SciELO - Scientific Electronic Library Online

 
vol.9Estrategia para la reactivación del turismo en México; evidencia del uso de pools de saliva para la detección de COVID-19 en un complejo turísticoCaracterización estructural y fisicoquímica de almidones de semilla de aguacate modificados mediante hidrólisis ácida a alta temperatura índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.9  Tepic  2022  Epub 12-Abr-2024

https://doi.org/10.15741/revbio.09.e1270 

Original articles

Effect of Selenium supply on some attributes and mineral content in bean seed (Phaseolus vulgaris L.)

Efecto del suministro de Selenio sobre algunos atributos y contenido de minerales en la semilla de frijol (Phaseolus vulgaris L.)

1Unidad Regional Universitaria de Zonas Áridas de la Universidad Autónoma Chapingo, México.

2Centro Nacional de Investigación Disciplinaria en Relaciones Agua Suelo Planta Atmósfera del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, México.


ABSTRACT

The objective of this study was to evaluate the effect of Selenium on the morphological and physical characteristics, weight, and content of minerals in the bean seeds (Phaseolus vulgaris L.). A randomized complete block experimental design with seven replications was used. The treatments were three chemical formulations of Selenium: sodium selenite (Na2SeO3), selenium dioxide (SeO2) and sodium selenate (Na2SeO4) at three concentrations each one: 5, 10 and 20 mg L-1, more the control (only deionized water). The application of 10 mg L-1 of Na2SeO3 improved the width and length of the grain, with values ​​of 7.22 and 12.68 mm, respectively, and the application 5 mg L-1 of SeO2, improved the thickness and diameter of the grain, with values ​​of 5.04 mm, and 7.68 mm, respectively. Consequently, the weight of 100 seeds was significantly higher when 5 mg L-1 of Na2SeO3 and SeO2 were supply, with values ​​of 30 and 30.99 g, respectively. The Na2SeO3 and SeO2 formulations at concentrations of 5 mg L-1, improved the radius aspect, the volume and surface area of ​​the grain. Finally, the application of SeO2 and Na2SeO3 at concentrations of 10 and 20 mg L-1, moderately increased the content of Ca and Cu, respectively. The Na2SeO3 and SeO2 formulations at dose 5 mg L-1 was the most consistent in showing a better effect in improving the attributes of bean seeds, compared to the Na2SeO4 formulation in any of the concentrations used in this study.

KEY WORDS: Legume; seeds; plant nutrition; biofortification; basic crops

RESUMEN

El objetivo de este estudio fue evaluar el efecto del Selenio en las características morfológicas, físicas, peso y contenido de minerales en la semilla del frijol (Phaseolus vulgaris L.). Se usó un diseño experimental en bloques completos al azar con 7 repeticiones. Los tratamientos fueron las formulaciones químicas de Selenio: selenito de sodio (Na2SeO3), dióxido de selenio (SeO2) y selenato de sodio (Na2SeO4) con tres concentraciones en cada formulación: 5, 10 y 20 mg L-1 más el testigo (sólo agua desionizada). La aplicación de 10 mg L-1 de Na2SeO3 mejoró la anchura y longitud del grano, con valores de 7.22 y 12.68 mm, respectivamente y la aplicación de 5 mg L-1de SeO2, mejoró el espesor y diámetro del grano, con valores de 5.04 mm y 7.68 mm, respectivamente. Consecuentemente, el peso de 100 semillas fue significativamente mayor cuando se suplementó 5 mg L-1 de Na2SeO3 o SeO2, con valores de 30 y 30.99 g, respectivamente. Las formulaciones Na2SeO3 y SeO2 a concentraciones de 5 mg L-1, mejoraron el radio aspecto, volumen y área superficial del grano. Finalmente, la aplicación de SeO2 y Na2SeO3 a concentraciones de 10 y 20 mg L-1, aumentaron moderadamente el contenido de Ca y Cu, respectivamente. Las formulaciones Na2SeO3 y SeO2 a dosis de 5 mg L-1 fueron los más consistentes en mostrar un mejor efecto en mejorar los atributos de la semilla de frijol, respecto a la formulación Na2SeO4 en cualquiera de las formulaciones usadas en este estudio.

PALABRAS CLAVE: Leguminosas; semillas; nutrición vegetal; biofortificación; cultivos básicos

Introduction

Beans (Phaseolus vulgaris L.) are produced in different countries for their agri-food importance with a contribution of protein, carbohydrates, dietary fiber, minerals, and vitamins (Gomes et al., 2018). Worldwide, legumes are the only source of dietary protein and the main low-cost animal protein substitute crop (Ruiz-López et al., 2019).

Bean consumption in Mexico is an integral part of the family food diet. Production is 1,184 million tons annually with a value of 16,376 million pesos. The main producing states are Zacatecas, Durango, Chiapas, Sinaloa, San Luis Potosí, Guanajuato, and Nayarit (SIAP, 2020; SAGARPA, 2015). Pinto, Bayo, Flor de mayo and Garbancillo are the most consumed variety beans in the north of the country (Chávez-Mendoza and Sánchez, 2017).

Bean seed characteristics such as shape, size, radio aspect, and volume, among others, are important commercial indicators for the consumer, in addition to the recognition of protein and mineral content (Araya, 2016).

Bean productivity is liked to several factors. The use of nutritional products for the plant is usually a common practice, which allows for strengthening the growth, development, and production of this legume. This type of practice is more important in marginal agricultural conditions, where extreme environmental factors generate stress in the plant and negatively impact production. For the mitigation of plant stress factors, it is common to use bio-fortifying products to keep adequate crop vigor and growth until ripening and harvest (Tofiño-Rivera et al., 2016).

The main bean-producing areas in Mexico are located at rainfall-deficient areas in the central highlands, with a rainfall regime that varies from 450 to 600 mm on average per year, with shallow soils and low organic matter content and microelements (Borja-Bravo et al., 2018). Selenium (Se) is an essential microelement for crops bio-fortifying and a chemical component in the seed of agri-food benefit in the food diet. In most of the highlands, this micronutrient is deficient in agricultural soils for the staple crops of beans and maize (Sida-Arreola et al., 2015).

Selenite (Na2SeO3) and selenate (Na2SeO4) are the two most frequent chemical sources of Selenium supply to plants in soils where this element is deficient, due to natural factors such as soil type, microbial activity, and scarce rainfall (Supriatin et al., 2016; Ros et al., 2016). This element has a bio-fortifying action as it strengthens crop development, growth, and yield through tolerance mechanisms to biotic and abiotic environmental stress factors (Méndez-Espinoza & Vallejo, 2019). Foliar application of Selenium is the most effective method since there is a better utilization of this micronutrient by the plant (Li et al., 2018).

According to Boghdady et al. (2017), foliar applications of Se at 10 ppm favored plant growth and seed yield and quality through better morphometric and nutritional characteristics in fava bean (Vicia faba L.). Physiologically, Selenium at low doses (2.5 mg kg-1) improved transpiration rate (63.46 %), photosynthetic rate (47.47 %), and stomatal conductance (54.55 %) in maize crops (Nasseem et al., 2021).

The study of Selenium in plants and other organisms has taken greater relevance due to the generated knowledge, depending on the source, dosage, and environmental conditions in which use of this essential micronutrient is made (Ečimović et al., 2018; Garduño-Zepeda and Márquez-Quiroz, 2018). This study aimed to evaluate three chemical sources of Selenium at different concentrations each, on morphological, physical, and chemical characteristics of seed in the Pinto Saltillo variety of bean (Phaseolus vulgaris L.) under controlled mesh-shade conditions.

Material and Methods

Study area.

The experiment was carried out at the Centro Nacional de Investigación Disciplinaria en Relaciones Agua Suelo Planta Atmósfera (CENID-RASPA) of the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) at Gómez Palacio, Durango. The region is located at 25° 35' 21.7" N, 103° 27' 08.77" W with an average annual precipitation record of 304 mm, maximum temperature of 44 °C and minimum of 10.2 °C (Medina et al., 2005).

Experimental and treatment design.

The experiment was performed under greenhouse conditions with the lateral parts covered with double-walled polycarbonate and the roof with 720-gauge chlorophyll green plastic. The temperature was kept at 30 °C and relative humidity at 50-60 %. Temperature and relative humidity were controlled by using extractors and a humid wall, and monitoring was done with temperature and humidity sensors, respectively. Plants were grown in pots on a bed at a height of 1.1 m above the ground.

The experimental design was in randomized complete blocks with seven replications. Ten treatments were installed, more a general control. The first factor was three chemical formulations of selenium (Se): sodium selenite (Na2SeO3), selenium dioxide (SeO2), and sodium selenate (Na2SeO4) of Sigma-Aldrich with purity grades of 99 %, 98 %, ≥95 %, respectively. The concentrations used in each formulation were 5,10, and 20 mg L-1, more the control (only deionized water). The experimental unit was three pots with one bean plant each, making a total of 210 pots in the whole experiment. The supply of Selenium was via foliar, with biweekly applications until the pod maturation stage, which corresponded to a period of 84 days after planting (dap).

The study was conducted during the 2018 autumn-winter cycle. Pinto Saltillo variety bean seed was used, which was disinfected with a 5 % sodium hypochlorite (NaClO) solution. Three bean seeds were sown in each pot of 18 L capacity, and then thinned to one plant per pot.

The substrate was a mixture of Peat moss and perlite (v/v=80/20). Pots were initially irrigated with water from the local aquifer and frequent irrigations were applied to maintain 60 % of the usable substrate moisture. An extra liter of water was added to avoid salinization. Additionally, fertilization was performed using a nutrient solution composed of 13 ml of phosphoric acid (H3PO4), 55 g of MULTI- NPK® (potassium nitrate KNO3 enriched with phosphorus), 61 g of Haifa MKP® (monopotassium phosphate; KH2PO4), 133 g of calcium nitrate [Ca(NO3)2] and 9.4 g of Librel Mix-AL® with micronutrients (Cu, Fe, Mn, and Zn). The nutrient mixture was diluted in 200 L of water. Fertilization was applied from the emergence of the first pair of leaves. The initial volume of the nutrient solution was 250 ml and, for the ripening stage, 750 ml per pot.

Variables measured.

After bean harvest, 30 bean seeds were taken at random within each treatment. The bean morphological variables evaluated were, length (L), width (W), and thickness (T) of the seeds (mm), which were measured using Ultra Tech brand digital Vernier (± 0.01 mm); geometric mean seed diameter (Dg), obtained using the relationship Dg=(LWT) 1/3 (Mohite & Sharma, 2018; Suleiman et al., 2015); and the weight of 100 beans seeds (g).

The physical variables were:

Seed sphericity (Φ), calculated with the average values of the three main dimensions mentioned above, using the equation Φ= 𝐿𝑊𝑇 1 3 L ∗100 (Mohite & Sharma, 2018); seed aspect ratio (Ra), calculated with the equation Ra= 𝑊 𝐿 (Davies, 2018; Davies, 2020); seed volume (V) (mm3), obtained by the equation where 𝑉= π B 2 L 2 6(2𝐿−3) , where, 𝐵=(𝑊𝑇) 1/2 (Davies, 2018; Davies, 2020; Mahapatra et al., 2016); and surface area (mm2) of the seed, using the function 𝐴= π B 2 L 2 2𝐿 −𝐵 (Mahapatra et al., 2016).

The content of micronutrients Ca, Mg, Fe, Mn, and Cu in mg Kg-1 of dry matter was determined by acid digestion (nitric acid 0.2 N). 0.5 g of bean flour was added with 10 ml of HNO3 (65 %) and refluxed in the MARS automated digester for 60 min. The samples were read by atomic absorption using a spectrometer (AA-700, PerkinElmer) (PerkinElmer AAnalyst 700 User Manual, 1998-2000). Duplicate samples and spiked samples were analyzed as a verification mechanism.

Data analysis.

An analysis of variance and Tukey multiple range test of means (p ≤ 0.05) was performed to identify the treatment effect, using SPSS Version 18.0.0 statistical software (Inc. Chicago IL, USA). Excel software was used for the graphs.

Results and Discussion

Morphological characteristics and seed weight.

The application of Se in the Na2SeO3 formulation at a concentration of 10 mg L-1, significantly improved (p ≤ 0.05) grain width and length, with values of 7.22 and 12.68 mm, representing an increase of 2.4 and 2. 6 %, respectively, compared to control; bean thickness and diameter, were significantly greater with the supply of Se in the SeO2 formulation at a concentration of 5 mg L-1, with values of 5.04 mm, and 7.68 mm, respectively, the latter representing an increase of 4.1 %, compared to the control (Table 1). The weight of 100 bean seeds was significantly higher when 5 mg L-1 of Se was supplied in the Na2SeO3 and SeO2 formulations, with values of 30 and 30.99 g, respectively, where the control had the lowest weight, with 24.3 g (Figure 1).

The aforementioned effects can be considered moderate, even though they show significance, which suggests that, although a bio-fortifying effect could have occurred with both formulations, they do not have a significant impact on seed morphometric and yield traits. Pereira et al. (2019) reported that the foliar application of selenate (Na2SeO4) as a bio-fortified did not have an impact on the growth, development, and grain yield of cowpea (Vigna unguiculata L), a legume very close taxonomically to beans.

Selenium plays an important role as an antioxidant, which allows it to tolerate environmental stress, including water deficit to maintain good plant growth and productivity (Garduño-Zepeda and Márquez-Quiroz, 2018). Palacios-Márquez, et al. (2021) reported in bean seeds, good content of fiber, proteins, and bioactive compounds due to their high antioxidant capacity as a mechanism to mitigate oxidative stress.

Other researchers cite that the main source of morphological variation and seed productivity in crops is related to genetic causes in response to the environment. Morales-Santos et al. (2017), reported that biomass (67 to 124 mg), width (4.36 to 5.72 mm), length (2.65 to 4.92 mm), and thickness (6.81 to 8.47 mm) of bean seeds showed a gradient between wild, progeny and domesticated variants. González et al. (2008) identified that the weight of 100 bean seeds was modified by water availability conditions in the plant and by accelerated plant aging.

Table 1 Effect of different chemical formulations and concentrations of Selenium (Se) on some morphological characteristics of been seeds Pinto Saltillo variety. 

CHFSE Doses of Se (mg L-1) Width (mm) Length (mm) Thickness (mm) Diameter (mm)
Na2SeO3 5 7.20ab ± 0.023 12.52abc ± 0.036 4.91c ± 0.026 7.60abc ± 0.024
Na2SeO3 10 7.22a ± 0.026 12.68a ± 0.039 4.96abc ± 0.028 7.66ab ± 0.027
Na2SeO3 20 7.11abcd ± 0.029 12.47abc ± 0.053 5.00abc ± 0.029 7.60abc ± 0.031
SeO2 5 7.18abc ± 0.026 12.65ab ± 0.048 5.04ab ± 0.0271 7.68a ± 0.029
SeO2 10 7.05cd ± 0.031 12.47bc ± 0.048 4.91c ± 0.029 7.53c ± 0.029
SeO2 20 7.09bcd ± 0.027 12.64ab ± 0.058 5.09a ± 0.035 7.67ab ± 0.03
Na2SeO4 5 7.13abcd ± 0.030 12.52abc ± 0.048 5.01abc ± 0.032 7.62abc ± 0.029
Na2SeO4 10 7.06cd ± 0.033 12.32c ± 0.051 4.90c ± 0.031 7.50c ± 0.032
Na2SeO4 20 7.01d ± 0.027 12.49abc ± 0.046 4.95bc ± 0.029 7.54bc ± 0.029
Control 0 7.04d ± 0.028 12.36c ± 0.046 4.88c ± 0.029 7.49c ± 0.029

Tukey's test (p < 0.05). Numbers with the same leters within each column are statistically no different. CHFSE = Chemical formulation of Selenium.

Tukey's test (p ≤ 0.05). Figures with the same letters on the bars are statistically not different

Figure 1 Effect of different chemical formulations and concentrations of selenium (mg L-1) (Se) on the weight of 100 seeds Pinto Saltillo variety beans. 

Seed physical traits.

Sphericity is an integral variable of the three morphometric dimensions of the seed (width, length, and thickness) therefore, directly related to bean yield; whereas, aspect ratio (Ra) is a simpler variable, corresponding to the ratio between the width and length of the seed, which is indicative of its tendency to be elongated (Wani et al., 2015). The Na2SeO3 formulation at a concentration of 5 mg L-1, had the highest Ra value with 0.576 and the Na2SeO4 formulation at 20 mg L-1, had the worst effect (Table 2), suggesting, as reported by several authors (Boghdady et al., 2017; Naseem et al., 2021), that the beneficial effect of Selenium is achieved at low doses and an opposite effect at high doses, regardless of the type of formulation.

SeO2 formulation showed a greater grain volume, with values of 137.91 mm3 for the 5 mg L-1 concentration, an amount equivalent to that obtained when 20 mg L-1 of the same formulation was applied; the surface area, showed similar behavior with a value of 157.17 and 157.20 mm3 for the 5 and 20 mg L-1 concentrations, respectively, which shows some inconsistency by SeO2 dosage gradients. A statistically equal effect was obtained when Na2SeO3 was supplied at a concentration of 10 mg L-1 with a record of 136.37 mm3 and 156.52 mm2 in volume and surface area, respectively. Grain sphericity showed no response effect to Selenium supply at any of the concentrations and chemical forms used in this study (Table 2).

Based on the above, the two formulations of selenite (Na2SeO3) and sodium dioxide (SeO2), in their different concentration gradients, also showed a moderate effect on the bean seed’s physical traits, except for sphericity; selenate (Na2SeO4) had no effect, but no negative effect either, since it was equivalent to the effect of the control, except in the case already mentioned of the radius aspect (Ra), which was worse than the control.

Table 2 Effect of different chemical formulations and concentrations of selenium (Se) on the physical attributes of bean seeds Pinto Saltillo variety. 

CHFSE Doses of Se mg L-1 Sphericity % Aspect ratio Volume mm3 Superficial area mm2
Na2SeO3 5 60.7a ± 0.120 0.576a ± 0.0017 132.78abcd ± 1.152 154.06ab ± 0.940
-Na2SeO3 10 60.4a ± 0.134 0.570abcd ± 0.0018 136.37ab ± 1.334 156.52a ± 1.088
Na2SeO3 20 61.0a ± 0.134 0.571ab ± 0.0018 134.03abcd ±1.572 154.93ab ± 1.237
SeO2 5 60.8a ± 0.132 0.568abcd ± 0.0018 137.91a ± 1.448 157.17a ± 1.205
SeO2 10 60.4a ± 0.134 0.567bcd ± 0.0023 130.01bcd ± 1.397 150.09b ± 1.191
SeO2 20 60.7a ± 0.135 0.562cd ± 0.0019 137.37a ± 1.646 157.20a ± 1.143
Na2SeO4 5 60.9a ± 0.141 0.570abcd ± 0.0021 134.74abc ± 1.445 153.86ab ± 1.206
Na2SeO4 10 60.9a ± 0.141 0.574ab ± 0.0021 129.01cd ± 1.505 149.81b ± 1.304
Na2SeO4 20 60.4a ± 0.116 0.562d ± 0.0017 130.62bcd ± 1.423 152.49ab ± 1.148
Control 0 60.7a ± 0.140 0.571abc ± 0.0019 128.26d ± 1.374 150.64b ± 1.098

Tukey's test (p <v0.05). Numbers with the same letters within each column are statistically no different. CHFSE= Chemical formulation of Se.

Given the lack of consistency of results in the interaction of the two factors of variation evaluated in this study (chemical formulation and Se dose), we proceeded to make a statistical analysis by separate factors, where it is shown more clearly how the formulations of selenite (Na2SeO3) and Se dioxide (SeO2), more clearly the latter, were the most consistent formulations in showing a benefit in morphometric and physical characteristics of the seed, in terms of bean seed width, length, thickness, diameter, volume and surface area, except for width and thickness in the SeO2 and Na2SeO3 formulations, which were significantly lower, respectively. Sphericity and radius aspects were not affected by any of the three chemical formulations tested in this study (Table 3).

With respect to concentrations regardless of chemical formulation, the most consistent in showing the best effect was the lowest 5 kg L-1. The higher doses of 10 and 20 kg L-1 were less consistent sometimes with similar effects to the lowest dose (5 kg L-1), but mostly with statistically equal effects to the control. The absence of the effect of Se concentrations on sphericity and radius aspect was confirmed (Table 4).

The SeO2 formulation at a dose of 5 kg L-1 was the most consistent Se concentration, followed in importance by the Na2SeO3 formulation, in influencing some indicators of commercial importance, since it has been pointed out that bean characteristics such as size, color, bean uniformity, flavor, and thickness, are desirables in the market (Muñoz-Velázquez et al., 2009). This type of information is important since some of these seed characteristics determine consumer preference (Davies, 2020).

Table 3 Effect of three chemical formulations of Selenium on the morphological and physical properties in the bean seeds Pinto Saltillo variety. 

QFSE Width Length Thickness Diam Esph Ra Volume Sup A
Na2SeO3 7.17a 12.55a 4.96ab 7.6a 60.84a 0.5a 134.34a 154.80a
SeO2 7.10b 12.57a 5.01a 7.62a 60.81a 0.56a 134.75a 155.02a
Na2SeO4 7.08b 12.44b 4.95b 7.55b 60.74a 0.56a 131.21b 152.23b

Tukey´s test (p < 0.05). Numbers with the same letters within each column are statistically no different. FQ, is Chemical formulation of Se; Diam, is diameter; Esph, is sphericity; Ra, is aspect ratio; and Sup. A. is surface area.

Table 4 Effect of three concentrations of Selenium on the morphological and physical properties in the bean seeds Pinto Saltillo variety. 

CONC. (Kg L-1) Width Length Thickness Diam Esph Ra Volume Sup A
5 7.17a 12.57a 4.99a 7.64a 60.80a 0.57a 135.28a 155.66a
10 7.09b 12.46ab 4.91b 7.54bc 60.72a 0.57a 131.16bc 152.14bc
20 7.07b 12.52a 5.01a 7.60ab 60.83a 0.56a 133.87ab 154.26ab
0 (Testigo) 7.04b 12.36b 4.88b 7.49c 60.64a 0.57a 128.11c 149.85c

Tukey´s test (p < 0.05). Numbers with the same letters within each column are statistically no different. CONC, is Se concentration; Diam, is the diameter; Esph, is sphericity; Ra, is the aspect ratio; and Sup. A. is the surface area.

Content of some minerals in the seed.

Studies showed that selenium stimulates the synthesis of proteins, amino acids, secondary nitrogen compounds, phenolic compounds, and other essential minerals important in nutrition (Garduño-Zepeda and Márquez-Quiroz, 2018). In this study, Mg, Ca, and Fe, were the microelements with the highest concentration in bean seed, with no statistical difference between treatments in the first (Mg), and similar behavior in the second (Ca), surpassing the control in any of the formulations and concentrations of Se, except the formulation of Na2SeO4 at the dose of 10 mg L-1, which was equal to the control. The Fe concentration did not show any statistical difference from the control (Figure 2).

These results are similar to those reported by Sabatino et al. (2019), who showed that the application of Na2SeO4 at doses of 0.2 to 1.5 mg L-1 registered a negative correlation with the Ca concentration in Endibia rizada L. In contrast, this response behavior is contrary to that reported by Golubkina et al. (2019), who noted that the supply of Na2SeO4 at doses of 50 mg L-1 increased Ca concentration in Allium ascalonicum L. These opposing effects on Ca, suggest that it may be related to the doses used since it has been recognized that the application of Se at moderate doses can be beneficial in plants, but at high doses can produce an opposite effect given to oxidative processes (Palacios-Márquez et al., 2021); the type of effect may also be related to the plant species in which this microelement is applied and the chemical form in which it is supplied (Ziogas et al., 2020; Li et al., 2018).

The mineral elements Mn and Cu were those with the lowest concentration in the seed, with respect to Mg, Ca, and Fe. The Mn was similar among treatments, including the control; Cu only showed a higher concentration in the SeO2 formulation at the dose of 10 mg L-1 with a value of 12.1 mg kg-1; the rest of the treatments registered intermediate values between it and the control. In particular, the 20 mg L-1 dose of Na2SeO4 was the worst treatment with a value of 4.0 mg Kg-1, even lower than the control, which suggests the negative effect of Se when supplied in this formulation and at high concentrations (Naseem et al., 2021). The Cu contents in the plant ranged from 4.01 to 12.1 mg kg-1, whereas the control had 5.5 mg kg-1, which was less than 50 % of that accumulated in the 20 mg L-1 Na2SeO3 treatment (Figure 3). These results are contrary to those reported by Lukaszewicz et al. (2018) who supplied Na2SeO3 and Na2SeO4 in pea (Pisum sativum L and it increased Cu concentration in the plant. Kleiber et al. (2018) found no effect of Se application in lettuce (Lactuca sativa L.).

Tukey's test (p ≤ 0.05). Figures with the same letters on the columns are statistically no different.

Figure 2 Effect of different chemical formulations and concentrations of selenium (Se) on the content of the minerals Ca, Mg, and Fe in beans (Phaseolus vulgaris L.). 

Tukey's test (p ≤ 0.05). Figures with the same letters on columns are statistically no different.

Figure 3 Effect of different chemical formulations and concentrations of selenium (Se) on the content of the minerals Mn and Cu in beans (Phaseolus vulgaris L.). 

Conclusions

The chemical formulations of selenium SeO2 and Na2SeO3, mainly the former, were the most consistent in better in thickness, diameter, volume, and surface area of bean seeds at 5 mg L-1, and the latter with greater width, length, aspect ratio, and surface area of the seed when applied between 5 and 10 mg L-1. The weight of 100 bean seeds and sphericity showed weakly and no treatment effect, respectively. Mg, Ca, and Fe were those with the highest concentration in the seed, with respect to Mn and Cu, but only Ca and Cu showed a greater response effect to the supply of Se, in relation to the control. The Na2SeO4 formulation, mainly at higher doses (20 mg kg-1), had a negative effect on most of the morphological, physical, and yield characteristics of a bean seeds.

References

Araya, V. R., Hernández, J. C., & Martínez, U. K. (2016). Sistema alternativo de producción de semilla de alta calidad de frijol común. En: Producción de semilla de alta calidad de frijol común (Phaselus vulgaris L.) (Rodolfo Araya Villalobos y Marco Vinicio Gutiérrez Soto, Eds.). Primera Edición. Ediciones Didácticas Nexo, E.I.R.L. San José Costa Rica. [ Links ]

Boghdady, S., Desoky, E. M., Azoz, S. N., & Nassar, D. M. A. (2017). Effect of Selenium on growth, physiological aspects and productivityof faba bean (Vicia faba L.). Egyptian Journal of Agronomy, 39(1), 83-97. https://doi.org/10.21608/AGRO.2017.662.1058 [ Links ]

Borja-Bravo, M., Osuna-Ceja, E. S., Arellano-Arciniega, S., García-Hernández, R. V., & Martínez-Gamiño, M. A. (2018). Competitividad y eficiencia en la producción de frijol en condiciones de temporal con tecnología tradicional y recomendada. Revista Fitotecnia Mexicana, 41(4), 443-450. https://doi.org/10.35196/rfm.2018.4.443-450 [ Links ]

Chávez-Mendoza, C., & Sánchez, E. (2017). Bioactive compounds from mexican varieties of the common bean (Phaseolus vulgaris L.): Implications for health. Molecules, 22(8), 1360. http://doi.org/10.3390/molecules22081360 [ Links ]

Davies, R. (2018). Some physical and mechanical properties of ear fruits and seeds. International Journal of Research Studies in Science, Engineering and Technology, 5(12), 51-57. https://www.researchgate.net/publication/340649297Links ]

Davies, R. (2020). Some physical properties of okra fruits and seeds. International Journal of Research Studies in Science, Engineering and Technology , 8(1), 23-29. http://ijrsset.org/pdfs/v5-i12/4.pdfLinks ]

Ečimović, S., Velki, M., Vuković, R., Čamagajevac, I., Petek, A., Bošnjaković, R., Grgić, M., Engelmann, P., Bodó, K., Filipović-Marijić, V., Ivanković, D., Erk, M., Mijošek, T., & Lončarić, Z. (2018). Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm. Eisenia andrei. Chemosphere, 212, 307-318. https://doi.org/10.1016/j.chemosphere.2018.08.095 [ Links ]

Garduño-Zepeda, A. M., & Márquez-Quiroz, C. (2018). Aplicación de selenio en cultivos agrícolas. Revisión bibliográfica. Información Técnica Económica Agraria, 114(4), 327-343. https://dialnet.unirioja.es/servlet/articulo?codigo=6775967Links ]

Golubkina, N., Zamana, S., Seredin, T., Poluboyarinov, P., Sokolov, S., Baranova, H., Krinvekov, L., Pietrantonio, L., & Caruso, G. (2019). Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants, 8(102), 1-18. https://doi.org/10.3390/plants8040102 [ Links ]

Gomes, F., Ferreira, A. A., Wojeicchowski, J. P., Nogueira, A., & Mottin, I. (2018). Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Current Opinion in Food Science, 19, 63-71. https://doi.org/10.1016/J.COFS.2018.01.010 [ Links ]

González, T. G., F. M. Mendoza H., J. Covarrubias P., N. Morán V., & J. A. Acosta G. (2008). Rendimiento y calidad de semilla de frijol en dos épocas de siembra en la región del Bajío. Agricultura Técnica en México, 34(4), 421-430. http://www.scielo.org.mx/pdf/agritm/v34n4/v34n4a5.pdfLinks ]

Muñoz-Velázquez, E. E., Rubio-Hernández, D., Bernal-Lugo, I., Garza-García, R., & Jacinto-Hernández, C. (2009). Caracterización de genotipos nativos de frijol del estado de Hidalgo, con base a calidad del grano. Agricultura Técnica en México , 35(4), 429-438. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0568-25172009000400008&lng=es&tlng=es. [ Links ]

Kleiber, T., Krzesinski, W., Przygocka-Cyna, K., & Spizewsk, T. (2018). Alleviation effect of selenium on manganese stress of plants. Ecological Chemistry and Engineering, 25(1), 143-152. https://doi.org/10.1515/eces-2018-0010 [ Links ]

Li, M., Zhao, Z., Zhou, J., Zhou, D., Chen, B., Huang, L., Zhang, Z., & Liu, X. (2018). Effects of foliar spray of selenite or selenate at different growth stages on selenium distribution and quality of blueberries. Journal of the Science of Food and Agriculture, 98(12), 4700-4706. https://doi.org/10.1002/jsfa.9004. [ Links ]

Lukaszewicz, S., Polyticka, B., & Smolen, S. (2018). Effects of selenium on the content of essential micronutrients and their translocation in garden pea. Journal of Elementology, 23(4), 1307-1317. https://doi.org/10.5601/jelem.2017.22.4.1577 [ Links ]

Mahapatra, A. K., Ekefre, D. E., Degala, H. L., Punnuri, S. M., & Terrill, T.H. (2016). Moisture-dependent physical and thermal properties of sericea lespedeza seeds. Applied Engineering in Agriculture, 35(3), 389-397. https://doi.org/10.13031/aea.13228 [ Links ]

Medina, G. G., Díaz, P. G., López, H. J., Ruíz, C. J. A., & Marín, S. M. (2005). Estadísticas climatológicas básicas del estado de Durango. (Periodo 1961 - 2003). Libro Técnico № 1. Campo Experimental Valle del Guadiana. CIRNOC-INIFAP. México. [ Links ]

Méndez-Espinoza, C., & Vallejo R. M. Á. (2019). Mecanismos de respuesta al estrés abiótico: hacia una perspectiva de las especies forestales. Revista Mexicana de Ciencias Forestales, 10(56), 33-64. https://doi.org/10.29298/rmcf.v10i56.567 [ Links ]

Mohite, A. M., & Sharma, N. (2018). Drying behaviour and engineering properties of lima beans. Agricultural Engineering International, 20(3), 180-185. https://cigrjournal.org/index.php/Ejounral/article/download/4838/2797/22278Links ]

Morales-Santos, M. E., Peña-Valdivia, C. B., García-Esteva, A., Aguilar-Benítez, G.., & Kohashi-Shibata, J. (2017). Características físicas y de germinación en semillas y plántulas de frijol (Phaseolus vulgaris L.) silvestre, domesticado y su progenie. Agrociencia, 51(1), 43-62. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000100043&lng=es&tlng=esLinks ]

Naseem, M., Anwar-ul-Haq, M., Wang, X., Farooq, N., Awais,M., Sattar,H., Malik,H. A., Mustafa, M., Ahmad, J., & El-Esawi, M. A. (2021). Influence of Selenium on growth, physiology, and antioxidant responses in maize varies in a dose-dependent manner. Journal of Food Quality, Article ID 6642018, https://doi.org/10.1155/2021/6642018 [ Links ]

Pereira, R. D., Coelho, de O. T., Tavares, A de S.S., Nascimento, L. V., Savelli, M. R. A., Freitas, A., Chagas, J., & Ribeiro, F. R. (2019). Agronomic biofortification of cowpea with selenium by foliar fertilization: effect of doses in three cultivars. Journal of Plant Nutrition, 4(43),1532-4087. https://doi.org/10.1080/01904167.2019.1685096 [ Links ]

Palacio-Márquez, A., Ojeda-Barrios, D., Jiménez-Castro, J., Preciado-Rangel, P., Hernández-Rodríguez, O. A., & Sánchez, E. (2021). Biofortification potential in common bean (Phaseolus vulgaris L.): bioactive compounds, antioxidant capacity and physicochemical properties of 155 varieties grown in México. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12123. https://doi.org/10.15835/nbha49112123 [ Links ]

Ros, G. H., Van Rotterdam, A. M. D., & Bussink, D. W. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil, 404: 99-112. https://www.jstor.org/stable/43872668Links ]

Ruiz-López, M. A., Barrientos-Ramírez, L., García-López, P. M., Valdés-Miramontes, E. H., Zamora-Natera, J. F., Rodríguez-Macias, R., & Vargas-Radillo, J. J. (2019). Nutritional and bioactive compounds in mexican lupin beans species: A mini-review. Nutrients, 11(8): 1785. https://doi.org/ 10.3390/nu11081785 [ Links ]

Secretaría de Agricultura y Desarrollo Rural [SAGARPA]. (2015). Propuesta de estructuras tipo para la organización de conglomerados productivos y comerciales, integrados por pequeños productores de frijol con empresas integradoras. http://www.gob.mx/cms/uploads/attachment/file/346972/Frijol_Detallado.pdfLinks ]

Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2020). Avances de siembras y cosechas por cultivo. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119Links ]

Sida-Arreola, J. P., Sánchez., Ávila-Quezada, G. D., Acosta-Muñoz, C.H., & Zamudio-Flores. P.B. (2015). Biofortificación con micronutrientes en cultivos agrícolas y su impacto en la nutrición y salud humana. Tecnociencia Chihuahua, 9(2), 67-74. https://vocero.uach.mx/index.php/tecnociencia/article/view/591Links ]

Suleiman, R., Xie, K., & Rosentrater, K. (2015). Physical and thermal properties of chia, kañiwa, triticale and farro as a function of moisture content. ASABE Annual International Meeting Paper, 152189412. https://doi.org/10.13140/RG.2.1.2933.7445 [ Links ]

Supriatin, S., Weng, L., & Comans, R. (2016). Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on Low-selenium arable land soils. Plant Soil, 408: 73-94. https://doi.org/10.1007/s11104-016-2900-7 [ Links ]

Tofiño-Rivera, A. P, Pastrana-Vargas, I. J., Melo-Ríos, A. E, Beebe S., & Tofiño-Rivera R. (2016). Rendimiento, estabilidad fenotípica y contenido de micronutrientes de genotipos de fríjol biofortificado en el Caribe seco colombiano. Ciencia y Tecnología Agropecuaria, 17(3), 309-329. https://doi.org/10.21930/rcta.vol17_num3_art:511 [ Links ]

Wani, I. A., Sogi, D. S., Wani, A. A., & Gill, B. S. (2015). Physical and cooking characteristics of some Indian kidney bean (Phaseolus vulgaris L.) cultivars. Journal of the Saudi Society of Agricultural Sciences, 16(1), 7-15. https://doi.org/10.1016/j.jssas.2014.12.002 [ Links ]

Ziogas, Z., Michailidis, M., Karagiannis, E., Tanou, G., & Molassiotis, A. (2020). Chapter 29. Manipulating fruit quality through foliar nutrition. In Fruit Crops. Diagnosis and Management of Nutrient Constraints, 401-417. https//doi.org/10.1016/B978-0-12-818732-6.00029-0 [ Links ]

Received: September 16, 2021; Accepted: September 01, 2022; Published: August 07, 2022

*Autor para correspondencia: Aurelio Pedroza-Sandoval. Universitaria de Zonas Áridas de la Universidad Autónoma Chapingo, México. Río Nazas 554, Col. Estrella, Torreón, Coh. CP. 27010. Phone: 871.8873275. E-mail: apedroza@chapingo.uruza.edu.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License