SciELO - Scientific Electronic Library Online

 
vol.13 número2FITOGEOGRAFÍA Y ECOLOGÍA DEL GÉNERO EucalyptusEFECTO DEL PEG 300 Y 600 EN LA ESTABILIDAD DIMENSIONAL DE LA MADERA Aspidosperma quebracho-blanco Schlecht índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.13 no.2 Chapingo jul./dic. 2007

 

Artículos

RESISTENCIA SISTÉMICA ADQUIRIDA EN PLANTAS: ESTADO ACTUAL

SYSTEMICACQUIRED RESISTANCE IN PLANT: STATE OF ART

G. Camarena-Gutiérrez1 

R. de la Torre-Almaráz1 

1FES-IZTACALA-UNAM, Unidad de Morfología y Función. Avenida de los Barrios Núm. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México. México C. P. 54090. Correo e: datura@servidor.unam.mx


RESUMEN

Las plantas hospederas pueden protegerse contra el ataque de patógenos si han sobrevivido a una infección inicial por virus, bacterias u hongos patogénicos. Se piensa que la primer infección, o algún daño, “inmuniza” a la planta contra infecciones posteriores por patógenos homólogos. La primera expresión de resistencia “inducida” por el patógeno es la reacción contra subsecuentes infecciones de patógenos, independientemente si son virus, bacterias u hongos. Esta respuesta es llamada resistencia sistémica adquirida. La resistencia sistémica adquirida se refiere a distintas vías de transducción de señales que juegan un rol importante en la habilidad de la planta para defenderse contra los patógenos.

PALABRAS CLAVE: respuesta hipersensitiva; ácido salicílico; especies reactivas de oxígeno; resistencia inducida

SUMMARY

Host plant can be protected against further pathogen attack if they have survived earlier infection by pathogenic viruses, bacteria or fungi. It appears that the first infecting pathogen, or some an injury, “immunizes” the plant against further infections by homologous pathogens. The first infecting pathogen “induced” expression of resistance reactions against subsequently infecting pathogens, regardless of whether they are viruses, bacteria or fungi. This response is called systemic acquired resistance. Systemic acquired resistance refers to distinct signal transduction pathway that plays an important role in the ability of plants to defend them selves against pathogen.

KEY WORDS: hypersensitive response; salicylic acid; reactive oxygen species; induced resistance

Texto completo disponible sólo en PDF.

LITERATURA CITADA

AIST, J. R. 1976. Papillae and related wound plugs of plant cells. Annual Review Phytopathology 14: 145-63. [ Links ]

BOWLER, C.; FLUHR, R. 2000. The role of calcium and activated oxygens as signals for controlling cross-adaptation. Trend in Plant Science. [ Links ]

BRADLEY, D. J.; KJELLBOM, P.; LAMB, C. J. 1992. Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein-a novel, rapid defense response Cell 70: 21-30. [ Links ]

CARVER, T. L. W.; ZEYEN, R. J.; BUSHNELL, W.R.; ROBBINS, M. P. 1994. Inhibition of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase increases cuantitative susceptibility of barley to powdery mildew (Erysiphe graminis D.C.). Physiology Molecular Plant Pathology 44: 261-72. [ Links ]

CHEN, Z.; SILVA, H.; KLESSIG, D. F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883-1886. [ Links ]

DEAN, R. A.; KUC, J. 1987. Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber. Physiology Molecular Plant Pathology. 31: 69-81. [ Links ]

FARMER, E. E.; RYAN, C. A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713-7716. [ Links ]

FARMER, E. E.; CALDERALI, D.; PEARSE, G.; WALKER-SIMMONS, M. K.; RYAN, C. A. 1994. Diethyloditiocarbamic acid inhibits the octadecanoid signal pathway for the wound induction of proteinase inhibitor in tomato leaves. Plant Physiology 106: 337. [ Links ]

FOYER, CH., LÓPEZ-DELGADO, H.; DAT, J. F.; SCOTT, I. M. 1997. Hydrogen peroxide and glutation associated mechanisms of acclamatory stress tolerance and signaling. Physiologia Plantarum. [ Links ]

HAMMERSCHMIDT, R.; KUC, J. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiology Plant Pathology 20: 61-71. [ Links ]

HAMMERSCHMIDT, R. 1993. The nature and generation of systemic signals induced by pathogens, arthropod herbivores, and wounds. Advances in Plant Pathology 10: 307-337. [ Links ]

KOVATS, K.; BINDER, A.; HOHL, H. R. 1991. Cytology of systemic induced resistance of tomato to Phytophthora infestans. Planta 183: 491-96. [ Links ]

KOVATS, K.; BINDER, A.; HOHL, H. R. 1991b. Cytology of induced systemic resistance of cucumber to Colletotrichum lagenarium. Planta 183: 484-90. [ Links ]

LEVINE, A.; TENHAKEN, R.; DIXON, R.; LAMB, C. 1994. H2O2 from oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593. [ Links ]

LÓPEZ-DELGADO, H. ; DAT, J. F. ; FOYER, C. H.; SCOUT, I. M. 1998. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of experimental botany 49: 713-720. [ Links ]

MAUCH-MANI, B.; SLUSARENKO, A. J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8: 203-12. [ Links ]

MARRS, K. A. 1996. The function and regulation of glutathione S-transferases in plants. Annual Review of Planta and Molecular Biology 47: 127-158. [ Links ]

MOFFAT, A. S. 1992 Improving plant disease resistance. Science 257: 482-483. [ Links ]

MÖRSCHBACHER, B.; NOLL, U.; GORRICHON, L.; REISENER, H. 1990. Specific inhibition of lignification breaks hypersensitive resistance of wheat to wheat stem rust. Plant Physiology 93:465-70. [ Links ]

PRASAD, M. N. V.; SHUBHASHINI, P. 1994 Mimosine-inhibited seed germination, seedling growth, and enzymes of Oriza sativa L. Journal of Chemical Ecology 20: 1689-1696. [ Links ]

RIDE, J. P. 1980. The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiology Plant Pathology 16: 187-96. [ Links ]

ROBERTS, K. 1992 Potential awareness of plants. Nature 360: 14-15. [ Links ]

RYAN, C. A. 1992 The search for proteinase inhibitor-inducing factor, PIIF. Plant Molecular Biology 19: 123-133. [ Links ]

SHA, J.; KLESSIG, D. F. 1996 Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related? β 1,3-glucanase gene, PR-2d. Plant Journal. 10: 1089-1101. [ Links ]

SILVERMANN, P.; SESKAR, M.; KANTER, D.; SCHWEIZER, P.; M´ETRAUX, J. P. et al. 1995. Salicylic acid in rice. Plant Physiology 108: 633-39. [ Links ]

SKIPP, R. A.; DEVERALL, B. J. 1973. Studies on cross-protection in the anthracnose disease of bean. Physiology Plant Pathology 2: 357-74. [ Links ]

VALLAND, G. E.; GOODMAN, R. M. 2004. Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science 44: 1920-1934. [ Links ]

VALLELIAN-BINDSCHEDLER, L.; METRAUX, J. P.; SCHVIEIZER, P. 1998. Salicylic acid accumulation in barley is pathogen specific but not required for defense-gene activation. Molecular Plant-Microbe Interactions 11: 702-705. [ Links ]

VANCE, C. P.; KIRK, T. K.; SHERWOOD, R. T. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18: 259-88. [ Links ]

VAN CAMP, W.; VAN MONTAGU, M.; INZE, D. 1998. H2O2 and NO: redox signals in disease resistance. Trends in Plant Science 3: 330-334. [ Links ]

WARD, E. R.; UKNES, S. J.; WILLIAMS, S. C.; DINCHER, S. S.; WIEDERHOLD, D. L.; ALEXANDER, D. C.; AHL GOY, P.; METRAUX, J. P.; RYALS, A. 1991. Coordinate gene activity inn response to agents that induce systemic acquired resistance. Plant Cell 3: 1085-1094. [ Links ]

WU, G. S.; SHORT, B. J.; LAWRENCE, E. B.; LEVINE, E. B.; FITZSIMMONS, K. C.; SHAH, D. M. 1995. Disease resistance conferred by expression of a gene encoding H2O2 generating glucose oxidase in transgenic potato plants. Plant Cell 7: 1357-68. [ Links ]

Recibido: 08 de Febrero de 2006; Aprobado: 30 de Enero de 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons