SciELO - Scientific Electronic Library Online

 
vol.14 número79Competencia alimentaria entre el berberisco (Ammotragus lervia Pallas, 1777) y el borrego cimarrón (Ovis canadensis Shaw, 1804) en CoahuilaPrimer registro de Cuterebra sp. (Diptera: Oestridae) en roedores (Rodentia: Cricetidae) del noreste de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.14 no.79 México sep./oct. 2023  Epub 06-Oct-2023

https://doi.org/10.29298/rmcf.v14i79.1352 

Research note

Diversity and germination analysis of tree and shrub species of ecological interest in a burned area

Homero Gárate-Escamilla1 
http://orcid.org/0000-0003-2060-1463

Aldo Tovar-Cárdenas1 
http://orcid.org/0000-0002-1625-510X

Enrique Jurado-Ybarra1 
http://orcid.org/0000-0002-4043-5549

Mauricio Cotera-Correa1 
http://orcid.org/0000-0002-9298-0645

Eduardo Alanís-Rodríguez1  * 
http://orcid.org/0000-0001-6294-4275

Maritza Gutiérrez-Gutiérrez1 
http://orcid.org/0000-0001-9890-7230

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.


Abstract

The vegetation of an ecosystem can be degraded by forest fires; which are caused by human or natural actions and generally reduce the diversity and composition of species, as well as their natural regeneration. This work was carried out in a temperate forest degraded by forest fires in the El Tejocote Natural Protected Area, Santiago municipality, Nuevo León State. The objectives were to calculate the Importance Value Index, analyze species diversity and determine the percentage of germination. Sampling was carried out in 10 random plots of 1 000 m2. The Importance Value Index (IVI), diversity indexes (Margalef, Shannon-Weiner and Simpson) and the germination percentages were determined for each species. Pinus teocote had the highest IVI (45.5 %), it was also the most dominant, covering 69 % of the sampled area. Quercus laeta had 25 % IVI and was the most abundant of all species (39 %). Agave scabra and Arbutus xalapensis had IVIs of 7.9 % and 6.9 %, respectively; both were classified as shrubs. A low diversity was obtained in all the sites sampled; the average values were: Margalef (0.74), Shannon-Weiner (0.46), and Simpson (0.77). The highest germination percentages were presented by Pinus pseudostrobus (97.40 %) and Agave scabra (84 %). The difference in the germination capacity of taxa could change the diversity and species composition of the El Tejocote community after its degradation by fire.

Key words Natural Protected Area; temperate forest; degradation; germination; forest fire; Importance Value Index

Resumen

La vegetación de un ecosistema puede ser degradada por los incendios forestales; estos se originan por acciones humanas o de manera natural y por lo general reducen la diversidad y composición de especies, así como su regeneración natural. El presente trabajo se desarrolló en un bosque templado degradado por incendios forestales en el Área Natural Protegida El Tejocote, municipio Santiago, Nuevo León. Los objetivos fueron calcular el Índice de Valor de Importancia, analizar la diversidad de especies y determinar el porcentaje de germinación. El muestreo se realizó en 10 parcelas al azar de 1 000 m2. El Índice de Valor de Importancia (IVI), índices de diversidad (Margalef, Shannon-Weiner y Simpson) y los porcentajes de germinación se determinaron para cada especie. Pinus teocote tuvo el mayor IVI (45.5 %), también fue la más dominante al cubrir 69 % de la superficie muestreada. Quercus laeta tuvo 25 % de IVI y fue la más abundante de todas las especies (39 %). Agave scabra y Arbutus xalapensis tuvieron IVI de 7.9 % y 6.9 %, respectivamente; ambas se clasificaron como arbustivas. Se obtuvo una baja diversidad en todos los sitios muestreados, y los valores promedio fueron: Margalef (0.74), Shannon-Weiner (0.46) y Simpson (0.77). Los porcentajes de germinación más altos los presentaron Pinus pseudostrobus (97.40 %) y Agave scabra (84 %). La diferencia en la capacidad germinativa de los taxones podría cambiar la diversidad y composición de las especies de la comunidad El Tejocote después de su degradación por incendio.

Palabras clave Área Natural Protegida; bosque templado; degradación; germinación; incendio; Índice de Valor de Importancia

Subject development

Temperate forests provide a variety of ecosystem services, and posess high biodiversity (Prieto-Amparán et al., 2019). Forest degradation negatively affects their functional and structural characteristics (Vásquez-Grandón et al., 2018), it refers to processes that result in long-term and drastic changes in the ecosystems (Thompson et al., 2013) and is generally associated with a reduction in biomass, changes in the structure and composition of species, as well as in their natural regeneration (Chazdon et al., 2008).

Forest fires are considered one of the main natural or anthropogenic factors causing the degradation of temperate forests (Pausas and Keeley, 2009). In Mexico, the fire regime is characterized by its moderate intensity, occurring at intervals of two to ten years (Santini et al., 2019). Some temperate forest (TF) species can benefit from low to moderate fires, because clearing the land stimulates seed release and promotes natural regeneration; however, when fires are severe, the seed viability declines (Rodríguez-Trejo and Fulé, 2003).

Multiple areas of the Cumbres de Monterrey National Park (CMNP) have been degraded due to forest fires that have occurred over time (Cantú et al., 2013). The level of species diversity and germination capacity after a fire of the El Tejocote Laguna de Sánchez community, located in the central zone of the CMNP, is unknown. For this reason, the following objectives were proposed: (1) To describe the ecological importance and diversity of tree and shrub species in a burned area, and (2) To determine the percentage of germination of tree and shrub species surviving after a fire.

The burned site has a surface area of 10 ha, and the geographical coordinates of the center of the area are 25°19'54" N and 100°15'09" W, at an average altitude of 1 905 masl. The average rainfall there is 640 mm, and the average temperature is 13 ºC (Cantú et al., 2013).

A ten percent of the study area was sampled one year after the fire occurred. Ten circular sampling units (SU) of 1 000 m2 were established, randomly located at a minimum distance of 20 m between sites (Silva-García et al., 2021). Within each SU, all shrub and tree species were recorded in a census and identified; total height, crown diameter and basimetric diameter at 10 cm were measured for each species. The crown diameters were measured with a model TP20ME Truper® longimeter, the basimetric area with a model 283d Forestry Suppliers® diametric tape, and the total height, with a model B084G8TRG9 Nikon® laser rangefinder.

In order to determine the relative ecological value of the species, the relative frequency (RF; Equation 1), relative abundance (RA; Equation 2), relative dominance (RD; Equation 3) and Importance Value Index were calculated (IVI; Equation 4). The IVI value was divided by three to standardize an interval of 0 to 100, as the maximum value is 300 when the RF, RA, and RD are added together (Manzanilla et al., 2020). The equations for their calculation were as follows:

RF= nN ×100 (1)

Where:

RF = Relative frequency of the species

n = Number of the SU where the species is present

N = Total number of SUs

RA= nN ×100 (2)

Where:

RA = Relative abundance per species

n = Number of individuals of the species

N = Overall number of all the species

RD= iN ×100 (3)

Where:

RD = Relative dominance of the species

i = Crown area of the species

N = Overall crown area of all the species

IVI=i=1n(RAi,RDi,RFi)3 (4)

Where:

IVI = Importance Value Index

RA i = Relative abundance per species

RD i = Relative dominance of the species

RF i = Relative frequency of the species

The indexes to measure species diversity were: (1) Margalef (D Mg ; Equation 5), whose values above 5 indicate high diversity, while values below 2 suggest low diversity (Margalef, 1972), (2) Simpson's complement (ʎ; Equation 6), the range of whose values fluctuates between 0 and 1, high diversity is associated with values close to 1, and a value close to 0 indicates a site with low diversity (Soler et al., 2012; Salmerón et al., 2017), and (3) Shannon-Weiner (H’; Equation 7), whose values range from 0.5 to 5, values above 3 indicate high diversity, while values below 2 denote the opposite (Somarriba, 1999). The equations used to calculate the diversity indexes were as follows (Moreno, 2001):

DMG=S-1nl N (5)

Where:

D Mg = Margalef diversity Index

S = Number of species present

nl = Natural logarithm

N = Total number of individual

ʎ=pi2

Simpson's complement=1-pi2 (6)

Where:

ʎ = Simpson Index

pi = Abundance according to species i

H'=-i=1Spi×nl (pi)

pi=niN (7)

Where:

H’ = Shannon-Wiener Index

Pi = Proportional abundance of the species

S = Total number of the species

nl = Natural logarithm

n i = Number of individuals of species i

N = Total number of individuals

An analysis of the percentage of germinated seeds was carried out; the experiment consisted of the following: (1) Collecting seeds from living individuals after the fire, (2) Identifying seeds with no apparent damage, (3) Performing buoyancy tests to detect empty seeds, (4) Applying a pre-germinative process depending on the type of seed: (i) Pinus L. and Quercus L. were immersed in water for 24 hours, (ii) Juniperus L. seeds were placed in 100 % sulfuric acid for 15 minutes, while (iii) Agave L., Arbutus L. and Rhus L. underwent no treatment (Antonio et al., 2020), and (5) Sowing 144 seeds of each of the seven identified species in a 288-cavity model ch288 GLL® semi-rigid plastic container.

A completely randomized design distributed in four replications (36 seeds per replication) was used; the response variable was germination, and seven treatments were considered for each of the tree and shrub species. For the germination data, a Shapiro-Wilk normality test was performed (González-Estrada y Cosmes, 2019), and no normality was found (p≤0.00097). Therefore, a Kruskal-Wallis test was performed to determine the presence of differences between treatments (McKight y Najab, 2010); the comparison between the means of the different species was carried out by means of a Mann-Whitney U test (McKight y Najab, 2010).

The taxa present in the study area were Pinus teocote Schltdl. & Cham. (twisted leaf or Aztec pine), Pinus pseudostrobus Lindl. (smooth-bark Mexican pine), Juniperus flaccida Schltdl. (Mexican juniper), Quercus laeta Liebm. (white oak), Rhus virens Lindh. ex A. Gray (evergreen sumac), Arbutus xalapensis Kunth (Texas madrone), and Agave scabra Ortega (rough agave or maguey).

The white oak was the most abundant species (Table 1), which is related to the behavior of other species of the same genus (Quercus) that survived after the severe fires in Chipinque Ecological Park (Alanís-Rodríguez et al., 2011). The most dominant tree species was the Aztec pine (Table 2); this agrees with what has been reported in other temperate forests in the state of Nuevo León with fire damage, where Pinus is the most dominant tree over all other species (Alanís-Rodríguez et al., 2011). The most frequent tree species were Pinus teocote and Quercus laeta (Table 1); this behavior is normal in this type of ecosystems because in other temperate forests of the Sierra Madre Occidental with different environmental conditions and floristic compositions, the frequency percentages for pines and oaks are similar to those obtained in the present research (Hernández-Salas et al., 2013). Both species registered a higher IVI (Table 2); this relationship differs from the one reported in Chipinque Ecological Park after a fire, where Quercus had a higher IVI compared to the value of Pinus (Alanís-Rodríguez et al., 2011). However, this coincides with what was reported by Méndez et al. (2014) in a fire-affected TF in the Sierra Madre de Guerrero, where the IVI of Pinus radiata D. Don was high, while that of Quercus glaucescens Bonpl. was low.

Table 1 Ecological indicators of tree and shrub species. 

Species Abundance Dominance Frequency IVI
N ha -1 RA m2 ha-1 RD N/Site RF
Pinus teocote Schltdl. & Cham. 280 32.18 5816.08 69.91 9 34.62 45.57
Quercus laeta Liebm. 340 39.08 956.37 11.49 7 26.92 25.83
Agave scabra Ortega 100 11.49 78.45 0.94 3 11.54 7.99
Pinus pseudostrobus Lindl. 50 5.75 875.71 10.53 2 7.69 7.99
Arbutus xalapensis Kunth 40 4.6 390.44 4.69 3 11.54 6.94
Rhus virens Lindh. ex A. Gray 40 4.6 32.77 0.39 1 3.85 2.95
Juniperus flaccida Schltdl. 20 2.3 170.09 2.04 1 3.85 2.73
Total 870 100 8 319.92 100 26 100 100

RA = Relative abundance; N ha-1 = Number of individuals per hectare; RD = Relative dominance; m2 ha-1 = Crown cover in square meters per hectare; RF = Relative frequency; N/Site = Number of sites where the species is present; IVI = Importance Value Index.

Table 2 Species diversity indexes. 

Sampling unit Margalef Index Simpson’s Complement Shannon-Weiner Index
1 0.40 0.49 0.68
2 0.42 0.30 0.47
3 0.91 0.37 0.68
4 0.48 0.50 0.69
5 0.62 0.32 0.50
6 0.00 0.00 0.00
7 0.62 0.48 0.67
8 1.74 0.78 1.56
9 0.80 0.65 1.08
10 1.44 0.72 1.32
Average 0.74 0.46 0.77

One year after the fire, species diversity indices indicate low values in El Tejocote (Table 2), consistently with the findings of Méndez et al. (2014) and Méndez et al. (2018), who also cite low values for the Margalef and Shannon-Weiner indices in a burned temperate forest of the Sierra de Guerrero.

Significant differences were obtained between the germination of shrub and tree species (H=17.42, Hc=17.62, p=0.0015). Pine species had contrasting germination percentages (Table 3); similar values have been documented for Pinus pseudostrobus in Michoacán State (Sáenz et al., 2011) and for P. teocote in Veracruz State (Ramírez, 2000). The low germination of Quercus laeta (Table 3), can be associated with the fact that Quercus seeds are recalcitrant and lose their viability quickly due to fast desiccation (Wawrzyniak et al., 2022).

Table 3 Germination percentage of tree and shrub species. 

Species Common name Germination percentage
Pinus pseudostrobus Lindl. Smooth-bark Mexican pine 94.4±10.09a
Agave scabra Ortega Maguey 84.00±7.96a
Pinus teocote Schltdl. & Cham. Aztec pine 31.9±3.49b
Rhus virens Lindh. ex A. Gray Evergreen sumac 10.40±1.32c
Quercus laeta Liebm. White oak 7.60±0.74c
Arbutus xalapensis Kunth Texas madrone 0±0
Juniperus flaccida Schltdl. Mexican juniper 0±0

The letters indicate differences between treatments.

Agave scabra reached a high germination percentage (Table 3), which has been recorded in several Agave species (average germination of 91 %) under different environmental conditions (Campos et al., 2020; Castillo et al., 2022). The low germination of Rhus virens and the null germination of Juniperus flaccida and Arbutus xalapensis suggest a change in the scarification used: For J. flaccida it is proposed to increase the exposure time to sulfuric acid to 5 hours (Martínez-Pérez et al., 2006), as well as cold stratification (Yucedag et al. 2021). A similar treatment is recommended for R. virens and Arbutus xalapensis, but with sulfuric acid exposure times of 30 minutes (Olmez et al., 2007).

Acknowledgments

The authors are grateful to the Consejo Nacional de Humanidades, Ciencia y Tecnología for granting Aldo Tovar-Cárdenas a master's degree scholarship, and to the inhabitants of the community of El Tejocote, Santiago municipality, Nuevo León, for allowing this research.

REFERENCES

Alanís-Rodríguez, E., J. Jiménez-Pérez, A. Valdecantos-Dema, M. Pando-Moreno, O. Aguirre-Calderón y E. J. Treviño-Garza. 2011. Caracterización de regeneración leñosa post-incendio de un ecosistema templado del Parque Ecológico Chipinque, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17(1):31-39. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-40182011000100004 . (20 de mayo de 2023). [ Links ]

Antonio B., A., C. V. Velarde N. y O. L. Rumayor R. 2020. Manual para el análisis físico y biológico de semillas forestales. Quintanilla Ediciones. Saltillo, Coah., México. 131 p. https://sma.gob.mx/wp-content/uploads/2022/08/Manual-semillas-.pdf . (22 de mayo de 2023). [ Links ]

Campos, H., C. Trejo, C. B. Peña-Valdivia, R. García-Nava, F. V. Conde-Martínez and R. Cruz-Ortega. 2020. Water availability effects on germination, membrane stability and initial root growth of Agave lechuguilla and A. salmiana. Flora 268:151606. Doi: 10.1016/j.flora.2020.151606. [ Links ]

Cantú A., C., S. Ortiz H. y M. Rovalo M. 2013. Consideraciones Finales. In: Cantú A., C. , M. Rovalo M., J. Marmolejo M., S. Ortiz H. y F. Seriñá G. (Edits.). Historia natural del Parque Nacional Cumbres de Monterrey, México. Universidad Autónoma de Nuevo León y Comisión Nacional de Áreas Naturales Protegidas. Linares, NL, México. pp. 410-414. [ Links ]

Castillo R., F., D. Castillo Q., J. E. Sáenz C., A. Rueda S. and J. T. Sáenz R. 2022. Effects of Trichoderma and Bacillus pre-treatments on the germination of Agave victoriae-reginae T. Moore seeds. Revista Mexicana de Ciencias Forestales 13(69):56-72. Doi: 10.29298/rmcf.v13i69.844. [ Links ]

Chazdon, R. L. 2008. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458-1460. Doi: 10.1126/science.1155365. [ Links ]

González-Estrada, E. and W. Cosmes. 2019. Shapiro-Wilk test for skew normal distributions based on data transformations. Journal of Statistical Computation and Simulation 89(17):3258-3272. Doi: 10.1080/00949655.2019.1658763. [ Links ]

Hernández-Salas, J., Ó. A. Aguirre-Calderón, E. Alanís-Rodríguez, J. Jiménez-Pérez , … y L. A. Domínguez-Pereda. 2013. Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente 19(2):189-199. Doi: 10.5154/r.rchscfa.2012.08.052. [ Links ]

Manzanilla Q., G. E., J. M. Mata B., E. J. Treviño G., Ó. A. Aguirre C., E. Alanís R. y J. I. Yerena Y. 2020. Diversidad, estructura y composición florística de bosques templados del sur de Nuevo León. Revista Mexicana de Ciencias Forestales 11(61):94-123. Doi: 10.29298/rmcf.v11i61.703. [ Links ]

Margalef, R. 1972. Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Connecticut Academy of Arts and Sciences 44:211-235. https://digital.csic.es/handle/10261/166281 . (26 de junio de 2022). [ Links ]

Martínez-Pérez, G., A. Orozco-Segovia and C. Martorell. 2006. Effectiveness of some pre-germination treatments eight woody species of the Oaxacan Mixteca Alta with relevant features for restoration. Boletín de la Sociedad Botánica de México (79):9-20. Doi: 10.17129/botsci.1729. [ Links ]

McKight, P. E. and J. Najab. 2010. Kruskal-Wallis test. In: Weiner, I. B. and W. E. Craighead (Edits). The Corsini Encyclopedia of Psychology. John Wiley & Sons, Inc. New York, NY, United States of America. pp. 1413-1422. [ Links ]

Méndez O., C., C. A. Mora D., E. Alanís R., J. Jiménez P., … y M. Á. Pequeño L. 2018. Fitodiversidad y estructura de un bosque de pino-encino en la Sierra Madre del Sur, México. Revista Mexicana de Ciencias Forestales 9(50):35-53. Doi: 10.29298/rmcf.v9i50.236. [ Links ]

Méndez O., C. , E. Alanís R., J. Jiménez P., Ó. A. Aguirre C. y E. J. Treviño G. 2014. Análisis de la regeneración postincendio en un bosque de pino-encino de la Sierra de Guerrero, México. CIENCIA UANL 17(69):63-70. https://cienciauanl.uanl.mx/wp-content/uploads/2014/10/Art.-de-la-Sierra-Guerrero-a-colorts.pdf . (3 de abril de 2023). [ Links ]

Moreno, C. E. 2001. Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa (SEA). Zaragoza, Z, España. 84 p. https://www.researchgate.net/publication/304346666_Metodos_para_medir_la_biodiversidad . (12 de diciembre de 2022). [ Links ]

Olmez, Z., A. Gokturk and F. Temel. 2007. Effects of some pretreatments on seed germination of nine different drought-tolerant shrubs. Seed Science and Technology 35(1):75-87. Doi: 10.15258/sst.2007.35.1.07. [ Links ]

Pausas, J. G. and J. E. Keeley. 2009. A burning story: The role of fire in the history of life. BioScience 59(7):593-601. Doi: 10.1525/bio.2009.59.7.10. [ Links ]

Prieto-Amparán, J. A., F. Villarreal-Guerrero, M. Martínez-Salvador, C. Manjarrez-Domínguez, G. Vázquez-Quintero and A. Pinedo-Alvarez. 2019. Spatial near future modeling of land use and land cover changes in the temperate forests of Mexico. PeerJ 7:e6617. Doi: 10.7717/peerj.6617. [ Links ]

Ramírez G., E. O. 2000. Variación de semillas y plántulas de tres procedencias de Pinus teocote Schl. & Cham. Tesis de Maestría en Ecología Forestal. Instituto de Genética Forestal, Universidad Veracruzana. Xalapa, Ver., México. 78 p. https://www.uv.mx/iif/files/2014/10/Tesis-Elba-Pinus-teocote-MC.pdf . (22 de marzo de 2022). [ Links ]

Rodríguez-Trejo, D. A. and P. Z. Fulé. 2003. Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire 12(1):23-37. Doi: 10.1071/WF02040. [ Links ]

Sáenz R., J. T., H. J. Muñoz F. y A. Rueda S. 2011. Especies promisorias de clima templado para plantaciones forestales comerciales en Michoacán. INIFAP-Campo Experimental Uruapan. Uruapan, Mich., México. 64 p. https://es.scribd.com/document/401504925/Especies-promisorias-de-clima-templado-para-plantaciones-forestales-comerciales-en-Michoacan-J-Trinidad-Saenz-Reyes-pdf . (10 de enero de 2023). [ Links ]

Salmerón L., A., G. Geada L. y M. C. Fagilde E. 2017. Propuesta de un índice de diversidad funcional: Aplicación a un bosque semideciduo micrófilo de Cuba Oriental. Bosque 38(3):457-466. Doi: 10.4067/S0717-92002017000300003. [ Links ]

Santini, N. S., M. F. Adame, R. H. Nolan, Y. Miquelajauregui, … and D. Eamus. 2019. Storage of organic carbon in the soils of Mexican temperate forests. Forest Ecology and Management 446:115-125. Doi: 10.1016/j.foreco.2019.05.029. [ Links ]

Silva-García, J. E., O. A. Aguirre-Calderón, E. Alanís-Rodríguez, E. Jurado-Ybarra, J. Jiménez-Pérez y B. Vargas-Larreta. 2021. Estructura y diversidad de especies arbóreas en un Bosque templado del Noroeste de México. Polibotánica (52):88-102. Doi: 10.18387/polibotanica.52.7. [ Links ]

Soler, P. E., J. L. Berroterán, J. L. Gil y R. A. Acosta. 2012. Índice valor de importancia, diversidad y similaridad florística de especies leñosas en tres ecosistemas de los llanos centrales de Venezuela. Agronomía Tropical 62(1-4):25-37. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2012000100003 . (16 de febrero de 2023). [ Links ]

Somarriba, E. 1999. Diversidad Shannon. Agroforestería en las Américas 6(23):72-74. http://bco.catie.ac.cr:8087/portal-revistas/index.php/AGRO/article/view/707 . (28 de marzo de 2022). [ Links ]

Thompson, I. D., M. R. Guariguata, K. Okabe, C. Bahamondez, … and C. Sabogal. 2013. An operational framework for defining and monitoring forest degradation. Ecology and Society 18(2):20. https://www.jstor.org/stable/26269330 . (28 de marzo de 2023). [ Links ]

Vásquez-Grandón, A., P. J. Donoso and V. Gerding. 2018. Forest degradation: when is a forest degraded? Forests 9(11):726. Doi: 10.3390/f9110726. [ Links ]

Wawrzyniak, M. K., E. M. Kalemba, T. P. Wyka and P. Chmielarz. 2022. Changes in reserve materials deposited in cotyledons of Pedunculate Oak (Quercus robur L.) Seeds during 18 Months of Storage. Forests 13(12):2142. Doi: 10.3390/f13122142. [ Links ]

Yucedag, C., M. Cetin, H. B. Ozel, A. E. S. A. Aisha, O. B. M. Alrabiti and A. M. O. Al Jama. 2021. The impacts of altitude and seed pretreatments on seedling emergence of Syrian juniper (Juniperus drupacea (Labill.) Ant. et Kotschy). Ecological Processes 10(1):1-6. Doi: 10.1186/s13717-020-00276-z. [ Links ]

Received: March 08, 2023; Accepted: July 22, 2023

Conflict of interest

The authors declare that they have no conflicts of interest.

Contribution by author

Homero Gárate-Escamilla: development of the manuscript and statistical analysis; Aldo Tovar-Cárdenas: interpretation of results; Enrique Jurado-Ybarra and Mauricio Cotera-Correa: review of the manuscript; Eduardo Alanís-Rodríguez and Maritza Gutiérrez-Gutiérrez: data analysis.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons