SciELO - Scientific Electronic Library Online

 
vol.22 issue3Optimum cutting ages in hybrid poplar plantations including carbon sequestration: A case study in TurkeyEconometric estimation of the income elasticity of consumer demand for environmental services author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Chapingo serie ciencias forestales y del ambiente

On-line version ISSN 2007-4018Print version ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.22 n.3 Chapingo Sep./Dec. 2016

https://doi.org/10.5154/r.rchscfa.2015.09.043 

Forest biometric models in Hidalgo, Mexico: state of the art

Nehemías Vásquez-Bautista1 

Francisco J. Zamudio-Sánchez1  * 

Arturo A. Alvarado-Segura1  2 

José L. Romo-Lozano1 

1Universidad Autónoma Chapingo, División de Ciencias Forestales. Carretera México-Texcoco km 38.5. C. P. 56230. Chapingo, Texcoco, Estado de México.

2Instituto Tecnológico Superior del Sur del Estado de Yucatán. C. P. 97880. Oxkutzcab, Yucatán, México.


Abstract

Historically, logging has been the main reason for encouraging forest research. Since 2000, searching information about carbon capture and content has increased through the use of biometric models and remote sensing technology. The aim of this paper was to compile, systematize, and analyze scientific and technological reports related to biometric models that have been used in forest management in a region of central Mexico (Hidalgo). A total of 32 research studies were published from 1976 to 2015 reporting 289 models. These researches emphasize the use of growth, volume, biomass, carbon, site index, density, and mortality models. The growth models have been the most studied models while biomass and carbon models have consistently increased since 2007. Pinus has been the most studied genus, but research on Quercus was practically not found. Five species do not have fitted models, despite their economic importance: Pinus leiophylla, P. michoacana, P. oocarpa, Cupressus lindleyi, and Arbutus xalapensis. The reliability of all published models is based in statistical criteria, but it has not been reported if they have satisfied final user’s demand.

Keywords: Volume; logging; biomass; carbon.

Resumen

Históricamente, el aprovechamiento de los bosques ha sido la principal razón que ha motivado la investigación forestal. La búsqueda de información sobre la captura y contenido de carbono, mediante modelos biométricos y tecnología de sensores remotos, se ha incrementado desde el año 2000. El objetivo de este trabajo fue recopilar, sistematizar y analizar los documentos de difusión científica y tecnológica relacionados con los modelos biométricos usados para el manejo forestal en una región del centro de México (Hidalgo). Se encontraron 32 trabajos de investigación generados de 1976 a 2015 que reportan 289 modelos, entre los que resalta el uso de modelos de crecimiento, volumen, biomasa, carbono, índice de sitio, densidad y mortalidad. Los modelos de crecimiento han sido los más estudiados, mientras que los de biomasa y carbono se han incrementado consistentemente desde 2007. El género Pinus ha sido el más estudiado, en cambio Quercus, prácticamente, no figura en los trabajos. Pese a su importancia económica, cinco especies forestales no cuentan con modelos ajustados: Pinus leiophylla, P. michoacana, P. oocarpa, Cupressus lindleyi y Arbutus xalapensis. Los modelos reportados basan su confiabilidad en criterios estadísticos, pero no se reporta si han logrado satisfacer la demanda de los usuarios finales.

Palabras clave: Volumen ; aprovechamiento forestal; biomasa; carbono.

Introduction

Forest Biometrics refers to the use of statistical and mathematical modeling in the evaluation and analysis of forest resources (Gregoire & Köhl, 2001; Salas & Real 2013). Growth and site index models and those used for estimation of volume, biomass and carbon content are part of forest biometrics. The information generated from biometric models is of great importance in forest management; however, its application is based on quantitative and qualitative verifications and validations of the model behavior, which characterizes its complexity (Salas & Real, 2013).

The first biometric model was proposed by Cotta in 1804 (Spurr, 1952). Since then, models have emerged for the various existing weather conditions, slope, exposure or soil types. These models have been adapted with the addition of new parameters to describe and explain the factors influencing the biological behavior of trees, which has allowed us to develop and validate models per species, for regional and local uses (Corral, Barrio, Aguirre, & Diéguez, 2007; Shao & Reynolds, 2006).

The state of the art in biometric models can measure the impact they have had and the distribution of its use; also describes how the issue has been addressed, the degree of advancement of knowledge and their tendencies (Londoño, Maldonado, & Calderón, 2014). On forest biometric models, several authors agree on the widespread use of growth models, the tendency to the integration of simulators from already created models and the growing interest in models of biomass and carbon content by fitting allometric equations (Cheng, Gamarra, & Birigazzi, 2014; Fernández, 2005; Hong-gang, Jian-guo, Ai-oguo, & Cai-yun, 2007; Porté & Bartelink, 2002; Vacchiano, Magnani & Collati, 2012). Others authors such as Landsberg (2003), Mäkelä et al. (2000) and Peng (2000) have presented the state of the art of forest modeling to a wider scale. These authors note that process-based models should be combined with static (volume, height-diameter) and dynamic (growth) models; identify the needs of users; and continue research on the behavior of processes of carbon, nutrients and its consumption.

In Mexico, forest growth modeling has been done since the 1970s (Garzón & Flores, 1977; Ramírez & Musalem, 1977). However, it is necessary to update, validate and calibrate existing biometric systems, otherwise considerable volumes of wood could be underestimated or overestimated and to schedule cutting intensities outside the range of forestry potential of a site (Comisión Nacional Forestal [CONAFOR], 2014). In the state of Hidalgo, the forest area (temperate forests, rainforest, arid areas and disturbed vegetation) covers approximately 51 % of the state territory (20,813 km2); the wooded area covers 403,685 ha, of which 57 % are temperate forests and the remaining percentage corresponds to rainforests (Instituto Nacional de Estadística y Geografía [INEGI], 2013, 2015). From this wooded area, on average, 123,592 m3 of roundwood is extracted (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2010, 2011, 2012, 2013, 2014), which represents approximately 2 % national. The harvesting method used in Hidalgo has been the Silvicultural Development Method (Castelán-Lorenzo & Arteaga-Martínez, 2009), Pinus and Quercus are the most harvested in order of importance (SEMARNAT, 2014). The state has 36 protected natural areas covering 139,357 ha and account for nearly 7 % of the state territory, (Consejo Nacional de Ciencia y Tecnología [CONACYT], 2015).

The aim of this study was to collect, organize, analyze and synthesize research papers, dissemination documents and publications related to biometric models used for forest management in Hidalgo, Mexico. With the above, it is intended to present the current state of forestry research and show the tendencies in the study area.

Materials and methods

The analysis focuses on biometric models developed in the state of Hidalgo, located between 21° 24’ - 19° 36’ N and 97° 58’ - 99° 53’ W. The state of Hidalgo borders the states of Mexico, Puebla, Querétaro, San Luis Potosí, Tlaxcala and Veracruz (INEGI, 2013). The state of Hidalgo is listed as a state with low-timber production (SEMARNAT, 2013); Pinus and Quercus provide greater volume to the state timber production with 70 and 23 %, respectively. The logging percentage of the state for Pinus coincides with the national percentage (70 %), but in the case of Quercus is two times higher than the 10 % national (SEMARNAT, 2010, 2011, 2012, 2013). Figure 1 shows the main types of vegetation in the state of Hidalgo.

Figure 1 Type of vegetation in the state of Hidalgo, Mexico. Most models (92 %) were developed in uneven-aged forests of Pinus, Quercus, Pinus-Quercus and Abies, which together represent 10 % of the state territory. The remaining models (8 %) were developed in rainforest, scrubland and mountain cloud forest occupying 9 % of the territory. Agricultural land and secondary vegetation cover 43 % and 23 %, respectively (INEGI, 2015). 

The state of the art was constructed by a review in thesis, journals, brochures and technical reports on aspects related to biometric systems for economically important forest species in Hidalgo. The search for information was made in libraries of academic and research institutions related to forestry, through site visits (Table 1). Also, digital libraries (Table 1) and scientific journals (Table 2) were consulted online.

Table 1 Institutional libraries consulted as a source of information for analyzing the development of forest biometric models in Hidalgo, Mexico. 

Institution State Type of query
Universidad Nacional Autónoma de México (UNAM) Ciudad de México Site visit Presencial
Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) Ciudad de México Site visit
Universidad Autónoma Metropolitana (UAM) Estado de México Site visit Presencial
Universidad Autónoma Chapingo (UACh) Estado de México Site visit Presencial
Colegio de Postgraduados (ColPos) Estado de México Site visit Presencial
Tecnológico de Estudios Superiores de Valle de Bravo Estado de México Site visit

Table 2 Scientific journals consulted as a source of information for analyzing the development of forest biometric models in Hidalgo, Mexico. 

Journal Institution concerned Type of query
Revista Bosque Universidad Austral de Chile Online
Interciencia Asociación Interciencia, Venezuela Online
UNASYLVA FAO Online
Revista Mexicana de Ciencias Forestales Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias Site visit Presencial
Revista Chapingo Serie Ciencias Forestales y del Ambiente Universidad Autónoma Chapingo Site visit Presencial
Botanical Sciences Sociedad Botánica de México Online
Madera y Bosques Instituto de Ecología Online
Revista Fitotecnia Mexicana Sociedad Mexicana de Fitogenética Online
Terra Latinoamericana Sociedad Mexicana de la Ciencia del Suelo Online
Agrociencia Colegio de Postgraduados Site visit Presencial

The information was collected using the technique of “snowball”, where documents through their literature suggested other documents with the same topic that have been developed in the study area. The information was classified into seven groups of models according to their use: volume and taper equations (static models); site index (productivity indicator); biomass, carbon and growth estimation (dynamic models); and density and mortality (description of the stand). The literature cited in each of the collected documents was also collected to know the sources of information that support them. References were grouped according to the type of source (articles, reports, books and theses) and language of publication.

Results and discussion

Institutions, information sources and species studied

Institutions and information sources. A total of 32 research documents (Appendix 1) were found in two of the five Forest Management Units (UMAFOR) in the state of Hidalgo: 52 % at the UMAFOR 1302 Zacualtipán-Molango (Table 3) and 43 % at the UMAFOR 1303 Pachuca-Tulancingo (Table 4). The forest inventory (Secretaría de Agricultura y Ganadería [SAG], 1976) is the only study carried out at state level (Table 5). Most research papers, 27 in total, were published in the last eight years (2007-2015). In 2013, the year with the highest number of publications, seven researches were found.

Table 3 Research documents in the area of forest management generated in the UMAFOR 1302 Zacualtipán-Molango, Hidalgo, Mexico. 

Authors* Area of influence Equations Type of model Number of samples Species studied Type of pulbication
Brosovich (1998) Zacualtipán de Ángeles 10 Density, site index and volume 52 (D) Pinus patula Thesis
Tenorio (2003) Estatal 2 Volume 101 (D) Pinus patula Thesis
Carrillo, Acosta, y Tenorio (2004) Estatal 1 Volume 101 (D) Pinus patula Brochure
Cruz (2007) Zacualtipán de Ángeles 13 Biomass, volume 62 (D) Pinus patula, Pinus teocote y latifoliadas Thesis
Aguirre et al. (2008) Zacualtipán de Ángeles 1 Cabon 75 (ND)** Pinus patula Article
Santiago (2009) Zacualtipán de Ángeles 23 Growth, density, site index, mortality and volume 84 (ND) Pinus patula Thesis
Cruz, Valdez, Ángeles, y De los Santos (2010) Zacualtipán de Ángeles 4 Volume 114 (ND)** Pinus patula and Pinus teocote Article
Figueroa (2010) Zacualtipán de Ángeles 9 Biomass 18 (D) Alnus spp., Clethra sp., Pinus patula and Quercus spp. Thesis
Olvera (2010) Barranca de Metztitlán 4 Volume 87 (D) Pinus greggii Thesis
Acosta, Carrillo, y Gómez (2011) Zacualtipán de Ángeles 4 Biomasa y carbono 40 (D) Alnus acuminata and Clethra mexicana Article
Vásquez (2011) Zacualtipán de Ángeles 5 Carbon 18 (D) Pinus patula Thesis
Hernández (2012) Zacualtipán de Ángeles 12 Volume 78 (D) Pinus patula Thesis
Muñoz et al. (2012) Barranca de Metztitlán 4 Volume 87 (D) Pinus greggii Article
Santiago (2013) Zacualtipán de Ángeles 1 Volume 42 (ND)** Pinus patula Thesis
Soriano, Ángeles, Martínez, Plascencia, y Razo (2013) Zacualtipán de Ángeles 3 Biomass 25 (D) Latifoliadas and Pinus patula Chapter
González (2014) UMAFOR 1302 Zacualtipán - Molango 16 Site index and Volume 159 (D) Pinus patula and Pinus teocote Report
Soriano (2014) Zacualtipán de Ángeles 12 Biomass and volume 71 (D) Pinus patula, Liquidambar macrophylla, Quercus spp., Alnus jorullensis, Cletra mexicana, Prunus serotina, Carpinus caroliniana and Virburum ciliatum Thesis

D: Destructive; ND: Non destructive. *Full references in Appendix 1. **Sampling site.

Table 4 Research documents in the area of forest management generated in the UMAFOR 1303 Pachuca-Tulancingo, Hidalgo, Mexico. 

Authors* Area of influence Equations Type of model Number of samples Species studied Type of pulbication
Rodríguez (2000) Acaxochitlán 8 Growth 12 (D) Pinus patula Thesis
Pacheco et al. (2007) Cuaunepantla y Acaxochitlán 2 Biomass and Carbon 20 (D) Pinus greggii Article
Acosta and Carrillo (2008) UMAFOR 1303, Pachuca-Tulancingo 2 Volume 43 (D) Pinus montezumae Brochure
Rodríguez (2009) Singuilucan, Zempoala, Tepeapulco y Cuautepec de Hinojosa 2 Density 122 (ND) Pinus montezumae Brochure
Hernández (2012) Sureste de Hidalgo, Singuilucan 1 Growth 36 (D) Pinus montezumae Thesis
Velarde (2012) UMAFOR 1303 Pachuca-Tulancingo 106 Growth and Volume 185 (D) Pinus montezumae y Pinus patula Report Informe
González (2013) Mineral del Monte 2 Biomass and Volume 4 (D) Pinus patula Thesis
Hernández et al. (2013) UMAFOR 1303, Pachuca-Tulancingo 2 Density 131 (ND) Pinus teocote Article
Razo, Gordillo, Rodríguez, Maycotte, y Acevedo (2013) Parque Nacional El Chico 2 Biomass and Carbon 5 (ND) Abies religiosa Article
Rodríguez and Calva (2013) Parque Nacional El Chico 2 Biomass and Carbon 250 (ND) Abies religiosa Chapter
Rodríguez (2013) Sierra de Pachuca 12 Biomass Carbon and Growth 250 (ND) Abies religiosa Thesis
Hernández et al. (2014) Metztitlán 3 Site index 25 (D) Pinus greggii Article
Velarde (2014) UMAFOR 1303 Pachuca-Tulancingo 8 Site index and Volume 120 (D) Pinus rudis y P. teocote Report
Hernández et al. (2015) Acaxochitlán, Cuautepec de Hinojosa, Singuilucan y Tulancingo de Bravo 1 Site index 345 (ND) Pinus teocote Article

D: Destructive; ND: Non destructive. *Full references in Appendix 1.

Table 5 Research for forest management at state level generated in Hidalgo, México. 

Author Area of influence Equations Type of Model Number of samples Species studied Type of publication
Secretaría de agricultura y Ganadería (SAG, 1976) State level 12 Volume 899 (D) Alnus sp., Quercus sp., Cedrela odorata, Inga spuria, Cupania dentata, Bursera simaruba, Juniperus flaccida, Pinus cembroides, Pinus patula, Pinus ayacahuite, Pinus teocote, Pinus greggii, Pinus pseudostrobus, Platanus sp., Liquidambar styraciflua, Psidum guajava and Dendropanax arborea Brochure

D: Destructive; ND: Non destructive. *Full references in Appendix 1.

The institutions that have generated the greatest number of theses (bachelor, master and PhD) are the Colegio de Postgraduados (ColPos) and the Universidad Autónoma Chapingo (UACh) with six and four theses, respectively. The Universidad Nacional Autónoma de México (UNAM) contributed with two theses. The Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) and the Universidad Agraria Autónoma Antonio Narro (UAAAN) had. The fact that the ColPos and the UACh have generated greater quantity of theses, it is due to the age of their academic programs, because the UACh started the bachelor’s programs in 1933 and the master’s program in 1986, while the ColPos created the forestry postgraduate program in 1976 (Caballero, 2004).

All articles analyzed were published in Mexican journals. The brochures have been created by government institutions (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias [INIFAP] and State of Hidalgo Government), aimed at forest service providers. Technical reports, in turn, have been created by firms backed by a renowned researcher and under CONAFOR funding. This scenario shows that the information is only generated and disseminated locally, in Spanish language and to a reduced scientific community sector. Thus, it is important to promote institutional strategies so that future documents will be published in journals, because journals have greater spread spectrum. The results of the research should be aimed at finding general principles that rule and describe the processes occurring in forest areas.

Species studied. The most studied species belong to the Pinus genus, whose importance based on the number of studies that used it as an object of study are: P. patula Schltdl. & Cham. (17), P. teocote Schltdl. & Cham. (7), P. greggii Engelm. ex Parl. (5), P. montezumae Lamb. (5), P. cembroides Gordon (1), P. ayacahuite C. Ehrenb. ex Schltdl. (1), P. pseudostrobus Lindl. (1) and P. rudis Endl. (1). Other species such as Abies religiosa (Kunth) Schltdl. & Cham. (3), Alnus sp. (4), Clethra sp. (3), Quercus sp. (3), Cedrela odorata L. (1), Inga spuria Humb. & Bonpl. ex Willd. (1), Cupania dentata Moc. et Sessé ex D.C. (1), Bursera simaruba (L.) Sarg. (1), Juniperus flaccida Schltdl. (1), Platanus sp. (1), Liquidambar styraciflua L. (1), Psidium guajava L. (1) and Dendropanax arboreus (L.) Decne. & Planch. (1) are less frequent (Tables 3, 4 and 5). The species P. patula, besides being the most studied, it is reported since 1976.

Current state of biometric models in the study area

Distribution of models per species.Figure 2 outlines the importance of the species studied and types of biometric models developed in the state of Hidalgo. A total of 289 models were found, which are distributed among the genera Pinus, Abies, Quercus and other broadleaf trees. Pinus concentrated 86 % of the fitted equations (249) distributed in the following species: 148 in P. patula, 58 in P. montezumae, 23 in P. teocote, 13 in P. greggii, four in P. rudis and one in P. cembroides. Meanwhile, A. religiosa concentrated 5 % (16) and Quercus only 1 % (3); the remaining 8 % of equations (22) distributed in 18 species.

Figure 2 Importance of biometric models and forest species studied in the state of Hidalgo. The most important genera by the number of studies carried out are Pinus, Abies and Quercus. The rest of the studies (8 %) is distributed in 18 species. Most models are focused on logging (growth: 116, volume: 82, site index: 23, density: 7, mortality: 1) and a few others on models of biomass (44) and estimation of carbon content (16). The number of models reported in the research work is shown in the middle of the figure, volume and growth models are most relevant. 

The economic importance of some species from the genera Pinus and Abies in the study area coincides with the number of studies carried out. On the other hand, the genus Quercus has been little studied despite the exploited wood volume, perhaps because of the difficulty of their taxonomic identification, high morphological variability (Bárcenas, 2011) and the ability to form hybrids (Zúñiga, Sánchez-González, & Granados, 2009). Moreover, there are other species of Pinus, conifers and broadleaf trees that despite of being exploited, are not reported in research studies (Pinus leiophylla Schiede ex Schltdl. & Cham., P. michoacana Martínez, P. oocarpa Schiede ex Schltdl., Cupressus lindleyi Klotzsch ex Endl. and Arbutus xalapensis Kunth), so it is suggested to extend the base of models for these forest species.

No models developed for the mixed pine-oak or oak-pine forests were reported, which together occupy 17 % of the state wooded area (INEGI, 2015; Figure 1). However, the forest inventory of the state of Hidalgo (SAG, 1976) contains volume equations for two pine species groups: for the group of P. montezumae, P. patula and P. ayacahuite, and for the group P. teocote, P. greggii and P. pseudostrobus. Since models were fitted for mixed forests, it is necessary to validate if they make good estimates for monospecific masses of the corresponding species. Models for pine-oak forest start to develop for other Mexican forests, using the diameter growth dynamics (Návar, 2014).

With regard to increment and yield models, it is recommended to develop at individual tree level, diameter classes, groups of species or stand-level to meet different purposes as obtaining roundwood or logs used for cellulose or poles; individual tree models are important especially in processes of validation of models used in an area (Návar-Chaidez & Domínguez-Calleros, 2013).

Classification of models. Of all models, forest management studies are those that have received greater attention: 116 growth, 82 of volume, 23 of site index, seven of density and one of mortality models. Volume models were the most reported in research studies. The studies’ approach shows two major groups, on the one hand, the logging and on the other hand, the environmental services (estimation of biomass and carbon) (Figure 2). From 2007, models of biomass (44) and carbon estimation (16) have become more frequent; also from the same year, the genus Pinus was incorporated to the studies on environmental services in the study area. Under this approach, A. religiosa. and broadleaved trees are the most frequent species.

Most models use mainly diameter at breast height (d) and total height (h) as input variables. The models have been fitted with data from established silvicultural sites, so the use of national forest inventory sites as permanent sample plots is proposed to understand the behavior of forests.

Most used models.Table 6 shows the forest biometric models used in the state of Hidalgo. The most commonly used model is the Schumacher’s model for growth curves and site index (Schumacher, 1939) and that of Schumacher and Hall to estimate volume (Schumacher & Hall, 1933). Given the large number of models fitted so far, it is suggested to create growth simulators (Santiago-García, de los Santos-Posadas, Ángeles-Pérez, Valdéz-Lazalde, & Ramírez-Valverde, 2013), that bring together mathematical models in a program to predict and calculate different growth scenarios (Salas & Real, 2013; Santiago-García et al., 2013). It is appropriate to verify, validate and update existing models to assess whether they are valid and can spread to other areas with similar conditions.

Table 6 Most used forest biometric models for estimating variables in the state of Hidalgo, Mexico. 

Type of model Name Mathematical model Frecuency of use
Biomass Total biomass B=β0+β1*d2+h 10
Combined variable model B=exp-β0*d2*hβ1 9
Carbon Allometric model C=β0*dβ1 6
Growth Schumacher D=expβ0+β11/Aβ2 24
Chapman-Richards modified h=β0*1+β1*exp(-β21/Aβ3 18
Density Reineke N=β0*Dcβ1 4
Site index Schumacher SI=β0*e-β11/A 9
Chapman-Richards SI=β01-e-β1*Aβ2 7
Mortality Mortality N2=N1*eβ1*A2-A1 1
Volume Schumacher-Hall V=β0*dβ1*hβ2 16
Schumacher lineal V=expβ0+β1*logd+β2*logh 12

B: biomass, C: carbon, d: diameter at breast height, Dc: crown diameter, A: age, h: height, SI: site index, N: number of trees, V: volume; β0, β1, β2, β3: regression parameters.

On the other hand, it is highly recommended the use of models for sustainable management of forest communities of Hidalgo, especially those focused on forest protection. Some studies with this approach have been developed in Durango, the state with greater timber production in Mexico (SEMARNAT, 2013), where fire behavior and magnitude have been studied regarding the anthropogenic factor, the ecological role of forest fires, climatic and soil variables, socioeconomic conditions of the area, population density and access roads (Návar-Chaidez, 2011; Pérez-Verdín, Márquez-Linares, Cortés-Ortiz, & Salmerón-Macías, 2013; Rodríguez-Trejo & Fulé, 2003).

Validation and model selection. Different authors used criteria such as the coefficient of determination (R2), root mean square error (RMSE), coefficient of variation, number of parameters of the equation and number of variables to validate and select a model. The parsimony criterion has been included in recent studies (Akaike Information Criterion [AIC], Bayesian information criterion [BIC] and Schwarz selection criteria). Graphical adjustment and of the model were used as secondary selection criterion. No values ​of R2, RMSE, range in diameter and height range were reported in many of the models fitted in the study area, information that would facilitate the subsequent verification and validation of the models.

Sample size. Sample sizes used in fitting models vary according to the purpose of the study. Logging modeling was carried out with larger destructive samples compared to the modeling of biomass and carbon content (Tables 3, 4 and 5).

Analysis of the documentary references

In the 32 studies reviewed (Appendix 1), a total of 1,547 cited references were found, which corresponded to 1,022 documents. This means that about 34 % of the references were cited in two or more articles.

Regarding the origin of documentary references, 19.2 % comes from the main forestry journals with an impact factor the JCR (Journal Citation Report): Forest Ecology and Management (7.4 %), Forest Science (3.8 %), Agrociencia (2.7 %), Canadian Journal of Forest Research (2.7 %) and Madera y Bosques (2.6 %). About 10.2 % of the references comes from UACh and ColPos (6.8 % and 3.4 %, respectively). Approximately 7.2 % of the sources comes from sourcebooks. Another 3.4 % came from conference proceedings or union meetings. The remaining information (60 %) derived from articles published in journals of lower impact, brochures, technical reports, theses in other institutions and unpublished documents. According to the language of publication, 56.7 % of the documents are in Spanish (580), 42.4 % in English (434 documents) and less than 1 % in German (5) and Portuguese (3).

The 10 most frequent citations reported within the 32 studies reviewed are: Clutter, Fortson, Pienaar, Brister, and Bailey (1983) in 13 articles; Romahn de la Vega, Ramírez, and Treviño (1994) in nine; Spurr (1952) and Figueroa (2010) in eight; Acosta Vargas, Velázquez, and Etchevers (2002), Aguirre et al. (2008), Caballero (1972), Díaz et al. (2007), Perry (1991) and Torres and Magaña (2001), in seven each. References come from a small number of institutions and authors that cited each other, so the link with academic groups at national and international level as well as networks of scientists related to the forestry area should be searched. The interaction between different disciplines related to the forestry sector favor the increase of information with inter and multidisciplinary approach, which is of vital importance in modern science (Borut, Levnajic, Povh, & Perc, 2014).

Conclusions

Biometric models in Hidalgo, Mexico, have been fitted mainly for the genus Pinus. It is proposed to expand the base of models for other economically important genera such as Abies, Quercus, Arbutus and Cupressus, and verify, validate and update existing models. Reported models based their reliability by the coefficient of determination (R2) but more studies using selection criteria with biological, economic and management significance are needed. In the studies reviewed, it is not mentioned if the fitted models are valid or have managed to meet user demand. Studies are restricted to local use and have been carried out by a small group of authors. It is recommended that forestry research will focus on identifying general principles that describe the factors underlying processes inherent to the forest, and have importance for forest management. In practical terms, the focus must be that volume models reduce economic losses as a result of underestimation or overestimation. Finally, it is suggested to integrate a state or regional forestry information system.

References

Acosta, M. M., Vargas, H. J., Velázquez, M. A., & Etchevers, B. J. D. (2002). Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia, 36(6), 725- 736. Retrieved from http://www.redalyc.org/articulo.oa?id=30236610Links ]

Aguirre, S. C. A., Valdéz, L. J. R., Ángeles, P. G., De los Santos, P. H. M., Haapanen, R., & Aguirre, S. A. L. (2008). Mapeo de carbono arbóreo en bosques manejados de Pinus patula en Hidalgo, México. Agrociencia, 43(2), 209-220. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952009000200011&lng=es&tlng=esLinks ]

Bárcenas, P. G. M. (2011). Evaluación tecnológica de la madera de los encinos de la sierra de Álvarez, S. L. P. Tesis doctoral, Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México. [ Links ]

Borut, L., Levnajic, Z., Povh, J., & Perc, M. (2014). Community structure and the evolution of interdisciplinarity in Slovenia’s scientific collaboration network. PloS ONE, 9(4), e94429. doi: 10.1371/journal.pone.0094429 [ Links ]

Caballero, D. M. (1972). Tablas y tarifas de volúmenes. México: Secretaría de Agricultura y Ganadería-Dirección General del Inventario Nacional Forestal. [ Links ]

Caballero, D. M. (2004). Aplicaciones del internet en la actividad forestal, con especial referencia a México. Madera y Bosques, 10(1), 69-88. Retrieved from http://www.redalyc.org/articulo.oa?id=61710105Links ]

Castelán-Lorenzo, M., & Arteaga-Martínez, B. (2009). Establecimiento de regeneración de Pinus patula Schl. et Cham., en cortas bajo el método árboles padres. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 49-57. Retrieved from http://www.chapingo.mx/revistas/forestales/contenido.php?id_articulo=506&id_revistas=3&id_revista_numero=39Links ]

Comisión Nacional Forestal (CONAFOR). (2014). Estrategia nacional de manejo forestal sustentable para el incremento a la producción y productividad. México: Autor. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/80220/Planeacio_n_ENAIPROS_2013-2018.pdfLinks ]

Consejo Nacional de Ciencia y Tecnología (CONACYT). (2015). Áreas Naturales Protegidas del Estado de Hidalgo. Retrieved December 15, 2015 from http://www.conacyt.mx/cibiogem/index.php/anpl/hidalgoLinks ]

Corral, J. J., Barrio, A. M., Aguirre, C. O. A., & Diéguez, A. U. (2007). Use of stump diameter to estimate diameter at breast height and tree volume for major pine species in El Salto, Durango (Mexico). Forestry, 80(1), 29-40. doi: 10.1093/forestry/cpl048 [ Links ]

Cheng, Z., Gamarra, J. G. P., & Birigazzi, L. (2014). Inventory of allometric equations for estimation tree biomass-a database for China. Rome, Italy: UNREDD Programme. Retrieved from https://www.researchgate.net/publication/271906490_Inventory_of_allometric_equations_for_estimating_tree_biomass_A_database_for_ChinaLinks ]

Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., & Bailey, R. L. (1983). Timber management: A quantitative approach. USA: John Wiley & Sons, Inc. [ Links ]

Díaz, F. R., Acosta, M. M., Carrillo, A. F., Buendía, R. E., Flores, A. E., & Etchevers, B. J. D. (2007). Determinación de ecuaciones alométricas para estimar biomasa y carbono en Pinus patula Schl. et Cham. Madera y Bosques, 13(1), 25-34. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S0186-32312011000200009Links ]

Fernández, Q. M. P. (2005). Estado del arte en modelación funcional-estructural de plantas. Bosque, 26(2), 71-79. doi: 10.4067/S0717-92002005000200009 [ Links ]

Figueroa, N. C. M. (2010). Almacenamiento de carbono en bosques manejados de Pinus patula en el Ejido la Mojonera, Zacualtipán, Hidalgo. Tesis de maestría, Colegio de Postgraduados, Montecillos, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/xmlui/handle/10521/95Links ]

Garzón, R. G. J. C., & Flores, R. L. J. (1977). Tabla normal de producción para Pinus hartwegii Lind. en la estación experimental Zoquiapan, México. Chapingo, 3, 3-13. [ Links ]

Gregoire, T. G., & Köhl, M. (2001). Editorial: Statistical ecology and forest biometry. Environmental and Ecological Statistics, 7, 213-216. doi: 10.1023/A:1009687231250 [ Links ]

Hong-gang, S., Jian-guo, Z., Ai-oguo, D., & Cai-yun, H. (2007). A review of stand basal area growth models. Forestry Studies in China, 9(1), 85-94. doi: 10.1007/s11632-007-0014-2 [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2013). Anuario estadístico y geográfico por entidad federativa 2013. México: Autor . Retrieved August 20, 2015 from http://www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx?upc=702825054014Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2015). Recursos naturales: uso del suelo y vegetales, serie V. Retrieved December 15, 2015 from http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/Default.aspxLinks ]

Landsberg, J. (2003). Modelling forest ecosystems: State of the art, challenges, and future directions. Canadian Journal Forest Research, 33, 385-397. doi: 10.1139/X02-129 [ Links ]

Londoño, P. O. L., Maldonado, G. L. F., & Calderón, V. L. C. (2014). Guía para construir estados del arte. Bogotá, Colombia: International Corporation of Network of Knowledge. [ Links ]

Mäkelä, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Agren, G. I., Puttonen, P. (2000). Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiology, 20, 289-298. doi: 10.1093/treephys/20.5-6.289 [ Links ]

Návar-Cháidez, J. J. (2011). Modelación del contenido de agua de los suelos y su relación con los incendios forestales en la Sierra Madre Occidental de Durango, México. Madera y Bosques, 17(3), 65-81. Retrieved from http://www.redalyc.org/articulo.oa?id=61722838004Links ]

Návar, J. (2014). A stand-class growth and yield model for Mexico’s northern temperate, mixed and multiaged forests. Forests, 5, 3048-3069. doi: 10.3390/f5123048 [ Links ]

Návar-Chaidez, J. J., & Domínguez-Calleros, P. A. (2013). Modelo de incremento y rendimiento: ejemplos y aplicaciones para bosques templados mexicanos. Revista Mexicana de Ciencias Forestales, 4(18), 8-26. Retrieved from http://www.redalyc.org/articulo.oa?id=63433992002Links ]

Peng, C. H. (2000). Understanding the role of forest simulation models in sustainable forest management. Environmental Impact Assessment Review, 20, 481-501. doi: 10.1016/S0195-9255(99)00044-X [ Links ]

Pérez-Verdín, G., Márquez-Linares, M. A., Cortés-Ortiz, A., & Salmerón-Macías, M. (2013). Análisis espacio-temporal de la ocurrencia de incendios forestales en Durango, México. Madera y Bosques, 19(2), 37-58. Retrieved from http://www.redalyc.org/articulo.oa?id=61728317005Links ]

Perry, J. P. (1991). The pines of Mexico and Central America. Portland, Oregon, USA: Timber Press. [ Links ]

Porté, A., & Bartelink, H. H. (2002). Modelling mixed forest growth. A review of models for forest management. Ecological Modelling, 150, 141-188. doi: 10.1016/S0304-3800(01)00476-8 [ Links ]

Ramírez, M. H., & Musálem, S. M. A. (1977). Estudio dasométrico de una plantación forestal en Chapingo. Chapingo, 7(8), 3-13. [ Links ]

Rodríguez-Trejo, D. A., & Fulé, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 12(1), 23-37. doi: 10.1071/WF02040. [ Links ]

Romahn de la Vega, C. F., Ramírez, M. H., & Treviño, J. L. (1994). Dendrometría. México: Universidad Autónoma Chapingo. [ Links ]

Salas, C., & Real, P. (2013). Biometría de los bosques naturales de Chile: estado del arte. In P. Donoso & A. Promis (Eds.), Silvicultura en los bosques nativos: avances en la investigación en Chile, Argentina y Nueva Zelanda (pp. 109-151). Valdivia, Chile: Editorial Marisa Cuneo. Retrieved from https://sites.google.com/site/alvaropromis/Home/libro-silvicultura-bosques-nativosLinks ]

Santiago-García, W., de los Santos-Posadas, H. M., Ángeles- Pérez, G., Valdéz-Lazalde, J. R., & Ramírez-Valverde, G. (2013). Sistema compatible de crecimiento y rendimiento para rodales coetáneos de Pinus patula. Revista Fitotecnia Mexicana, 36(2), 163-172. Retrieved from http://www.revistafitotecniamexicana.org/documentos/36-2/8a.pdfLinks ]

Schumacher, F. X., & Hall, F. S. (1933). Logarithmic expression of timber-tree volume. Journal of Agricultural Research, 47(9), 719-773. Retrieved from http://naldc.nal.usda.gov/naldc/download.xhtml?id=IND43968352&content=PDFLinks ]

Schumacher, F. X. (1939). A new growth curve and its applications to timber yield studies. Journal of Forestry, 37, 819-820. [ Links ]

Secretaría de Agricultura y Ganadería (SAG). (1976). Inventario forestal del estado de Hidalgo. México: Autor . [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2010). Anuario estadístico de la producción forestal 2009. México: Autor . Retrieved from http://www.semarnat.gob.mx/archivosanteriores/temas/gestionambiental/forestalsuelos/Anuarios/ANUARIO_2009.pdfLinks ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2011). Anuario estadístico de la producción forestal 2010. México: Autor . http://www.semarnat.gob.mx/archivosanteriores/temasgestionambiental/forestalsuelos/Anuarios/ANUARIO_2010.pdfLinks ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2012). Anuario estadístico de la producción forestal 2011. México: Autor . Retrieved from http://www.semarnat.gob.mx/archivosanteriores/temas/gestionambiental/forestalsuelos/Anuarios/ANUARIO_2011.pdfLinks ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2013). Anuario estadístico de la producción forestal 2012. México: Autor . Retrieved from http://www.semarnat.gob.mx/sites/default/files/documentos/forestal/anuarios/anuario_2012.pdfLinks ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2014). Anuario estadístico de la producción forestal 2013. México: Autor . Retrieved from http://www.semarnat.gob.mx/sites/default/files/documentos/forestal/anuarios/anuario_2013.pdfLinks ]

Shao, G., & Reynolds, K. M. (2006). Computer applications in sustainable forest management. Dordrecht, The Netherlands: Springer. doi: 10.1007/978-1-4020-4387-1 [ Links ]

Spurr, S. H. (1952). Forest inventory. Ney York, USA: Ronald Press. [ Links ]

Torres, R. J. M., & Magaña, T. O. S. (2001). Evaluación de plantaciones forestales. México: Ed. Noriega-Limusa. [ Links ]

Vacchiano, G., Magnani, F., & Collati, A. (2012). Modeling Italian forests: State of the art and future challenges. iForest, 5, 113-120. doi: 10.3832/ifor0614-005 [ Links ]

Zúñiga, E. A., Sánchez-González, A., & Granados, S. D. (2009). Análisis de la variación morfológica foliar en Quercus laeta Liebm. en el Parque Nacional Los Mármoles, Hidalgo, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 87-93. Retrieved from http://www.chapingo.mx/revistas/forestales/contenido.php?id_articulo=512&id_revistas=3&id_revista_numero=40Links ]

Appendix 1. References of the 32 articles analyzed.

Acosta, M. M., & Carrillo, A. F. (2008). Tabla de volumen total con y sin corteza para Pinus montezumae Lamb. en el estado de Hidalgo. Folleto técnico núm. 7. Hidalgo: INIFAP.

Acosta, M. M., Carrillo, A. F., & Gómez, V. R. G. (2011). Estimación de biomasa y carbono en dos especies de bosque mesófilo de montaña. Revista Mexicana de Ciencias Agrícolas, 2(4), 529-543. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000400005&lng=es&tlng=es

Aguirre, S. C. A., Valdez, L. J. R., Ángeles, P. G., De los Santos, P. H. M., Haapanen, R., & Aguirre, S. A. L. (2008). Mapeo de carbono arbóreo en bosques manejados de Pinus patula en Hidalgo, México. Agrociencia, 43(2), 209-220. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952009000200011&lng=es&tlng=es

Brosovich, G. M. M. (1998). Determinación del rendimiento para Pinus patula Sch. et Cham., en la región de Zacualtipán, Hidalgo, México. Tesis de maestría, Colegio de Postgraduados, Montecillos, Texcoco, México.

Carrillo, A. F., Acosta, M. M., Tenorio, G. G., & Becerra, L. F. (2004). Tabla de volumen para Pinus patula Schl. et Cham. en el estado de Hidalgo. Folleto técnico núm. 2. Hidalgo: INIFAP.

Cruz, L. I. A., Valdéz, L. J. R., Ángeles, P. G., & De los Santos, P. H. M. (2010). Modelación espacial del área basal y volumen de madera en bosques manejados de Pinus patula y Pinus teocote en el Ejido Atopixco, Hidalgo. Madera y Bosques, 16(3), 75-97. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712010000300006&lng=es&tlng=es

Cruz, M. Z. (2007). Sistema de ecuaciones para la estimación y partición de biomasa aérea en Atopixco, Zacualtipán, Hidalgo, México. Tesis de maestría, Universidad Autónoma Chapingo, Texcoco, Estado de México.

Figueroa, N. C. M. (2010). Almacenamiento de carbono en bosques manejados de Pinus patula en el Ejido la Mojonera, Zacualtipán, Hidalgo. Tesis de maestría, Colegio de Postgraduados, Montecillos, Texcoco, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/xmlui/handle/10521/95

González, A. J. (2014). Estudio de crecimiento para Pinus patula y Pinus teocote en la región forestal 1302 Zacualtipán-Molango. Informe técnico. Hidalgo, México: Silvicultores de la región de Zacualtipán Molango A.C.

González, M. E. (2013). Manejo forestal y servicios ambientales en Mineral del Monte, estado de Hidalgo. Tesis de licenciatura, Universidad Nacional Autónoma de México, México, Distrito Federal. Retrieved from http://132.248.9.195/ptd2013/junio/0696380/0696380.pdf

Hernández, P. D. (2012). Modelos de volumen comercial variable para Pinus patula en Zacualtipán, Hidalgo. Tesis de maestría, Colegio de Postgraduados, Montecillos, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/xmlui/handle/10521/682

Hernández, R. A. (2012). Determinación de turno e índice de sitio para Pinus montezumae Lamb., en el sureste del estado de Hidalgo. Tesis de licenciatura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México. Retrieved from http://repositorio.uaaan.mx:8080/xmlui/bitstream/handle/123456789/1024/62165s.pdf?sequence=1

Hernández, R. J., García, M. J. J., García, C. X., Hernández, R. A., Muñoz, F. H. J., & Samperio, J. M. (2015). Índice de sitio para bosques naturales de Pinus teocote Schlecht. & Cham. en el oriente del estado de Hidalgo. Revista Mexicana de Ciencias Forestales, 6(27), 24-36. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322015000100003&lng=es&tlng=es

Hernández, R. J., García, M. J. J., Muñoz, F. H. J., Sáenz, R. T., Flores, L. C., & Hernández, R. A. (2013). Guía de densidad para manejo de bosques naturales de Pinus teocote Schlecht. et Cham. en Hidalgo. Revista Mexicana de Ciencias Forestales, 5(16), 63-76. Retrieved from http://cienciasforestales.inifap.gob.mx/editorial/index.php/Forestales/article/view/3037/2512#

Hernández, R. J., García, M. J. J., Olvera, D. E. H., Velarde, R. J. C., García, C. X., & Muñoz, F. H. J. (2014). Índice de sitio para plantaciones de Pinus greggii Engelm. en Metztitlán, Hidalgo, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(2), 167-176. doi: 10.5154/r.rchscfa.2013.04.016

Muñoz, F. H. J., Velarde, R. J. C., García, M. J. J., Sáenz, R. J. T., Olvera, D. E. H., & Hernández, R. J. (2012). Predicción de volúmenes de fuste total para plantaciones de Pinus greggii Engelm. Revista Mexicana de Ciencias Forestales, 3(14), 11-22. Retrieved from http://cienciasforestales.inifap.gob.mx/editorial/index.php/Forestales/article/view/2504/2101#

Olvera, D. E. H. (2010). Comparación de cuatro modelos matemáticos para la elaboración de tablas de volumen para plantaciones de Pinus greggii Engelm en el municipio de Metztitlán, Hidalgo. Tesis de licenciatura, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán. Retrieved from http://www.remeri.org.mx/portal/REMERI.jsp?id=oai:bibliotecavirtual.dgb.umich.mx:123456789/5174

Pacheco, E. F. C., Aldrete, A., Cómez, G. A., Fierros, G. A. M., Cetina, A. V. M., & Vaquera, H. H. (2007). Almacenamiento de carbono en la biomasa aérea de una plantación joven de Pinus greggii Engelm. Revista Fitotecnia Mexicana, 30(3), 251-254. Retrieved from http://www.redalyc.org/exportarcita.oa?id=61003006

Razo, Z. R., Gordillo, M. A. J., Rodríguez, L. R., Maycotte, M. C. C., & Acevedo, S. O. (2013). Estimación de biomasa y carbono almacenado en árboles de oyamel afectados por el fuego en el Parque nacional “El Chico”, Hidalgo, México. Madera y Bosques, 19(2), 73- 86. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=4502296

Rodríguez, L. R., Razo, Z. R., Díaz, H. D., & Meza, R. J. (2009). Guía de densidad para Pinus montezumae en su área de distribución natural en el estado de Hidalgo. Folleto. Hidalgo: Fundación Produce Hidalgo.

Rodríguez, S. D. F. (2000). Evaluación dasométrica de una plantación forestal en la presa de El Tejocotal en el estado de Hidalgo. Tesis de licenciatura, Universidad Autónoma Chapingo, Chapingo, Texcoco, Estado de México.

Rodríguez, S. V. M., & Calva, V. G. (2013). Estimación del carbono contenido en el bosque de Abies religiosa (H. B. K.) Schl. et Cham. en el Parque Nacional “El Chico”, Hidalgo. En F. Paz & J. Wong (Eds.), Estado actual del conocimiento del ciclo del carbono y sus interacciones en México (pp. 7-13). México: Programa Mexicano del Carbono-Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida-Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco. Retrieved from http://pmcarbono.org/pmc/publicaciones/Sintesis_Nacional_2011.pdf

Rodríguez, S. V. M. (2013). Estimación dasométrica de carbono almacenado en un bosque de Abies religiosa (H. B. K.) Schl. et Cham. del paraje El Cedral del Parque Nacional “El Chico”, Hidalgo. Tesis de licenciatura, Universidad Nacional Autónoma de México, México, Distrito Federal. Retrieved from http://condor.zaragoza.unam.mx/portal/wp-content/Portal2015/Licenciaturas/biologia/tesis/tesis_rodriguez_sanchez_veronica.pdf

Santiago, G. W. (2009). Sistema de crecimiento y rendimiento para Pinus patula de Zacualtipán, Hidalgo, México. Tesis de maestría, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/jspui/handle/10521/1235

Santiago, G. W. (2013). Simulador de crecimiento para manejo de rodales coetáneos de Pinus patula. Tesis doctoral, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/jspui/handle/10521/2060

Secretaría de Agricultura y Ganadería (SAG). (1976). Inventario forestal del estado de hidalgo. Publicación 39. México: Autor.

Soriano, L. M. A. (2014). Estimación de biomasa y carbono en bosques manejados de Zacualtipán, Hidalgo. Tesis de maestría, Colegio de Postgraduados, Montecillos, Texcoco, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/jspui/handle/10521/2261

Soriano, L. M. A., Ángeles, P. G., Martínez, T. T., Plascencia, E. F. O., & Razo, Z. R. (2013). Ecuación de biomasa para Pinus patula en bosques de Zacualtipán, Hidalgo. En F. Paz & J. Wong (Eds.), Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México (pp. 213- 219). México: Programa Mexicano del Carbono-Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida-Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco. Retrieved from http://pmcarbono.org/pmc/publicaciones/Sintesis_Nacional_2011.pdf

Tenorio, G. G. (2003). Tabla de volumen para Pinus patula Schl. et Cham. en el estado de Hidalgo. Tesis de licenciatura, Universidad Autónoma Chapingo, Chapingo, Texcoco, Estado de México. Retrieved from http://files.departamento-de-productos-forest.webnode.es/200001659-214a622436/Tenorio%20Galindo%20Gabriela%202003.pdf

Vásquez, I. A. (2011). Aplicabilidad del modelo de contabilidad de carbono CBM-CFS3 en bosques templados de los ejidos “La Mojonera” y “Atopixco”, Zacualtipán de Ángeles, Hidalgo, México. Tesis de maestría, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México. Retrieved from http://www.biblio.colpos.mx:8080/jspui/handle/10521/403

Velarde, R. J. C. (2012). Estudio de crecimiento, determinación de índices de sitio y elaboración de tablas de volumen para Pinus patula y Pinus montezumae en la región forestal Pachuca-Tulancingo, Hidalgo. Informe técnico. Hidalgo, México: Asociación de silvicultores de la región forestal Pachuca y Tulancingo A. C.

Velarde, R. J. C. (2014). Estudio de crecimiento, determinación de índices de sitio y elaboración de tablas de volumen para Pinus teocote y Pinus rudis en la región forestal Pachuca-Tulancingo, estado de Hidalgo. Informe técnico. Hidalgo, México: Asociación de silvicultores de la región forestal Pachuca y Tulancingo A. C.

Received: September 30, 2015; Accepted: June 26, 2016

*Corresponding author. fzamudios@taurus.chapingo.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License