as the immersion was prolonged (15 h = 38.5 % and 27 h = 22 %).

Figure 1 Germination of two varieties of Ochroma pyramidale under seven treatments. The standard deviation of the mean is represented above the bars. Treatments by variety that do not share the same letter are statistically different according to Tukey's test. (P = 0.05). 

The boiling treatments had similar germination percentages (Figure 1) with the exception of the Boiling10s and Boiling10s + Soaking24h treatments for O. pyramidale var. bicolor. At a physiological level, it is possible that the seed coat will have greater permeability as a result of high temperatures (immersion in boiling water), thereby favoring germination. The exposure time of the seeds to the high temperatures (100 °C) and growth phytohormones (cytokinins) present in the coconut water favorably influenced germination capacity. According to the results, the seeds must be subjected to high temperatures to increase the germination percentages, as indicated by Herrera and Alizaga (1999), Jiménez et al. (2017) and Vázquez-Yañes (1974, 1975). With respect to coconut water, the soaking of the seeds should be done after immersion in boiling water; in case of only applying the soaking, the seeds will not absorb the cytokinins effectively, due to the impermeability of the Ochroma seed coat. This is corroborated in the study by Jiménez et al. (2017), who obtained a low germination percentage (20.51 %) when they soaked the seeds in coconut water for 12 hours. By contrast, Quinto et al. (2009) evaluated three coconut water-based pre-germination treatments in non-dormant seeds using three stages of fruit maturity (young, mature and dry). The treatments favored the germination of Swietenia macrophyla King, Cedrela odorata L. and Tabebuia rosea (Bentol) DC, obtaining a higher percentage with coconut water from young fruit (40.3, 30.7 and 31.7 %, respectively), despite the fact that the seeds had a viability of 94, 96 and 99 %, respectively. According to Quinto et al. (2009), the amount of nutrients and the specific composition of the coconut will depend on the maturity of the fruit; the lower the maturity, the higher the concentration of nutrients, as well as phytohormones, including cytokinins.

Figures 2 and 3 show the germinative performance of each of the varieties over 56 days; in O. pyramidale, germination is logarithmic, and in O. pyramidale var. bicolor it is exponential.

Figure 2 Germination of Ochroma pyramidale typical variety under seven pre-germination treatments. Twenty-four measurements were made during the 56 days of evaluation. 

Figure 3 Germination of Ochroma pyramidale var. bicolor under seven pre-germination treatments. Twenty-four measurements were made during the 56 days of evaluation. 

In the Ochroma pyramidale typical variety, the boiling treatments produced the highest germination values (Figures 1 and 2), being statistically similar (P > 0.05). However, there was an increase in the germination percentage (7 %) of the Boiling10s + Soaking24h treatment (69 %) with respect to the treatment of the same temperature exposure time but which did not have soaking in coconut water (Boiling10s = 62 %). Regarding Ochroma pyramidale var. bicolor, apparently, the seeds can germinate without application of germination treatments (Figures 1 and 3); however, the highest germination values were obtained by Boiling3s (64 ± 14.6 %; F 1,13 = 35.44, P < 0.001). It is important to mention that O. pyramidale var. bicolor seeds were susceptible to the boiling (100 °C) water immersion time since there were differences in germination, being statistically higher (P = 0.05) at 3 s (Boiling3s = 64 % and Boiling3s + Soaking24h = 59 %) than at 10 s (Boiling10s = 33 % and Boiling10s + Soaking24h = 38 %). In addition, as in the typical variety, germination increased 5 % with the Boiling10s + Soaking24h treatment, compared to the treatment with the same temperature exposure time but not soaked in coconut water (Boiling10s).

Conclusions

This study allows knowing the best management of Ochroma pyramidale seeds at low cost. Although the genus has only one species and all those previously identified above are synonymous, the germination percentages of the two varieties evaluated were different. These differences are associated with the type of treatment and germinative performance over time (logarithmic and exponential). The highest germination percentage, for both varieties, was obtained with water immersion treatments (100 °C) under different exposure times; O. pyramidale var. bicolor had higher germination with 3 s immersion. Coconut water did not produce the expected germination (higher percentage in both varieties and statistical differentiation with respect to treatments without coconut water); for this reason, it is suggested that synthetic cytokinins be used in future experiments to control the phytohormone dose and thus verify its effect on germination.

Acknowledgments

We would like to thank the following: CONACyT for the scholarship granted to the first author to carry out the study; Emerit Meléndez López and his colleagues at the Seed Bank Department located in the "Dr. Faustino Miranda" Botanical Garden operated by the Ministry of the Environment and Natural History (SEMAHN) for allowing us to carry out the experiment in their facilities; Jorge Castellanos Albores for his collaboration in the statistical analyses; the peasants of Lacanha Chansayab, located in Lacandon Jungle, for allowing us to collect the fruits in their properties; Moises Ismael Toledo González and Antonio Sánchez González for their support in the field; and Rodolfo Cabrera Hernández for his suggestions concerning the writing of this paper. Finally, we thank the reviewers for their help in improving the final version of the manuscript.

References

Ayala-Sierra, A., & Valdez-Aguilar, A. (2008). El polvo de coco como sustrato alternativo para la obtención de plantas ornamentales para trasplante. Revista Chapingo Serie Horticultura, 14(2), 161-167. Retrieved from http://www.scielo.org.mx/pdf/rcsh/v14n2/v14n2a9.pdfLinks ]

Doria, J. (2010). Generalidades sobre las semillas: conservación y almacenamiento. Cultivos Tropicales, 31(1), 74-85. Retrieved from http://scielo.sld.cu/pdf/ctr/v31n1/ctr11110.pdfLinks ]

Fang, Y., Enhe, Z., Qinli, W., & Zhuhong, M. (2016). Germination and dormancy-breaking of Daphne giraldii Nitsche (Thymelaeaceae) seeds from northwestern China. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(1), 99-113. doi: 10.5154/r.rchscfa.2015.04.015 [ Links ]

Galán-Larrea, R., Vargas-Hernández, J., & Rodríguez-Laguna, R. (2000). Tratamientos para estimular y homogeneizar la germinación en semillas de Gmelina arborea Roxb. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 6(1), 21-28. Retrieved from https://www.chapingo.mx/revistas/forestales/contenido.php?seccion=numero&id_revista_numero=21Links ]

González-Osorio, B., Cervantes, X. M., Torres, E. N., Sánchez, C. F., & Simba, L. (2010). Caracterización del cultivo de balsa (Ochroma pyramidale) en la provincia de Los Ríos, Ecuador. Ciencia y Tecnología, 3(2), 7-11. Retrieved from http://uteq.edu.ec/revistacyt/publico/archivos/C1_2n22010.pdfLinks ]

Herrera, Q. J., & Alizaga, L. R. (1999). Ruptura de la latencia en semillas de balsa (Ochroma pyramidale). Tecnología en Marcha, 13(2), 34-40. [ Links ]

IBM SPSS Statistics (2009). Software estadístico IBM SPSS Statistics versión 15.0. USA: Author. [ Links ]

Jiménez, R. E., Garcías, F. L., Carranza, P. M., Carranza, P. H. M., Morante, C. J., Martínez, C. M., & Cuásquer, F. J. (2017). Germinación y crecimiento de Ochroma pyramidale (Cav. ex Lam.) Urb. en Ecuador. Scientia Agropecuaria, 8(3), 243-250. doi: 10.17268/sci.agropecu.2017.03.07 [ Links ]

Mendoza, E., & Dirzo, R. (1999). Deforestation in Lacandonia (southeast Mexico): evidence for the declaration of the northernmost tropical hot-spot. Biodiversity and Conservation, 8(12), 1621-1641. doi: 10.1023/A:1008916304504 [ Links ]

Patiño, T. C., Mosquera, G. F., & Tulio, G. R. (2011). Efecto inductor del agua de coco sobre la germinación de semillas y brotamiento de los cormos de la hierba de la equis Dracontium grayumianum G. Zhu & Croat. Acta Biológica Colombiana, 16(1), 133-142. Retrieved from https://revistas.unal.edu.co/index.php/actabiol/article/view/12943/28143Links ]

Pennington, T. D., & Sarukhán, J. (2005). Árboles tropicales de México. Manual para la identificación de las principales especies (3.a ed.). México: UNAM - Fondo de Cultura Económica. [ Links ]

Quinto, L., Martínez-Hernández, P. A., Pimentel-Bribiesca, L., & Rodríguez-Trejo, D. A. (2009). Alternativas para mejorar la germinación de semillas de tres árboles tropicales. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 23-28. Retrieved from https://www.chapingo.mx/revistas/forestales/contenido.php?seccion=numero&id_revista_numero=39Links ]

Ríos-García, C. A., Orantes-García, C., Moreno-Moreno, R. A., & Farrera-Sarmiento, O. (2016). Viabilidad y germinación de semillas de Jopi (Ochroma pyramidale) (Cav. ex Lam.) Urb.) (Malvaceae). Lacandonia, 10(2), 7-11. Retrieved from https://www.researchgate.net/publication/313746805_Viabilidad_y_germinacion_de_semillas_de_Jopi_Ochroma_pyramidale_Cav_ex_Lam_Urb_MalvaceaeLinks ]

Ríos-García, C. A., Orantes-García, C., Moreno-Moreno, R. A., & Farrera-Sarmiento, O. (2018). Efecto del almacenamiento sobre la viabilidad y germinación de dos especies arbóreas tropicales. Ecosistemas y Recursos Agropecuarios, 5(13), 103-109. doi: 10.19136/era.a5n13.1161 [ Links ]

Rodríguez-Sosa, J. L., Valdés-Roblejo, Y., & Rodríguez-Lías, R. (2012). Seed treatments to improve the germination of Colubrina ferruginosa Brong. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(1), 27-31. doi: 10.5154/r.rchscfa.2010.01.001 [ Links ]

Rojas-Rodríguez, F., & Torres-Córdoba, G. (2009). Árboles del valle central de Costa Rica: reproducción balsa. Revista Forestal Mesoamericana Kurú, 6(17), 64-66. Retrieved from http://revistas.tec.ac.cr/index.php/kuru/article/view/391/324Links ]

Romero-Saritama, J. M. (2016). Caracterización morfofisiológica de semillas de especies leñosas distribuidas en dos zonas secas presentes en el Sur de Ecuador. Ecosistemas. 25(2), 93-100. doi: 10.7818/ECOS.2016.25-2.12 [ Links ]

Sandi, C., & Flores, E. M. (2010). Ochroma pyramidale (Cav. ex. Lam.) Urb. In J. A. Vozzo (Ed.), Manual de semillas de árboles tropicales (pp. 571-573). Estados Unidos: Departamento de Agricultura de los Estados Unidos Servicio Forestal. [ Links ]

Secretaría de Medio Ambiente, Recursos Naturales y Pesca (SEMARNAP). (2000). Programa de Manejo de la Reserva de la Biosfera Montes Azules. Retrieved from http://centro.paot.org.mx/documentos/ine/progbio_montes_azules.pdfLinks ]

Vázquez-Yañes, C. (1974). Studies on the germination of seeds of Ochroma lagopus Swartz. Turrialba, 24(2), 176-179. Retrieved from http://orton.catie.ac.cr/repdoc/A0773e/A0773e02.htmlLinks ]

Vázquez-Yañes, C. (1975). The use of a thermogradient bar in the study of seed germination in Ochroma lagopus Sw. Turrialba, 25(3), 328-330. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/Links ]

Vázquez-Yañes, C. (1976). Notas sobre la morfología y la anatomía de la testa de las semillas de Ochroma lagopus Sw. Turrialba, 26(3), 310-311. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/Links ]

Vázquez, Y. C., Orozco, A., Rojas, M., Sánchez, M. E., & Cervantes, V. (1997). La reproducción de las plantas: semillas y meristemos. México: Fondo de Cultura Económica. Retrieved October 18, 2018, from http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen3/ciencia3/157/htm/lcpt157.htmLinks ]

Received: June 10, 2018; Accepted: October 26, 2018

*Corresponding author: katoledo@ecosur.edu.mx; tel.: +52 (967) 674 9000 ext. 1600

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License