SciELO - Scientific Electronic Library Online

 
vol.24 número3Biomasa aérea y captura de carbono en manglares de la zona árida del noroeste de México: Bahía del Tóbari y estero El Sargento, SonoraComunidades de orla forestal en el suroeste de la península ibérica índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.24 no.3 Chapingo sep./dic. 2018  Epub 19-Feb-2021

https://doi.org/10.5154/r.rchscfa.2018.03.024 

Scientific article

Characteristics of oil palm trunks for rearing of Rhynchophorus palmarum (Coleoptera: Curculionidae) in the Peruvian Amazon

Grober Panduro-Pisco1  2 

Nathaly M. Salinas-Pimentel1 

Jesús Cotrina-Barrueta1 

Ángel K. Arbaiza-Peña1 

Jorge Plaza-Castro1 

José Iannacone3  4  * 

1Negocios Amazónicos Sustentables, EIRL, Negasus EIRL, Área de proyectos. Av. Pachacútec Mz. 6 Lt. 17. Manantay, Ucayali, Perú.

2Universidad Nacional de Ucayali, Facultad de Ciencias Forestales y Ambientales. Carretera Federico Basadre km 6.2. Pucallpa, Ucayali, Perú.

3Universidad Nacional Federico Villarreal (UNFV), Facultad de Ciencias Naturales y Matemática (FCNNM), Laboratorio de Ecología y Biodiversidad Animal (LEBA). Av. Río de Chepén s/n. Urb. Bravo Chico. El Agustino, Lima, Perú.

4Universidad Ricardo Palma (URP), Facultad de Ciencias Biológicas, Laboratorio de Parasitología. Av. Benavides 5440. Urb. Las Gardenias. Surco, Lima, Perú.


Abstract

Introduction:

In the Peruvian Amazon, felled oil palm (Elaeis guineensis Jacq.) trunks are usually burned to prevent the increase of these residues. These trunks are also used for the rearing of Rhynchophorus palmarum (Linnaeus, 1758) Csiki E., 1936 larvae, which locals use as a food source.

Objective:

To establish the relationship between the characteristics of the cut E. guineensis trunks and the rearing of R. palmarum larvae.

Materials and methods:

The research was conducted in three districts (San Pedro-Campo Verde, Tahuayo-Neshuya and Maronal-Curimaná) of the department of Ucayali, Peru. The correlation between the number of R. palmarum larvae and the length and diameter of the trunk’s central cylinder was analyzed using the Spearman coefficient (rs). In addition, the soil texture class was determined and the correlation with the number of larvae was established.

Results and discussion:

The length and diameter of the felled oil palm trunks were different (P < 0.05) in the three sites evaluated. There is no relationship between the number of R. palmarum larvae and the length and diameter of the trunk segments. By contrast, the soil’s clay loam texture is positively correlated with the number of larvae (rs = 1.00, P < 0.01). The number of larvae was higher in the Tahuayo-Neshuya district samples (145.67 ± 39.67; P < 0.0001).

Conclusion:

Characteristics of the oil palm trunk are not associated with the development of R. palmarum.

Keywords: Elaeis guineensis; trunk’s central cylinder; clay loam soil; soil texture class

Resumen

Introducción:

En la Amazonía peruana, los troncos cortados de palma aceitera (Elaeis guineensis Jacq.) suelen quemarse para evitar el aumento de estos residuos. Estos troncos también se utilizan para la crianza de larvas Rhynchophorus palmarum (Linnaeus, 1758) Csiki E., 1936, que los lugareños usan como fuente de alimento.

Objetivo:

Establecer la relación que existe entre las características de los troncos cortados de E. guineensis y la crianza de larvas R. palmarum.

Materiales y métodos:

La investigación se hizo en tres distritos (San Pedro-Campo Verde, Tahuayo-Neshuya y Maronal-Curimaná) del departamento de Ucayali, Perú. La correlación del número de larvas de R. palmarum con la longitud y el diámetro del cilindro central del tronco se analizó mediante el coeficiente de Spearman (rs). Asimismo, se determinó la clase de textura del suelo y se estableció la correlación con el número de larvas.

Resultados y discusión:

La longitud y diámetro de los troncos cortados de palma aceitera fueron diferentes (P < 0.05) en las tres localidades evaluadas. No existe relación del número de larvas de R. palmarum con la longitud y el diámetro de los segmentos del tronco. En cambio, la textura franco arcillosa del suelo está correlacionada positivamente con el número de larvas (rs = 1.00, P < 0.01). El número de larvas fue mayor en las muestras del distrito Tahuayo-Neshuya (145.67 ± 39.67; P < 0.0001).

Conclusión:

Las características del tronco de palma aceitera no están asociadas con el desarrollo de R. palmarum.

Palabras clave: Elaeis guineensis; cilindro central del tronco; suelo franco arcilloso; clase de textura del suelo

Introduction

Elaeis guineensis Jacq. is an oil palm that can live for more than 100 years (Hang & Sharma, 2000). Under conventional agricultural conditions and from a practical standpoint, the useful life of the palm can be around 25 years (Hang & Sharma, 2000) or when it reaches a height of 12 m; when this height is exceeded, harvesting the fruit becomes uneconomical (Loh & Mukesh, 1999).

Globally, the oil palm represents an excellent alternative for commercial development and expansion due to its high productivity, as its oil yield is higher than that of most other oil crops (Hinrichsen, 2016). In recent decades important agronomic advances have been achieved in oil palm: (1) plantation renewal without eradicating all plants, (2) precision fertilization in relation to soil type, (3) recycling of industrial waste from the palm and (4) organization of small and medium producers to industrialize their products and market directly in internal and external markets (Clare, 2004).

Adult oil palm plantations are characterized by considerable height and low productivity (Aznab & Mohd, 2002; Idris, Azman, & Chang, 2001; Loh & Mukesh, 1999), which constitutes a risk for those harvesting the fruit. Bud rot is another factor that produces losses to the farmer, although in lower proportion and intensity (Rivas-Figueroa, Moreno, Rivera-Casignia, Herrera-Isla, & Leiva-Mora, 2017).

Biomass generated in the oil palm is wasted, as farmers fell and burn the trunks, as well as apply systemic insecticides to them (Garbanzo, 2016). These practices are dangerous for the environment and cultivation, creating soil fertility problems, low productivity, microfauna and vegetation mortality, and high pollution levels (Arboleda, 2008). An alternative to avoid burning is the use of the felled trunks, at the end of the renewal phase of the oil palm, to rear larvae of Rhynchophorus palmarum (Linnaeus, 1758) Csiki E., 1936 (Coleoptera: Curculionidae) (Ávila, Bayona, Rincón, & Romero, 2014; Delgado, Couturier, Mathews, & Mejia, 2008). Due to its nutritional properties, the larva of the R. palmarum insect has become an important alternative food for the inhabitants of the Latin American Amazon (Cerda et al., 2001; Choo, Zent, & Simpson, 2009; Delgado et al., 2008; Sancho, Álvarez, & Fernández, 2015; Vargas, Espinoza, Ruiz, & Rojas, 2013). This polyphagous insect reproduces in the internal meristem of the tissue of the oil palm E. guineensis and other Amazonian palms (Hodel, Marika, & Ohara, 2016; Rodríguez-Currea, Marulanda-López, & Amaya, 2017).

The objective of this study was to establish the relationship between the characteristics of felled E. guineensis trunks and rearing of R. palmarum larvae in the Peruvian Amazon.

Materials and methods

Study area

The study area comprised three districts: (1) San Pedro-Campo Verde, with elevation of 200 m, temperature of 22.3 °C, annual rainfall of 1 726 mm and annual relative humidity of 80 %; (2) Tahuayo-Neshuya, with an elevation of 206 m, temperature of 25 °C, annual rainfall of 4 954.3 mm and annual relative humidity of 87 %; and (3) Maronal-Curimaná, with an elevation of 172 m, temperature of 25.5 °C, annual rainfall of 4 583.2 mm and annual relative humidity of 87 %.

Data collection procedure

The study was conducted during the months of January to July 2016 in nine oil palm plots, located in the hamlets of the districts of San Pedro-Campo Verde, Tahuayo-Neshuya and Maronal-Curimaná. Non-probability sampling was carried out. The length (m) and diameter (cm) of the felled trunks were measured with a 50-m measuring tape and a Vernier caliper (precision: 0.01 mm), respectively. Three trunk sections were evaluated in 12 replicates: basal part (which contains the roots), middle section (between the base and apex of the trunk) and the apex. In each section the thickness of three tissues or structural layers was measured: bark, sclerenchyma and central cylinder. Subsequently, 75 soil samples were taken to determine the texture class in the laboratory, using the Bouyoucos method (Beretta et al., 2014). The samples were obtained at a depth of 50 cm, in 31 replicates for San Pedro-Campo Verde, 15 for Tahuayo-Neshuya and 29 for Maronal-Curimaná.

After measuring the length and diameter of all trunk sections, an attractant made from a ferment ("masato") of cassava (Manihot esculenta Crantz) was applied. To do this, three V-shaped cuts were made in each trunk section, as well as three cross cuts on the sides of the trunk; 100 mL of the attractant were introduced with a brush in each cut. At 58 days the R. palmarum larvae were collected from the trunk sections where the attractant was applied. This ferment is used by indigenous communities to capture larger numbers of adult beetles and increase the production of larvae for local consumption (Delgado et al., 2008).

Data analysis

The data on the length and diameter of the three layers (bark, sclerenchyma and central cylinder) in the three oil palm trunk sections (basal, middle and apical) were tabulated and ordered according to the number of R. palmarum larvae in the three sites studied. Two-way factorial fixed-effect (Type 1) analysis of variance (ANOVA) and comparison of means with the Tukey test (P < 0.05) were performed; the length and diameter of the oil palm trunk were the independent variables, and the abundance of larvae was the response variable. The Spearman coefficient (rs) was used to relate the number of R. palmarum larvae to the length and diameter of the trunk, the diameter of the basal, middle and apical central cylinder of the oil palm, and the soil texture class. All analyses were performed with InfoStat™ (Di Rienzo et al., 2014).

Results and discussion

Table 1 shows that the length (F = 9.62; P = 0.01) and diameter (F = 5.72; P = 0.04) of the adult oil palm trunk were statistically different among sites. The Tahuayo-Neshuya district had the lowest numerical values of these variables.

Table 1 Length and diameter of felled adult oil palm (Elaeis guineensis) trunks in three districts of Pucallpa, Ucayali, Peru.  

District Longitude (m) Diameter (cm)
San Pedro-Campo Verde 7.82 ± 0.25 ab 69.95 ± 3.12 b
Tahuayo-Neshuya 6.90 ± 0.44 a 52.53 ± 12.29 a
Maronal-Curimaná 8.53 ± 0.60 b 71.70 ± 4.06 b

Means with a different letter in the same column are statistically different according to Tukey’s test (P < 0.05). ± standard error of the mean.

The length and diameter of the adult oil palm trunk vary during development until the trees reach maturity or the end of their useful life (Cayón-Salinas, 1999). Differences in trunk length and diameter among districts were probably due to the type of crop management that consisted of fertilization, pruning and weeding, as well as the age of the oil palms (Cayón-Salinas, 1999; Paramananthan, 2013). The diameter differences could be attributable to a coating that the petiolar base formed on the trunk in the district of Tahuayo-Neshuya, but not in the districts of San Pedro-Campo Verde and Maronal-Curimaná. Oil palm planting density was 143 plants·ha-1 in the three districts.

The oil palm stem has a growth rate of 25 to 30 cm·year-1 (Bonneau, Vandessel, Buabeng, & Erhahuyi, 2014) and can reach a maximum of 15 to 20 m in height (Mosquera et al., 2016). Crop management consists of fertilization, pruning, weeding and other agroecological activities that play an important role in trunk growth (Bonneau, Impens, & Buabeng, 2018; Woittiez, van Wijk, Slingerland, van Noordwijk, & Giller, 2017). When this research was carried out, the oil palms were between 16 and 24 years old, which means that they were near the end of the productive phase of a commercial crop that is from 6 to 25 years (Mosquera et al., 2016). The recorded heights did not reach 15 to 20 m, which are corresponding measurements for ages over 30 years, when production is almost nil (Mosquera et al., 2016).

The length of the oil palm trunk sections did not correlate with the number of R. Palmarum larvae (rs = 0.47, P = 0.19). Similarly, the diameter of the trunk sections and the number of R. palmarum larvae did not correlate (rs = -0.11, P = 0.76). This insect oviposits in the exposed internal tissues of the oil palm to ensure that the larva has access to food. The success of oviposition depends on certain specific conditions. Firstly, it has been determined that insects are attracted by the odor of the substratum from which they feed and oviposit, and the attractants that may be added; secondly, the space and soft tissues are important factors that allow larvae to feed and protect themselves from their natural enemies (Aldana de la Torre, Aldana de la Torre, & Moya, 2010; Choo et al., 2009; Monzenga, Le Goff, Kayisu, & Hance, 2017; Pérez & Iannacone, 2006; Rodríguez-Currea et al., 2017). Sánchez, Jaffé, Hernández, and Cerda (1993) and Choo et al. (2009) indicate that when the larvae reach their last stage, it is common to find competition among individuals of the same species that leads to predation by cannibalism. Therefore, stem (trunk) height may not be associated with the rearing of R. palmarum larvae.

Table 2 shows the thickness values of the oil palm trunk layers. According to the results, the central cylinder is thicker than the bark and the sclerenchyma. The bark and the central cylinder had the largest thickness in the basal third, while the sclerenchyma was similar in all three sections. Regarding the study sites, the bark, sclerenchyma and central cylinder were smaller in the Maronal-Curimaná district. In all three districts, the central cylinder had higher values than the bark and sclerenchyma,

Table 2 Measurements of the three thickness layers of the oil palm (Elaeis guineensis) trunk in Pucallpa, Ucayali, Peru.  

Variables Thickness of the trunk layers (cm)
Bark Sclerenchyma Central cylinder
Trunk third
Apical 1.07 ± 0.60 a 0.65 ± 0.23 a 31.72 ± 3.14 a
Middle 1.43 ± 0.66 a 0.74 ± 0.23 a 34.84 ± 4.92 a
Basal 1.97 ± 0.66 b 0.80 ± 0.29 a 52.22 ± 3.08 b
District-site
San Pedro-Campo Verde 1.88 ± 0.72 c 0.75 ± 0.29 ab 39.27 ± 12.20 ab
Tahuayo-Neshuya 1.47 ± 0.66 b 0.78 ± 0.22 b 43.38 ± 14.65 b
Maronal-Curimaná 1.09 ± 0.60 a 0.64 ± 0.22 a 35.93 ± 7.75 a

Means with the same letter in a column are not statistically different according to Tukey’s test (P > 0.05). ± standard error of the mean. Trunk third: F bark = 17.39, P < 0.0001; Fsclerenchyma = 2.85, P = 0.06; F central cylinder = 61.33, P < 0.0001. District-site: F bark = 12.72, P < 0.0001. F sclerenchyma = 3.21, P = 0.045; F central cylinder = 3.47, P = 0.03.

Rhynchophorus palmarum developed, until its last larval stage, in the central cylinder of the three cut trunk sections (basal, middle and apical); this was evidenced by the state of advanced decomposition of the central cylinder at the time of evaluation. Therefore, it follows that the preferred site of adults for oviposition is the central cylinder; however, there was no relationship between the number of R. palmarum larvae and the diameter of the apical-central cylinder (rs = 0.44; P = 0.23), middle-central cylinder (rs= 0.56; P = 0.11) and basal-central cylinder of the trunk (rs = -0.32; P = 0.39).

In the central cylinder of the apical third (the furthest from the ground) of the felled oil palm trunk, there is great meristematic activity, foliar growth and sexual differentiation of the inflorescence; according to Ávila et al. (2014) and Delgado et al. (2008), the tissue of the central cylinder’s apical third is the most appetizing and soft for oviposition and for the larval development of R. palmarum in its initial stages. The apical meristem decomposes easily under adequate moisture and shade conditions, so it would be expected that the number of larvae is related to the characteristics of the tissues and the diameter of the central cylinder (Abe, Hata, & Sone, 2009; Ávila et al., 2014; Cayón-Salinas, 1999; Monzenga et al., 2017; Van Itterbeeck & van Huis, 2012). In future studies, the degree of decomposition should be correlated with the abundance of R. palmarum larvae.

Delgado et al. (2008) indicate that the trunk’s apical part has a greater number of R. palmarum larvae compared to its basal part. In the present study there was no significant relationship between the diameter of the central cylinder’s apical third and the number of larvae found in R. palmarum. The basal third, due to its support function for oil palm, contains lignified fibers that are harder and perhaps not suitable for the feeding, growth and development of the larvae; however, when there is moisture and shade, the development of larvae in the lignified base of the felled trunk is observed (Ávila et al., 2014; Choo et al., 2009; Delgado et al., 2008).

Table 3 shows the soil texture classes in each district. The results indicate that there is a higher percentage of clay loam soil in Tahuayo-Neshuya, sandy loam in San Pedro-Campo Verde and clay in Maronal-Curimaná. The percentage of clay loam soil (dominant texture) and the number of R. palmarum larvae found per district showed a positive relationship between the two variables (rs = 1.00, P < 0.01). The number of R. palmarum larvae was statistically different in the three sites (F = 17.40; P < 0.001; Levene = 1.28).

Table 3 Soil texture class of three districts with oil palm (Elaeis guineensis) production in Pucallpa, Ucayali, Peru, and number of Rhynchophorus palmarum larvae.  

Soil texture San Pedro-Campo Verde (%) Tahuayo-Neshuya (%) Maronal- Curimaná (%)
Sandy loam 35 0 10
Loam 16 0 17
Clay loam 29 53 17
Clay 13 13 21
Clay sandy loam 7 7 21
Silty clay 0 27 14
Total 100 100 100
Number of larvae 56.67 ± 39.23 a 145.67 ± 39.67 b 50.00 ± 28.14 a

The number of larvae was different among districts according to Tukey’s test (P < 0.001). ± standard error of the mean.

Texture is a relatively stable property that influences management, movement of water and air, determination of the genesis, infiltration and soil moisture (Paramananthan, 2013). In this context, the trunks found in these soil texture classes are considered good food substrates because they have less fiber, are rich in carbohydrates and proteins and could support rapid larval growth (Paramananthan, 2013; Woittiez et al., 2017). Clay soils are preferable because they favor the root growth of the oil palm and retain adequate amounts of moisture; this is why the trunks are better developed in soils with clay loam texture (Ortiz & Fernández, 1994).

The results obtained from the reproduction of R. palmarum show the importance of the soil texture class in trunk growth. This is reflected in a greater number of R. palmarum larvae in the hamlet of Tahuayo-Neshuya with the increase in the clay loam texture and a lower number of larvae in San Pedro-Campo Verde and in Maronal-Curimaná with a texture different from the clay loam texture (Table 3).

Conclusions

The diameters of the oil palm Elaeis guineensis trunk sections were different among sites, with the central cylinder representing the greatest proportion of the trunk being the largest. There is no relationship between the number of Rhynchophorus palmarum larvae and the length and diameter of the trunk. Nor was there a relationship between the diameter of the central cylinder of the three-thirds (apical, middle and basal) of the trunk and the number of larvae. Therefore, trunk characteristics are not associated with the development of R. palmarum. However, the clay loam soil texture did have an important role since it showed a positive relationship with the number of larvae.

Acknowledgments

The authors wish to thank the following: INNOVATE-Peru for co-funding the project "Use of adult oil palm tree stems for the rearing of suri (Rhynchophorus palmarum L. larvae), as an alternative to burning, in the Province of Coronel Portillo and Padre Abad, Ucayali Region"; the research and innovation company Negocios Amazónicos Sustentables EIRL, Negasus and its technical team and researchers for being the executing and co-funding company of the aforementioned project; palm growers Bertha Masma Santiago, Heriberto Tamani Murayari and Jaime Egoavil (San Pedro-Campo Verde); Ruben Ñaupa Ames, Alberto Isuiza Salas and Marcial (Tahuayo-Neshuya); and Bil Watson Rivas Chino, Roly Lozano Jara and Juan Gerardo Gastelú Gonzales (Maronal-Curimaná), for access to their plantations, where the felled trunks for the production of R. palmarum larvae were selected.

References

Aldana de la Torre, R. C., Aldana de la Torre, J. A., & Moya, O. M. (2010). Biología, hábitos y manejo de Rhynchophorus palmarum L. (Coleoptera: Curculionidae). Retrieved from https://publicaciones.fedepalma.org/index.php/boletines/article/view/10508/10498Links ]

Arboleda, M. N. (2008). La palma africana en el Pacifico colombiano: su ilegalidad, consecuencias y violacion de derechos territoriales. Revista Luna Azul, 27, 113-126. Retrieved from http://www.scielo.org.co/pdf/luaz/n27/n27a09.pdfLinks ]

Abe, F., Hata, K., & Sone, K. (2009). Life history of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae), in Southern Japan. Florida Entomologist, 92(3), 421-425. doi. 10.1653/024.092.0302 [ Links ]

Ávila, R. A., Bayona, C., Rincón, A., & Romero, H. M. (2014). Effect of replanting systems on populations of Strategus aloeus (L.) and Rhynchophorus palmarum (L.) associated with the oil palm OxG interspecific hybrid (Elaeis oleifera × Elaeis guineensis) in Southwestern Colombia. Agronomía Colombiana, 32(2), 224-231. doi: 10.15446/agron.colomb.v32n2.43011 [ Links ]

Aznab, L., & Mohd, M. (2002). The optimal age of oil palm replanting. Oil Palm Industry Economic Journal, 2(1), 11-18. Retrieved from http://www.mpob.gov.my/en/home/799-oil-palm-industry-economic-journal-issn-1675-0632Links ]

Beretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., & García-Lamohte, A. (2014). Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e Investigación Agraria, 41(2), 263-271. doi: 10.4067/S0718-16202014000200013 [ Links ]

Bonneau, X., Impens, R., & Buabeng, M. (2018). Optimum oil palm planting density in West Africa. Oilseeds & Fats Crops and Lipids, 25(2), A201. doi: 10.1051/ocl/2017060 [ Links ]

Bonneau, X., Vandessel, P., Buabeng, M., & Erhahuyi, C. (2014). Early impact of oil palm planting density on vegetative and oil yield variables in West Africa. Oilseeds & Fats Crops and Lipids, 21(4), A401. doi: 10.1051/ocl/2014009 [ Links ]

Cayón-Salinas, D. G. (1999). Apuntes sobre fisiología del crecimiento y desarrollo de la palma de aceite (Elaeis guineensis Jacq.). Palmas, 20(3), 43-54. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/download/710/710Links ]

Cerda, H., Martínez, R., Briceno, N., Pizzoferrato, L., Manzi, P., Ponzetta, T., … Paoletti, M. G. (2001). Palm worm: (Rhynchophorus palmarum) traditional food in Amazonas, Venezuela-nutritional composition, small scale production and tourist palatability. Ecology of Food and Nutrition, 40(1), 13-32. doi: 10.1080/03670244.2001.9991635 [ Links ]

Choo, J., Zent, E. L., & Simpson, B. B. (2009). The importance of traditional ecological knowledge for palm-weevil cultivation in the Venezuelan amazon. Journal of Ethnobiology, 29(1), 113-128. doi: 10.2993/0278-0771-29.1.113 [ Links ]

Clare, P. (2004). El cultivo de la palma aceitera en Costa Rica en el contexto del TLC con los Estados Unidos de Norteamerica. Espiga, 5(9), 95-124. Retrieved from http://investiga.uned.ac.cr/revistas/index.php/espiga/article/view/1108/1044Links ]

Delgado, C., Couturier, G., Mathews, P., & Mejia, K. (2008). Producción y comercialización de la larva de Rhynchophorus palmarum (Coleoptera: Dryopthoridae) en la Amazonía peruana. Boletín de la Sociedad Entomológica Aragonesa, 41(1), 407-412. Retrieved from http://sea-entomologia.org/Publicaciones/PDF/BOLN42/407_412BSEA41EAComercialRhynchophorus.pdfLinks ]

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2014). IS InfoStat. Software estadístico. Argentina: Universidad Nacional de Córdoba. [ Links ]

Garbanzo, L. G. (2016). Inducción de senescencia en palma aceitera Elaeis guineensis para renovación (Arecales: Arecaceae) mediante mezclas de herbicidas. Cuadernos de Investigación UNED, 8(1), 49-54. Retrieved from http://www.scielo.sa.cr/pdf/cinn/v8n1/1659-4266-cinn-8-01-00048.pdfLinks ]

Hang, P. L., & Sharma, M. (2000). Principios para la renovacion de palma de aceite: la experiencia de United Plantations. Palmas, 21(2), 11-24. Retrieved from http://publicaciones.fedepalma.org/index.php/palmas/article/view/731/731Links ]

Hinrichsen, N. (2016). Commercially available alternatives to palm oil. Lipid Technology, 28(3-4), 65-67. doi: 10.1002/lite.201600018 [ Links ]

Hodel, D. R., Marika, M. A., & Ohara, L. M. (2016). The South American palm weevil a new threat to palms in California and the Southwest. PalmArbor, 3, 1-27. Retrieved from https://cisr.ucr.edu/pdf/south_american_palm_weevil_hodel.pdfLinks ]

Idris, O., Azman, L., & Chang, L. (2001). Improving productivity: The replanting imperative. Oil Palm Industry Economic Journal, 1, 21-29. Retrieved from http://palmoilis.mpob.gov.my/publications/OPIEJ/opiej11-4.pdfLinks ]

Loh, P., & Mukesh, S. (1999). The essentials of oil palm replanting: United plantations experience. The Planter, 75(879), 289-303. Retrieved from http://agris.upm.edu.my:8080/dspace/handle/0/743Links ]

Monzenga, L. J. C., Le Goff, G. J., Kayisu, K., & Hance, T. (2017). Influence of substrates on the rearing success of Rhynchophorus phoenicis (Fabricius). African Journal of Food Science and Technology, 8(1), 7-13. Retrieved from https://www.interesjournals.org/articles/influence-of-substrates-on-the-rearing-success-ofrhynchophorus-phoenicis-fabricius.pdfLinks ]

Mosquera, M., Valderrama, M., Fontanilla, C., Ruíz, E., Uñate, M., Rincón, F., & Arias, N. (2016). Costos de producción de la agroindustria de la palma de aceite en Colombia en 2014. Palmas, 37(2), 37-53. Retrievd from https://publicaciones.fedepalma.org/index.php/palmas/article/view/11737Links ]

Ortiz, R., & Fernandéz, O. (1994). El cultivo de palma aceitera (1.a ed.). Costa Rica: Universidad Estatal a Distancia. [ Links ]

Paramananthan, S. (2013). Managing marginal soils for sustainable growth of oil palms in the tropics. Journal of Oil Palm & The Environment, 4, 1-16. Retrieved from https://jopeh.com.my/index.php/jopecommon/article/viewFile/60/92Links ]

Pérez, D., & Iannacone, J. (2006). Aspectos de la bioecología de Rhynchoporus palmarum (Linnaeus) (Coleoptera: Curculionidae) en el pijuayo (Bactris gasipaes H. B. K.) (Arecaceae), en la Amazonía peruana. Revista Peruana de Entomología, 45, 138-140. Retrieved from http://www.iiap.org.pe/upload/Publicacion/PUBL1192.pdfLinks ]

Rivas-Figueroa, F., Moreno, F., Rivera-Casignia, G. Á., Herrera-Isla, L., & Leiva- Mora, M. (2017). Incidencia, progresión e intensidad de la pudrición del cogollo de Elaeis guineensis Jacq. en San Lorenzo, Ecuador. Centro Agrícola, 44(1), 28-33. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852017000100004&lng=es&tlng=esLinks ]

Rodríguez-Currea, H. J., Marulanda-López, J. F., & Amaya, C. (2017). Metodología de manejo de Rhynchophorus palmarum L. 1758 (Coleoptera: Curculionidae) a base de cairomonas, feromonas y semioquímicos en plantaciones comerciales de chontaduro (Bactris gasipaes (Arecales: Arecaceae)) en Riosucio, Caldas. Boletín Científico Centro de Museos Museo de Historia Natural, 21(1), 59-67. Retrieved from http://www.scielo.org.co/pdf/bccm/v21n1/v21n1a05.pdfLinks ]

Sánchez, P. A., Jaffé, K., Hernández, J. V., & Cerda, H. (1993). Biología y comportamiento del picudo del cocotero Rhynchophorus palmarum L. (Coleoptera: Curculionidae). Boletín de Entomología Venezolana, 8(1), 83-93. Retrieved from http://atta.labb.usb.ve/Klaus/art77.pdfLinks ]

Sancho, D., Álvarez, M., & Fernández, L. (2015). Insectos y alimentación. Larvas de Rhynchophorus palmarum L., un alimento de los pobladores de la Amazonía Ecuatoriana. Revista Entomotropica, 30(14), 135-149. Retrieved from http://saber.ucv.ve/ojs/index.php/rev_ento/article/view/9492Links ]

Van Itterbeeck, J., & van Huis, A. (2012). Environmental manipulation for edible insect procurement: a historical perspective. Journal of Ethnobiology and Ethnomedicine, 8(3), 1-7. doi: 10.1186/1746-4269-8-3 [ Links ]

Vargas, G., Espinoza, G., Ruiz, C., & Rojas, R. (2013). Valor nutricional de la larva de Rhynchophorus palmarum L.: comida tradicional en la Amazonía peruana. Revista de la Sociedad Química del Perú, 79(1), 64-70. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000100009Links ]

Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. doi: 10.1016/j.eja.2016.11.002 [ Links ]

Received: March 26, 2018; Accepted: July 27, 2018

*Corresponding author: joseiannacone@gmail.com, tel.: +51 (1) 996532393.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License