SciELO - Scientific Electronic Library Online

 
vol.7Seed oil Jatropha dioica Sesee as a biodiesel potencial resourceDifferent levels of expression of ALDH1A1 and DYRK1B in patients with glioblastoma multiforme and their overall survival author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista bio ciencias

On-line version ISSN 2007-3380

Revista bio ciencias vol.7  Tepic  2020  Epub Nov 18, 2020

https://doi.org/10.15741/revbio.07.e730 

Original Articles

Quality evaluation of mixed silage of maize (Zea mays) and forage tree species (Leucaena leucocephala and Brosimum alicastrum)

J. V. Cárdenas Medina1  * 

F. J. Matú Sansores1 

D. Mena Arceo1 

O. S. Ramos Trejo1 

1Instituto Tecnológico de Tizimín, Final Aeropuerto Cupul s/n, CP 97700, Tizimín, Yucatán, México.


Abstract:

The effect of adding fodder tree species (Leucaena leucocephala y Brosimum alicastrum), in maize silage quality (Zea mays) was evaluated. The fodder trees were included at 15, 30 and 45 %, the corn silage alone was considered as control. Laboratory microsilos (1.8 L) were used, and opened on day 60, to determine chemical composition and fermentation characteristics. Average chemical composition was 7.7 ± 2.2, 53.7 ± 1.2 and 36.4 ± 3.1 for CP, NDF and ADF, significant differences (p<0.05) were found for CP and ADF, by the effect of the fodder tree addition level. Fermentative characteristics were 3.9 ± 0.3, 4.0 ± 1.0 and 10.4 ± 2.9, for pH, LA and N-NH3/TN, respectively, significant differences (p<0.05) in pH and LA by the effect of the fodder tree addition level were found, and in the content of N-NH3/TN by the effect of the fodder tree species and the addition percentage. Mixed silage (grass + fodder tree) could be an option to increase nutrient content in ruminant diets in the tropic.

Key words: Silage; fodder tree; quality; ruminant

Resumen:

Se evaluó el efecto de incluir dos especies arbóreas (Leucaena leucocephala y Brosimum alicastrum), en la calidad del ensilaje de maíz (Zea mays). Las arbóreas se incluyeron al 15, 30 y 45 %, el ensilaje solo de maíz se consideró como testigo. Se emplearon microsilos de laboratorio (1.8 L), los cuales se abrieron a los 60 días, para determinar la composición química y las características fermentativas. La composición química promedio fue de 7.7 ± 2.2, 53.7 ± 1.2 y 36.4 ± 3.1 para CP, NDF y ADF respectivamente, y se encontraron diferencias significativas (p<0.05) para CP y ADF, por efecto del porcentaje de incusión de la arbórea. Las características fermentativas promedio fueron 3.9 ± 0.3, 4.0 ± 1.0 y 10.4 ± 2.9, para pH, LA y N-NH3/TN respectivamente, se encontraron diferencias significativas (p<0.05) en pH y LA por efecto del porcentaje de inclusión, y en el contenido de N-NH3/TN por efecto de la especie arbórea y el porcentaje de inclusión. Los ensilajes mixtos (gramíneas + arbóreas) pueden representar una opción, para incrementar el aporte de nutrientes en dietas de rumiantes en el trópico.

Palabras clave: Ensilaje; arbóreas; calidad; rumiantes

Introduction

The problem with ruminants feeding in the tropic is the low quality and availability of grass throughout the year (Ramirez et al., 2010), when cattle consumes only forages, the ingestion of energy could be insufficient for obtaining acceptable production levels (Owens et al., 2010).

The conservation of forages by using silages represents an option to ensure the supply of nutrients and increasing the productivity on bovine and ovine (McGeough et al., 2010); in the silage, sugars in the forage are fermented by anaerobic bacteria, to produce lactic acid (LA) and inhibit the development of other microorganisms (Basso et al., 2014).

In Mexico, the use of trees and fodder species to feed livestock is a common practice in association with gramineae, the quality and nutritious value of the silages of tropical gramineae can be increased when using fodder from trees and bushes, to this effect, Leucaena leucocephala and Brosimum alicastrum stand out among other species (Cardenas et al., 2003); it is necessary to increase the number of research studies on the utilization of these species in gramineae silages of high energetic value like fodder maize.

The objective of this work was to evaluate the effect of including two fodder species into the quality of fodder maize silage in eastern Yucatan, Mexico.

Material and Methods

This work was carried out at the Instituto Tecnologico de Tizimin in the state of Yucatan, Mexico, from June to October, located between 19°40’ north and 87°32’ west. The climate in this region is warm and sub-humid, with a rainy season between June and October, with an annual temperature from 24.5 to 27.5 °C (Duch, 1988).

By means of a completely randomized design, with a factorial adjustment 2 * 3, six treatments plus one control were obtained, in order to asses two fodder tree species (Leucaena leucocephala and Brosimum alicastrum) and three addition levels (15, 30, and 46 %), with four repetitions. Based on the fresh weight, the treatments were the following:

Control (Zea mays).

Z. mays 85 % + Leucaena leucocephala 15 %.

Z. mays 70 % + L. leucocephala 30 %.

Z. mays 55 % + L. leucocephala 45 %.

Z. mays 85 % + Brosimum alicastrum 15 %.

Z. mays 70 % + B. alicastrum 30 %.

Z. mays 55 % + B. alicastrum 45 %.

The harvesting of the whole maize plant (Zea mays) was realized at a flocculent grain state, and the foliage of the fodder plants including stems of ≤1 cm in diameter, petioles and ripe plants of >10 years of age, the forages were ground to obtain a particle size between 0.5 and 1.5 cm. The materials were mixed by treatments and were ensilaged in plastic microsilos with wide opening (1.8 L).

The microsilos were opened on the 60th day, and then the analysis of the chemical composition and fermentative characteristics of the silage was realized. The chemical composition was evaluated by determining the dry matter (DM), by desiccation in stove at 60 °C for 48 hours (Pichard et al., 1992), crude protein (CP), by means of Kjeldahl’s method (Galyean, 1980); acid and neutral detergent fiber (ADF, NDF), by means of the detergent method of determination of cell walls (Van Soest et al., 1991). The fermentative characteristics were determined from the fresh and macerated material, including pH, percentage of lactic acid (LA), ammoniacal nitrogen as percentage of the total nitrogen (N-NH3/TN), and volatile fatty acids (VFA), in order to correct the content of dry matter (Tejada, 1983).

The variables were analyzed by means of the General Linear Models procedure (SAS, 2002), through a fixed effects model. The initial fixed model included the effect of the fodder species, the inclusion percentage in the silage and its interaction, but because the interaction was not statistically significant, it was excluded from the final analysis. In order to estimate differences within the fixed effects, a comparison analysis of mean proportional was realized by using Duncan’s multiple range test (Steel & Torrie, 1980).

Results and Discussion

The results from the chemical composition of the silages are shown on Table 1. Significant differences (p<0.05) were found to CP and ADF because of the fodders’ addition percentage.

Tabla 1 Chemical composition (% DM) of corn silage (Z. mays) with inclusion of L. leucocephala and B. alicastrum in Yucatan, Mexico (average ± SE). 

FACTOR DM CP NDF ADF
Specie L. leucocephala 31.5 8.5 54.7 37.3
B. alicastrum 33.3 8.4 51.5 36.7
SE 0.8 0.6 1.1 1.2
Inclusion percent 0 % 31.5 5.4c 55.4 34.6b
15 % 32.7 6.6c 53.3 34.0b
30 % 31.9 8.3b 53.1 36.2b
45 % 32.6 10.5a 52.8 40.8a
SE 1.0 0.3 1.5 1.0

abcDifferent letters in same variation factor and variable indicates statistical difference (p<0.05); DM = dry matter; CP = crude protein; NDF = neutral detergent fiber; ADF = acid detergent fiber; SE = standard error.

The fermentative characteristics of the silages are shown in Table 2, significant differences were found (p<0.05) in pH, and LA due to the addition percentage, and the content of N-NH3/TN because of the fodder species and the addition percentage.

Table 2 Fermentative characteristics of corn silage (Z. mays) with inclusion of L. leucocephala and B. alicastrum in Yucatan, Mexico (average ± SE). 

FACTOR pH LA AA BA N-NH3/TN
Specie L. leucocephala 3.9 4.1 0.24 0.06 11.0a
B. alicastrum 4.0 4.3 0.43 0.07 7.7b
SE 0.1 0.5 0.06 0.01 0.9
Inclusion percent 0 % 3.7b 3.2ab 0.34 0.11 13.5a
15 % 3.7b 5.1a 0.32 0.05 12.0a
30 % 3.9b 4.5ab 0.34 0.07 8.7b
45 % 4.3a 3.0b 0.35 0.07 7.3b
SE 0.1 0.5 0.08 0.01 1.0

abcdifferent letters in same variation factor and variable indicates statistical difference (p<0.05); LA = lactic acid; AA = acetic acid; BA = butyric acid; N-NH3/TN = non-nitrogen ammoniac of total nitrogen; SE = standard error.

The average and standard deviation of dry matter for the silages was 32.2 ± 0.6 %, and there were no significant differences (p>0.05) because of the assessed factors. The content of DM was found within the range reported by Demirel et al. (2006), to achieve a state of silage of tropical gramineae (24 to 35 % DM). Sibanda et al. (2007) did not obtain significant differences (p>0.05) in the content of DM in mixed silages, unlike Apizar et al., (2014), who quantified significant increases (p˂0.05) in the content of DM, when siloing sorghum with mulberries (24.8 to 29.6 % DM). An adequate content of DM in mixed silages, ensures homo-fermentative fermentation and the production of lactic acid.

The content of crude protein was 7.7 ± 2.2 %, and significant differences were observed (p<0.05) as a result of the addition levels from fodder trees, the CP increased by 56.5 % in average when including fodders in respect of the control. The effect of adding fodder trees onto tropical silages, has been documented by Castillo et al. (2009), who detected a liner tendency on the increase in the content of CP, in response to the addition of Vigna radiata in maize silages; Ojeda & Diaz (1991) quantified an increase of 5.5 to 11.4 % of CP, when adding 20 % of Lablab purpureus onto the Pannicum maximum silage; Boschini (2003) and Mora (2010), on their part, report an increase in the content of CP from 9.0 to 14.1 % in the maize silage, when adding white mulberry (Morus alba); Phiri et al. (2007), observed contents of CP of 13.2 and 14.8 % in mixed maize silages with Acacia boliviana and L. leucocephala respectively. The addition levels of L. leucocephala and B. alicastrum, caused a linear increase in the content of CP of the maize silage.

The average contents of NDF and ADF in the silages were 53.7 ± 1.2 and 36.4 ± 3.1 % respectively, significant differences were found (p<0.05) in ADF, due to the effect of the addition levels of fodder trees. The average values were found within the range reported by Cubero et al. (2010) for the maize silages (58.6 to 66.5 % and 37.0 to 40.3 %, for NDF and ADF respectively). When including 45 % of fodder trees in the maize silage, the content of ADF increased by 16.9 %, which has been documented by Castillo et al. (2009), who reported a significant increase (p˂0.001), in the content of ADF, when increasing the addition of mung bean (Vigna radiata) in maize silages. The content of ADF in ruminant diets, correlates with the indigestible fraction of the material (Ayala et al., 2006), an increase in the percentage of addition of L. leucocephala and B. alicastrum, above 30 % in maize silages, could compromise its quality and nutritional value.

The average pH of the silages was 3.9 ± 0.3, and significant differences were found (p<0.05) because of the addition levels of the fodder trees. The pH from all the silages was found to be under the acceptable maximum value (≤4.3), in order to achieve acidification on tropical silages (Ojeda et al., 2006). The treatment with 45 % of fodder trees, had a 13.2 % of pH higher than the others (p<0.05), which indicates an increase of pH the addition of fodder trees in the silage increases (≥ 455), probably because of the high buffer capacity of the fodder trees, for their greater content of nitrogen and minerals (Ca and P), in comparison to the gramineae. Alpizar et al. (2014), report significant increases (p<0.05) of pH, beginning with 75 % of addition of white mulberry (M. alba) in sorghum silages (Sorghum bicolor). Meanwhile, Suarez et al. (2011), corroborated that the high values of pH are characteristics of mixed silages (gramineae + fodder trees), nevertheless, its usage is justified by the increase of the proteic fraction and plus, it does not interfere with the activity of homo-fermentative bacteria.

LA is produced by the metabolism of homo-anaerobic and heterolactic bacteria and is the organic compound that affects the most on the acidification of the siloed material (Ojeda et al., 1990). The average content of LA was 4.0 + 1.0 %, and significant differences were found (p<0.05) caused by the effect of addition levels of the fodder trees. The content of acetic acid (AA) and butyric acid (BA) was 0.34 ± 0.13 and 0.07 ± 0.03 % respectively, with no significant differences (p>0.05) because of the assessed factors. All the treatments have a LA content greater than 2 %, considered as minimum in order to achieve the stabilization of tropical silages (Esperance et al., 1981). The contents of AA and BA were found in low levels, in comparison to what was reported for the mixed silages (gramineae ± fodder trees), Titterton et al. (1999) reportes average values of 1.8 % and 0.6 %, for AA and BA respectively, Cardenas et al. (2003), on the other hand, determined values of 3.0 and 0.5 % for AA and BA respectively; which supposes a homolactic-type fermentation (Villa et al., 2010). The mixed silages contained more LA in respect to the control treatment, LA increased on average by 25 and 34 % in silages of L. leucocephala and B. alicastrum respectively, which indicates that the addition of fodder trees does not interfere with the fermentative process of the silage; this effect was corroborated by Tjandraatmadja et al. (2003), who determined high values of LA (>4.1 %) in mixed silages containing 33 % of leguminous plants. According to the addition levels of the fodder trees, 15 % showed the greatest increased of LA (54.5 %) in respect to the control, and kept on decreasing as the addition levels in the silage increased, which could be due to the greater buffer capacity of the fodder trees, and could slightly decrease the efficiency of lactic bacteria (Lopez et al., 2008). The addition of L. leucocephala and B. alicastrum in maize silages, produces a homolactic fermentation that ensures levels from organic acids, adequate for the conservation of the material.

The average content of N-NH3/TN of all the treatments was 10.4 ± 2.9 %, all the treatments were found to be in accordance with Ojeda et al. (2006), who report a range from 6.0 to 15.0 % of N-NH3/TN, for guinea grass (P. maximum) added with white mulberry (M. alba). 42.9 % more ammoniacal nitrogen was detected in the silages of L. leucocephala (p<0.05), in comparison to silages of B. alicastrum; the silages with 30 % or more addition of fodder trees, contained 59.4 % more ammonia (p<0.05) than the rest of the treatments. In comparison to the control treatment, the silages of L. leucocephala and B. alicastrum produced 18.6 % and 43.5 % less ammonia, respectively. The mixed silages produced less ammonia, probably because pf the content of secondary compounds in the fodder species, as tannins, being able to form strong complexes with proteins and increase their degradation rate (Broderick, 1995; Mcsweeney et al., 1999; Silanikove et al., 2001).

The mixed silages (gramineae + fodder trees) could represent an option to increase the input of nutrients in ruminant diets in the tropic. When adding L. leucocephala and B. alicastrum in maize silages (Z. mays), the content of protein is significantly increased and a predominantly homolactic fermentation is obtained, which procures adequate levels of pH, organic acids and low rates of degradation of nitrogenated compounds.

Acknowledgements

Thanks to the Dirección General de Educación Superior Tecnológica (DGEST), for the financing of this research.

References

Alpízar A.M., Camacho C., Sáenz M., Campos J., Arece M. and Esperance . (2014). Efecto de la inclusión de diferentes niveles de morera (Morus alba) en la calidad nutricional de ensilajes de sorgo (Sorghum almum). Pastos y forrajes. 37: 55-60. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942014000100007Links ]

Ayala B.A., Capetillo C., Cetina R., Zapata C. and Sandoval C. (2006). Composición química-nutricional de á r b o l e s forrajeros. En: Compilación de Análisis del Laboratorio de Nutrición Animal. FMVZ-UADY. Mérida, Yucatán, México. Pp 12-55. https://www.researchgate.net/profile/Carlos_Sandoval-Castro/publication/277141987_ Composicion_Quimica-Nutricional_de_Arboles_Forrajeros/links/556385fd08ae9963a11ef14e/Composicion-Quimica-Nutricional-de-Arboles-Forrajeros.pdfLinks ]

Basso F.C., Adesogan A.T., Lara E.C., Rabelo C.H.S., Berchieli T.T., Teixeira I.A.M.A., Siqueira G.R. and Reis R.A. (2014). Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs. Journal of Animal Science. 92: 5640-5650. https://doi.org/10.2527/jas.2014-8258 [ Links ]

Boschini C. (2003). Características físicas y valor nutritivo del ensilaje de Morera (Morus alba) mezclado con forraje de maíz. Agronomía Mesoamericana. 14: 51-57. https://www.redalyc.org/pdf/437/43714107.pdfLinks ]

Broderick G.A. (1995). Desirable characteristics of forage legumes for improving protein utilization in ruminants. Journal of Animal Science. 73: 2760-2773. https://doi.org/10.2527/1995.7392760x [ Links ]

Cárdenas M.J.V., Sandoval C. and Solorio J. (2003). Composición química de ensilajes mixtos de gramíneas y especies arbóreas de Yucatán, México. Revista Mexicana de Ciencias Pecuarias. 41: 283-294. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/1267Links ]

Castillo M., Rojas A. and Wing-Ching R. (2009). Valor Nutricional del Ensilaje de Maíz Cultivado en Asocio con Vigna (Vigna radiata). Agronomía Costarricense. 33: 133-146. https://dialnet.unirioja.es/servlet/articulo?codigo=3022889Links ]

Cubero J., Rojas A. and Wing-Ching R. (2010). Uso del inóculo microbial elaborado en finca en ensilaje de maíz (Zea mays). Valor nutricional y fermentativo. Agronomía Costarricense. 34: 237-250. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0377-94242010000200009Links ]

Demirel M¨., Bolat D., Celik S., Bakici Y. and Ahmet T. (2006). Evaluation of fermentation qualities and digestibilities of silages made from sorghum and sunflower alone and the mixtures of sorghum-sunflower. Journal of Biological Sciences. 6: 926-930. https://doi.org/10.3923/jbs.2006.926.930 [ Links ]

Duch G.J. (1988). La conformación territorial del estado de Yucatán: los componentes del medio físico. Universidad Autónoma Chapingo, Centro Regional de la Península de Yucatán, México. 427 pp. [ Links ]

Esperance M., Ojeda F. and Cáceres O. (1981). Marco fermentativo, valor nutritivo y producción de leche con hierba pangola ensilada con ácido fórmico o miel. Pastos y Forrajes. 4: 237. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path[]=1664Links ]

Galyean M.L. (1980). Laboratory Procedures in Animal Nutrition Research. Department Of Animal and Food Sciences. Texas Tech University, Lubbock. 193 p. https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdfLinks ]

López, H.M., Rivera, J., Ortega, L., Escobedo, J., Magaña, M., Sanginés, J. and Sierra, A. (2008). Contenido nutritivo y factores antinutricionales de plantas nativas forrajeras del norte de Quintana Roo. Técnica Pecuaria en México. 46: 205-215 https://www.redalyc.org/pdf/613/61346208.pdfLinks ]

Mc Geough E.J., O’Kiely P., Foley P.A., Hart K.J., Boland T.M. and Kenny D.A. (2010). Methane emissions, feed intake, and performance of finishing beef cattle offered maize silages harvested at 4 different stages of maturity. Journal of Animal Science. 88: 1479-1491. https://doi.org/10.2527/jas.2009-2380 [ Links ]

McSweeney C.S., Palmer B., Bunch R. and Krause O. (1999). In vitro quality assessment of tannin-containing tropical shrub legumes: protein and fibre digestion. Animal Feed Science and Technology. 82:227-241. https://doi. org/10.1016/S0377-8401(99)00103-0 [ Links ]

Mora V.D. (2010). Consumo de morera (Morus alba) fresca mezclada con ensilaje de maíz por el ganado Jersey en crecimiento. Agronomía Mesoamericana. 21: 337-341. https://dialnet.unirioja.es/servlet/articulo?codigo=5039693Links ]

Ojeda G.F., Esperance M. and Díaz D. (1990). Mezclas de gramíneas y leguminosas para mejorar el valor nutritivo de los ensilajes tropicales. I. Utilización de Dolichos (Lablab purpureus (l.) Sweet). Pastos y Forrajes. 13: 189. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path[]=1282Links ]

Ojeda G.F. & Díaz D. (1991). Ensilaje de gramíneas y leguminosas para la producción de leche. I. Pannicum maximum cv. Likoni y Lablab purpureus cv. Rongai. Pastos y Forrajes. 14: 175. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path[]=1240Links ]

Ojeda G.F., Esperance M., Rodríguez N. and Cáceres O. (2006). Conservación de pastos y forrajes en zonas tropicales. En: recursos forrajeros Herbáceos y Arbóreos. Editorial Universitaria. Estación Experimental de pastos y forrajes Indio Huatey y Universidad de San Carlos de Guatemala. p 459. [ Links ]

Owens F.N., Sapienza D.A. and Hassen A.T. (2010). Effect of nutrient composition of feeds on digestibility of organic matter by cattle: A review. Journal of Animal Science. 88: E151-169E. https://doi.org/10.2527/jas.2009-2559 [ Links ]

Phiri M.S., Ngongoni T., Maasdorp V., Titterton M., Mupangwa F. and Sebata A. (2007). Ensiling characteristics and feeding value of silage made from browse tree legume-maize mixtures. Tropical and Subtropical Agroecosytems. 7: 149-156. https://www.redalyc.org/pdf/939/93970301.pdfLinks ]

Pichard G., Rosero O., Kass L. and Ojeda F. (1992). Recommendations for sampling and chemical analysis. In Methodological guidelines (Ed.). Ruminant nutrition research. San José, Costa Rica: Inter-American Institute for Cooperation on Agriculture (IICA). [ Links ]

Ramírez R., Sanginés J., Escobedo J., Cen C., Rivera J. and Lara P. (2010). Effect of diet inclusion of Tithonia diversifoliaon feed intake, digestibility and nitrogen balance in tropical sheep. Agroforestry Systems. 80: 295-302. https://doi. org/10.1007/s10457-010-9320-0 [ Links ]

SAS. (La Sociedad por Acciones Simplificada) (2002). SAS/STAT User’s Guide. SAS Institute. Cary, North Caroline. [ Links ]

Sibanda S., Jingura R.M. and Topps J.H. (1997). The effect of level of inclusion of the legume Desmodium uncinatum and the use of molasses or ground maize as additives on the chemical composition of grass- and maize- legume silages. Animal Feed Science and Technology. 68: 295-305. https://doi.org/10.1016/S0377-8401(97)00049-7 [ Links ]

Silanikove N., Perevolotsky A. and Provenza F.D. (2001). Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Animal Feed Science and Technology. 91: 69-81. https://doi. org/10.1016/S0377-8401(01)00234-6 [ Links ]

Suárez R., Mejía J., González M., García D. and Perdomo D. (2011). Evaluación de ensilajes mixtos de Saccharumofficinarumy Gliricidia sepium con la utilización de aditivos. Instituto Nacional de Investigaciones Agrícolas (INIA), Estado Trujillo, Venezuela. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942011000100006Links ]

Steel R.G.D., & Torrie J.H. (1980). Principles and Procedures of Statistics: A Biometrical Approach (2nd Ed). McGraw-Hill Inc., New York. Pp 672. [ Links ]

Tejada de H. I. (1983). Manual de laboratorio para análisis de ingredientes utilizados en la alimentación animal. SARH. INIP. [ Links ]

Titterton M., Mhere O., Kipnis T., Ashbell G., Weinberg Z.G. and Maasdorp B.V. (1999). Development of ensiling technology for smallholder cattle owners in Zimbabwe. In Silage making in the tropics, with particular emphasis on smallholders. Proceedings of the FAO electronic conference on tropical silage. Edited by L. ‘t Mannetje. [ Links ]

Tjandraatmadja M., Macrae I.C. and Norton B.W. (1993). Effect of the inclusion of tropical legumes, Gliricidia sepium and Leucaena leucocephala, on the nutritive value of silages prepared from tropical grasses. Journal of Agricultural Science, Cambridge. 120: 397-406. https://doi.org/10.1017/S0021859600076565 [ Links ]

Van Soest P., Robertson J. and Lewis B. (1991). Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 [ Links ]

Villa A.F., Meléndez A., Carulla J., Pabón M. and Cárdenas E. (2010). Estudio microbiológico y calidad nutricional del maíz en dos ecorregiones de Colombia. Revista Colombiana de Ciencias Pecuarias. 23: 65-77. https://www.redalyc.org/pdf/2950/295023458008.pdfLinks ]

Cite this paper: Cárdenas Medina, J. V., Matú Sansores, F. J., Mena Arceo, D., Ramos Trejo, O. S. (2020). Quality evaluation of mixed silage of maize (Zea mays) and forage tree species (Leucaena leucocephala and Brosimum alicastrum). Revista Bio Ciencias 7, e730. doi: https://doi.org/10.15741/revbio.07.e730

Received: April 15, 2019; Accepted: February 05, 2020

*Corresponding Author: Cárdenas Medina, J. V. Instituto Tecnológico de Tizimín, Final Aeropuerto Cupul s/n, CP 97700, Tizimín, Yucatán, México. E-mail: valcarme@ hotmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License