SciELO - Scientific Electronic Library Online

 
vol.13 issue73Metamorphosis of the contemporary Mexican forest policy and its impact on the forest sectorStructure and floristic composition of a Pinus-Quercus forest in El Porvenir, Chiapas State author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias forestales

Print version ISSN 2007-1132

Rev. mex. de cienc. forestales vol.13 n.73 México Sep./Oct. 2022  Epub Oct 10, 2022

https://doi.org/10.29298/rmcf.v13i73.1271 

Scientific article

Urban tree characterization in the downtown area of Hualahuises, Nuevo León

Eduardo Alanís-Rodríguez1 
http://orcid.org/0000-0001-6294-4275

Arturo Mora-Olivo2 
http://orcid.org/0000-0002-9654-0305

Víctor Manuel Molina-Guerra1  3 
http://orcid.org/0000-0003-4405-699X

Homero Gárate-Escamilla1  * 
http://orcid.org/0000-0003-2060-1463

José Ángel Sigala Rodríguez4 
http://orcid.org/0000-0003-4292-8707

1Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. México

2Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas. México

3RENAC, S.A. de C.V. México

4 Campo Experimental Valle del Guadiana, INIFAP. México


Abstract

Trees are an important resource in urban areas due to the environmental services they provide. The objective of this study was to evaluate the floristic composition, structure, and diversity of urban trees in the center of Hualahuises, Nuevo León. The urban trees of the public spaces in the center of Hualahuises were evaluated, covering the public squaresand sidewalks. Total height, normal diameter and crown diameter were measured for each tree. For each species, abundance, cover, and frequency were determined to obtain its Importance Value Index. Species richness was also determined using the Margalef index, Shannon's diversity index, and the number of effective species. 38 species of vascular plants distributed in 35 genera and 22 families were recorded. 63.20 % (25 species) are introduced and 36.85 % (21 species) are native. The most representative family was Fabaceae with four species. The graphs of diameter and height classes indicate the existence of a higher proportion of individuals with small diameters (d 1.30 <5 cm) and intermediate heights (h>3 m and <6 m). The plant community presents intermediate-high values of richness and high values of diversity of species compared to other urban green areas of northeastern Mexico. More than half (63 %) of the species are introduced, among which Fraxinus americana and Thuja occidentalis stand out for their Importance Value Index. The native species with the highest importance value was Quercus virginiana.

Key words Green areas; urban forests; species diversity; introduced species; native species; species richness

Resumen

Los árboles constituyen un recurso importante en las zonas urbanas debido a los servicios ambientales que brindan. El objetivo de este estudio fue evaluar la composición florística, estructura y diversidad del arbolado urbano del centro de Hualahuises, Nuevo León. Se evaluó el arbolado urbano de los espacios públicos del centro de Hualahuises, abarcando las plazas públicas y aceras. A cada árbol se le midieron su altura total, el diámetro normal y diámetro de copa. Para cada especie se determinó su abundancia, su cobertura, y su frecuencia, para obtener su Índice de Valor de Importancia. También se determinó la riqueza de especies mediante el índice de Margalef, el índice de diversidad de Shannon, y el número de especies efectivas. Se registraron 38 especies de plantas vasculares distribuidas en 35 géneros y 22 familias. El 63.20 % (25 especies) son introducidas y el 36.8 % (21 especies) son nativas. La familia más representativa fue Fabaceae con cuatro especies. Los análisis de clases diamétricas y de altura indican una mayor proporción de individuos con diámetros bajos (d 1.30 <5 cm) y alturas intermedias (h>3 m y <6 m). La comunidad vegetal presenta valores intermedios-altos de riqueza y altos de diversidad de especies comparado con otras áreas verdes urbanas del noreste de México. Más de la mitad de las especies (63 %) son introducidas, entre las cuales Fraxinus americana y Thuja occidentalis sobresalen por su Índice de Valor de Importancia. La especie nativa con mayor valor de importancia fue Quercus virginiana.

Palabras clave Áreas verdes; bosques urbanos; diversidad de especies; especies introducidas; especies nativas; riqueza de especies

Introduction

Trees are an important resource in urban areas for the environmental services they provide to society, mainly for their ornamental role or scenic beauty (Corona, 2021). The foliage and fruit of the trees offer habitat, shelter and food for birds, insects, and other animal groups that have adapted to live in anthropized ecosystems (de Almeida y Cándido et al., 2017). In addition, urban trees are a source of oxygen, an significant carbon sink and contribute to lower the temperature at the microclimate level (Livesley et al., 2016).

Although the study of urban forests has its foundations about two centuries ago, interest in their study has increased notably in recent years, especially in Latin America (Devisscher et al., 2022). In Mexico, in particular, the creation of new urban forests has been supported for centuries, among the first very notorious are the Alameda Central and Bosque de Chapultepec in Mexico City (Benavides and Fernández, 2012). The latter was created by King Netzahualcayotl, who planted the first ahuehuetes (Taxodium spp.) in 1430 (Alcántara, 2019). Currently, urban trees are characteristic in large and small cities of the national territory.

In the case of northeastern Mexico, research on urban forests has been concentrated in the state of Nuevo León and more intensely in the metropolitan area of Monterrey (Rocha et al., 1998; Alanís, 2005, 2011). Recently, studies of urban trees have been carried out in smaller cities such as Linares (Leal et al., 2018) and Montemorelos (Canizales et al., 2020). However, there are still some municipalities in Nuevo León, such as Hualahuises, where knowledge about their urban trees is still scarce.

Hualahuises is not a large place, although its artisan tradition and its deep-rooted culture of indigenous origin favored its nomination as Magical Town in 2015. Despite not having very big areas with urban trees, in this municipality there are green areas in squares, gardens and along streets and avenues. Given that until now the current state of the trees in this place was unknown, the present study was carried out with the objective of evaluating the floristic composition, structure and diversity of its urban trees.

Materials and Methods

Study area

The study was carried out in the Hualahuises municipality, Nuevo León State (northeast Mexico), located between 24°51′09″ north and 99°46′22″ west, at 405 meters above sea level. The predominant climate is semi-warm sub-humid with rains in summer. The average annual temperature is 20 to 24 °C, with a rainfall range of 700-900 mm. The dominant soil type is Vertisol (INEGI, 2009).

Field evaluation

In January 2022, the urban trees in public spaces in the center of Hualahuises were evaluated, covering public squares and sidewalks. All individuals of arboreal and shrubby size with a normal diameter (d 1.30 m) ≥1 cm were measured. The dendrometric variables evaluated were total height (h), which was measured with a model III Haglöf Vertez III®️ hypsometer, normal diameter (d 1.30 m), with a model 283D/5m Forestry Suppliers IncTM diameter tape, and crown diameter (k) with a 50 m fiberglass model TP50ME TruperTM tape. To verify the correct nomenclature of the species, the Tropicos® platform (Tropicos, 2022) was used. The botanical material was identified with the help of the use of dendrological keys and was deposited in the herbarium of the Graduate School of Forest Sciences, Universidad Autónoma de Nuevo León.

Data analysis

For each species its abundance was determined, according to the number of trees, its coverage depending on the crown area, and its frequency based on its presence in the sections of the park (it was divided into four sections) (Alanís et al., 2020). To evaluate the crown, the crown surface area (ASC) (Rodríguez-Laguna et al., 2009) and the crown volume (V copa ) (Mõttus et al., 2006; Zhu et al., 2021) were estimated. The ASC is known as the most active photosynthetic region of the crown where light radiation is absorbed and comprises the lateral surface of the crown without the shadow surface of the crown (Rodríguez-Laguna et al., 2009) and is expressed in m2. The volume of the tree crown is a basic characteristic of the tree because it correlates with the production of forest biomass and the most relevant environmental and ecosystem functions, such as carbon sequestration and the reduction of air pollution (Zhu et al., 2021).

The relativized variables were used to obtain a weighted value at the taxon level called the Urban Importance Value Index (IVIU), which acquires percentage values on a scale of 0 to 100. This index is intended to rank the importance of each species in a horizontally by including abundance, dominance and frequency, as well as vertically and three-dimensionally, by including height, volume and crown surface area (Saavedra-Romero et al., 2019). This index has turned out to be successful in measuring the importance value of urban trees, since it makes the calculation of the IVI more robust and complete by including four crown variables in its quantification: (a) the composite volume of the crown, (b) crown surface area (composite-three-dimensional variables) and two absolute variables, (c) crown density, and (d) live crown proportion (Saavedra-Romero et al., 2019).

Species richness was also determined using the Margalef index (D Mg ), the Shannon diversity index, and the number of effective species ( 1 D) (Jost, 2006; Cultid-Medina and Escobar 2019). Table 1 lists the formulas for calculating the IVIU and the species diversity indices.

Table 1 Formulas used to determine the structural and diversity indexes of the species. 

Formula Where
Ai=NiS ARi=Ai/i=1nAi× 100 A i = Absolute abundance
AR i = Relative abundance per species
N i = Number of individuals of the i species
S = Sampling area (ha)
Di=GiS DRi=Di/i=1nDi× 100 D i = Absolute dominance
DR i = Relative dominance of the i species
with respect to total dominance
G i = Basimetric area of the i species
S = Area (ha)
Fi=PiNS FRi= Fi/i=1nFi × 100 F i = Absolute frequency
FR i = Relative frequency of the i species
with respect to total frequency
P i = Number of sites where the i species
is present
NS = Total number of sampling sites
ASC=π×r6LC24LC2+r21.5-r3 ASC = Canopy or crown area
r = Canopy or crown radius
LC = Canopy or crown length
Vcopa=43×π×DC3×LC×18 V copa = Canopy or crown volume
Π = 3.1416
DC = Canopy or crown diameter
LC = Canopy or crown length
IVIU=i=1n(ARi,DRi,FRi,ASC,Vcopa)5 AR i = Relative abundance by species
with respect to the total density
DR i = Relative dominance of the i species
with respect to the total dominance
FR i = Relative frequency of the i species
with respect to the total frequency.
ASC = Canopy or crown area
V copa = Canopy or crown volume
H'=-i=1Spi×ln(pi) pi=ni/N H’ = Shannon-Weiner index
S = Number of present species
N = Total number of individuals
n i = Species number of individuals
ln = Natural logarithm
DMg=S-1ln(N) D Mg = Margalef index
S = Number of present species
N = Total number of individuals
ln = Natural logarithm
D1=expH' 1 D = Number of effective species
exp = Exponential
H’ = Shannon-Weiner index

Results

38 species of vascular plants distributed in 35 genera and 22 families were recorded, 63.2 % (25 species) are introduced and 36.8 % (21 species) are native. The most representative family was Fabaceae with four species, followed by Arecaceae, Fagaceae and Rutaceae with three species each (Table 2).

Table 2 Abundance, basal area, canopy area, frequency, canopy area, canopy volume and Urban Importance Value Index (IVIU) of tree, shrub and palm species in Hualahuises downtown. 

Species Family Origin Abundance Basimetric area Canopy area Frequency Supposed canopy area Canopy volume IVIU
Absolute Relative Absolute (m2) Relative % Absolute (m2) Relative % Absolute No. sites Relative % Absolute (m2) Relative % Absolute (m3) Relative %
Fraxinus americana L. Oleaceae Introduced 38 9.90 2.07 30.56 826.00 17.93 4 4.88 1 492.43 17.61 852.11 33.09 16.68
Quercus virginiana Mill. Fagaceae Native 83 21.61 1.04 15.33 977.43 21.22 4 4.88 1 717.43 20.27 391.46 15.20 16.64
Thuja occidentalis L. Cupressaceae Introduced 35 9.11 0.93 13.79 748.16 16.24 4 4.88 1 074.04 12.67 439.01 17.05 11.99
Cordia boissieri A.DC. Cordiaceae Native 34 8.85 0.43 6.33 411.31 8.93 4 4.88 782.37 9.23 144.12 5.60 7.50
Ligustrum lucidum W. T. Aiton Oleaceae Introduced 21 5.47 0.17 2.53 158.31 3.44 4 4.88 338.07 3.99 48.91 1.90 3.93
Morus celtidifolia Kunth Moraceae Native 10 2.60 0.21 3.10 191.91 4.17 3 3.66 333.13 3.93 111.15 4.32 3.74
Quercus macrocarpa Michx. Fagaceae Introduced 8 2.08 0.29 4.35 155.50 3.38 4 4.88 251.44 2.97 73.25 2.84 3.23
Washingtonia filifera (Gloner ex Kerch., Burv., Pynaert, Rodigas & Hull) de Bary Arecaceae Introduced 11 2.86 0.31 4.60 61.59 1.34 4 4.88 388.62 4.59 38.49 1.49 3.03
Lagerstroemia indica L. Lythraceae Introduced 15 3.91 0.04 0.60 91.90 2.00 4 4.88 178.32 2.10 21.46 0.83 2.74
Ehretia anacua (Terán & Berland.) I. M. Johnst. Ehretiaceae Native 8 2.08 0.14 2.04 88.56 1.92 3 3.66 182.35 2.15 48.45 1.88 2.34
Syagrus romanzoffiana (Cham.) Glassman Arecaceae Introduced 4 1.04 0.16 2.29 101.75 2.21 1 1.22 214.27 2.53 81.63 3.17 2.03
Nerium oleander L. Apocynaceae Introduced 8 2.08 0.03 0.48 51.47 1.12 4 4.88 116.06 1.37 10.68 0.41 1.97
Tecoma stans (L.) Juss. ex Kunth Bignoniaceae Native 16 4.17 0.01 0.11 34.47 0.75 2 2.44 76.21 0.90 2.75 0.11 1.67
Eriobotrya japonica (Thunb.) Lindl. Rosaceae Introduced 11 2.86 0.04 0.56 49.40 1.07 2 2.44 104.42 1.23 15.52 0.60 1.64
Leucophyllum frutescens (Berland.) I. M. Johnst. Scrophulariaceae Native 11 2.86 0.01 0.15 27.74 0.60 3 3.66 55.96 0.66 2.17 0.08 1.57
Helietta parvifolia (A. Gray ex Hemsl.) Benth. Rutaceae Native 9 2.34 0.03 0.42 75.80 1.65 1 1.22 139.86 1.65 25.29 0.98 1.57
Psidium guajava L. Myrtaceae Native 7 1.82 0.04 0.62 42.74 0.93 3 3.66 72.87 0.86 6.32 0.25 1.50
Acer negundo L. Sapindaceae Native 4 1.04 0.10 1.47 86.01 1.87 1 1.22 136.91 1.62 42.10 1.63 1.48
Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst. Fabaceae Native 1 0.26 0.07 1.06 78.54 1.71 1 1.22 103.60 1.22 76.09 2.95 1.47
Delonix regia (Bojer ex Hook.) Raf. Fabaceae Introduced 7 1.82 0.11 1.63 51.83 1.13 2 2.44 100.43 1.19 17.98 0.70 1.45
Jacaranda mimosifolia D. Don Bignoniaceae Introduced 3 0.78 0.11 1.55 65.44 1.42 1 1.22 149.97 1.77 43.18 1.68 1.37
Melia azedarach L. Meliaceae Introduced 4 1.04 0.02 0.29 23.84 0.52 3 3.66 50.35 0.59 8.25 0.32 1.23
Quercus rubra L. Fagaceae Introduced 4 1.04 0.05 0.78 39.97 0.87 2 2.44 73.95 0.87 9.96 0.39 1.12
Prunus persica (L.) Batsch Rosaceae Introduced 4 1.04 0.00 0.07 17.02 0.37 2 2.44 34.99 0.41 1.89 0.07 0.87
Platanus occidentalis L. Platanaceae Native 1 0.26 0.06 0.86 30.19 0.66 1 1.22 73.63 0.87 29.77 1.16 0.83
Phoenix roebelenii O'Brien Arecaceae Introduced 8 2.08 0.11 1.55 10.32 0.22 1 1.22 24.85 0.29 0.46 0.02 0.77
Cupressus sempervirens L. Cupressaceae Introduced 3 0.78 0.04 0.55 2.48 0.05 2 2.44 14.30 0.17 0.22 0.01 0.69
Pseudobombax ellipticum (Kunth) Dugand Malvaceae Introduced 1 0.26 0.03 0.42 35.78 0.78 1 1.22 47.27 0.56 15.85 0.62 0.69
Moringa oleifera Lam. Moringaceae Introduced 2 0.52 0.00 0.01 3.28 0.07 2 2.44 8.38 0.10 0.29 0.01 0.63
Grevillea robusta A. Cunn. ex R. Br. Proteaceae Introduced 1 0.26 0.01 0.22 14.86 0.32 1 1.22 30.71 0.36 5.84 0.23 0.48
Citrus limon (L.) Osbeck Rutaceae Introduced 3 0.78 0.01 0.09 6.85 0.15 1 1.22 14.01 0.17 0.49 0.02 0.47
Persea americana Mill. Lauraceae Introduced 2 0.52 0.02 0.24 10.70 0.23 1 1.22 20.83 0.25 1.93 0.07 0.46
Calia secundiflora (Ortega) Yakovlev Fabaceae Native 1 0.26 0.02 0.31 14.19 0.31 1 1.22 26.46 0.31 4.62 0.18 0.46
Citrus sinsensis (L.) Osbeck Rutaceae Introduced 1 0.26 0.02 0.24 12.25 0.27 1 1.22 19.25 0.23 2.63 0.10 0.42
Yucca filifera Chabaud Asparagaceae Native 2 0.52 0.01 0.19 2.37 0.05 1 1.22 10.46 0.12 0.18 0.01 0.38
Ficus benjamina L. Moraceae Introduced 1 0.26 0.04 0.57 3.30 0.07 1 1.22 8.55 0.10 0.38 0.01 0.33
Leucaena leucocephala (Lam.) de Wit Fabaceae Introduced 1 0.26 0.00 0.00 1.89 0.04 1 1.22 5.68 0.07 0.15 0.01 0.32
Forestiera angustifolia Torr. Oleaceae Native 1 0.26 0.00 0.00 0.64 0.01 1 1.22 1.49 0.02 0.01 0.00 0.30
Sum 384 100 6.77 100 4 605.81 100 82 100 8 473.92 100 2 575.01 100 100

According to the characterization, the abundance of individuals was 384, the total basal area (dominance) of the urban trees was 6.77 m2, with 4 605.81 m2 of crown area. Based on the vertical and three-dimensional attributes, the crown area was 8 473.92 m2 and the crown volume was 2 575.01 m3. The four species with the highest values in all the variables were Fraxinus Americana L., Quercus virginiana Mill., Thuja occidentalis L. and Cordia boissieri A. DC. (Table 2).

The two species with the highest Importance Value Index were Fraxinus americana (introduced species) and Quercus virginiana (native species). In addition, Q. virginiana showed the highest abundance values (obtaining a value more than double that of F. americana), crown area and presumed crown area, while F. americana presented the highest values of basimetric area and crown volume, in both variables obtained values of almost double that of Q. virginiana (Table 2).

Figure 1 shows the graph of diameter classes. The curve describes a negative exponential trend, as the number of individuals decreases as the normal diameter increases. This revealed that a high number of individuals with small diameters and a low number of individuals with high diameters prevail. In total, 136 individuals with a normal diameter less than 5 cm and 34 >30 cm were counted.

Figure 1 Number of tree and shrubs samples in Hualahuises downtown based upon normal diameter (cm). 

Figure 2 illustrates height classes, in which it is noted that the greatest presence of trees was recorded in the 3 to 5.99 m category with 192 individuals, followed by the ≤2.99 m category with 100 samples. There are few individuals with a height greater than 12 m. The distribution of the specimens with respect to their height category represented a positive asymmetric distribution.

Figure 2 Number of tree and shrubs samples in Hualahuises downtown based upon total height (m). 

According to the richness and diversity indexes, the evaluated plant community recorded a D Mg Margalef index of =6.21 and a Shannon entropy index of H'=2.94. Shannon's true diversity index was 18.93.

Discussion

38 species were recorded in Hualahuises downtown, a value higher than the 13 species reported by Canizales et al. (2020) in the green areas of Montemorelos, but similar to the 41 species by Leal et al. (2018) in the green areas of Linares, to the 39 species declared by Zamudio (2001) in Linares downtown and to the 39 inventoried by Alanís et al. (2014) in a university campus also in Linares municipality. Qualitative research carried out in the Monterrey Metropolitan Area (AMM), Nuevo León State, has recorded 115 species (Alanís, 2005) and up to 137 (Rocha et al., 1998).

The Fabaceae family was the most representative with four species. These findings are consistent with the results of Alanís (2005), Alanís et al. (2014), Leal et al. (2018 and Canizales et al. (2020), who conducted their studies in northeastern Mexico with similar data. The families that follow are Arecaceae, Fagaceae and Rutaceae with three species each. From them, all three species of Arecaceae and two species of Fagaceae and Rutaceae are introduced.

In the present study, 63.2 % (25 species) introduced and 36.8 % (21 species) native were recorded. These results are common in the region, as found in Canizales et al (2020) who determined 54 % of introduced species in Montemorelos, in the study by Alanís (2005) identified 53 % of introduced species in Monterrey Metropolitan Area and in Martínez-Trinidad et al. (2021) work, 61 % are introduced in three parks in Mexico City. This pattern of more introduced than native species is recognized in much of the world and is related to the increase in the production of ornamental trees in nurseries (Pagès i Clavaguera, 2005).

Fraxinus americana reached the highest value of Urban Importance Value Index, with 16.7 %. Various studies have established this species as the most ecologically important in urban green areas in northeastern Mexico (Rocha et al., 1998; Alanís et al., 2014; Leal et al., 2018; Canizales et al., 2020). Alanís (2005) explained that it was frequently includedd in urban reforestation in northeastern Mexico in the 1980’s, even earlier, but this species was no longer used in the early 1990’s, when natives began to be used.

The second species with the highest urban importance value was Quercus virginiana with 16.64 %. Leal et al. (2018) and Canizales et al. (2020) also recorded Q. virginiana as the second most important species in Linares and Montemorelos, Nuevo León, and Alanís et al. (2014) identified it as the most significant in a university campus in northeastern Mexico. Their high presence is related to the greater preference for incorporating them in the green areas of the cities of northeastern Mexico during the 1990’s (Alanís, 2005).

Thuja occidentalis was the third species with a high urban importance value. It is exotic as it is native to eastern Canada and much of north central and northeastern United States (Housset et al., 2015); it is an evergreen conifer of the Cupressaceae family. It was introduced to several cities in Mexico, such as Guadalajara (MacGregor-Fors, 2008), Monterrey (Rocha et al., 1998) and Linares (Leal et al., 2018) among others, due to its beauty and resistance to frost (Alanís, 2011).

The graph of diameter classes (Figure 1) showed a negative exponential trend, since the number of individuals decreases as the normal diameter increases; therefore, it is concluded that a large part of the arboreal individuals in Hualahuises are young samples. These results are similar to those provided by Martínez-Trinidad et al. (2021) in four parks in Mexico City, but opposed to the positive asymmetric distribution identified by Leal et al. (2018) and Canizales et al. (2020) in the green areas of cities in northeastern Mexico. The greater presence of juvenile arboreal individuals than adults may be associated with the fact that afforestation activities have intensified in cities in recent years (Alanís, 2005).

The height class plot (Figure 2) depicts a positive skewed distribution. This behavior was similar to that reported by Leal et al. (2018) and Canizales et al. (2020) in urban green areas of Linares and Montemorelos, respectively. Most of the trees are between 2 and 5.99 m tall, similar to the results of Canizales et al. (2020) in Montemorelos, but opposite to those of the Linares trees (Leal et al., 2018), which with higher height (from 6.40 to 9.60 m) already prevail. The size of the Hualahuises trees may be a response to their youth (Alanís, 2005), or to the fact that they have been pruned, since their vertical development interferes with cable lines and public lighting (Macías-Sámano, 2010).

The Margalef richness index (D Mg =6.21) suggests a medium-high diversity, a value similar to the 7.62 recorded by Alanís et al. (2014) for the urban trees of a university campus in Linares, Nuevo León, and at 5.24 of Leal et al. (2018) for the one corresponding to the city of Linares. The Shannon-Wiener index value was 2.94. Ortíz and Luna (2019) took the value of 1.50 as the minimum criterion for the Shannon diversity index in an urban area, so, in reference to the same, the results indicate high diversity. This value of 2.94 is higher than the 1.17 reported by Canizales et al. (2020) in Montemorelos and at 1.99 recorded by Leal et al. (2018) in Linares, but lower than 3.89 registered by Martínez-Trinidad et al. (2021) in Mexico City.

Conclusions

Individuals with small diameters are the most abundant (d 1.30 <5 cm), as well as those of intermediate heights (h>3 m and <6 m), which indicates a young plant community. Species richness presents intermediate values and high diversity, compared to that of other urban green areas in northeastern Mexico. More than half (63 %) of the species are introduced, among which Fraxinus americana and Thuja occidentalis stand out for their Importance Value index. In this context, the native species with the highest value is Quercus virginiana.

This research could provide important information on which tree species are most successful in urban reforestation in the city of Hualahuises, Nuevo León State.

Acknowledgements

The authors thank the staff of RENAC S.A. de C.V. company for their support in the field activities, as well as Israel Garza Gaona and Guadalupe Pérez Malacara.

REFERENCES

Alanís F., G. J. 2005. El arbolado urbano en el área metropolitana de Monterrey. Ciencia UANL 8(1):20-32. https://www.redalyc.org/pdf/402/40280104.pdf . (21 de enero de 2022). [ Links ]

Alanís R., E., A. Mora O. y J. S. Marroquín de la F. 2020. Muestreo ecológico de la vegetación. Universidad Autónoma de Nuevo León. Monterrey, N. L., México. 245 p. [ Links ]

Alanís, E., J. Jiménez, A. Mora-Olivo, P. Canizales y L. Rocha. 2014. Estructura y composición del arbolado urbano de un campus universitario del noreste de México. Revista Iberoamericana de Ciencias 1(7):93-101. https://1library.co/document/zln424gq-estructura-composicion-arbolado-urbano-campus-universitario-noreste-mexico.html . (18 de marzo de 2022). [ Links ]

Alanís, G. 2011. Los fenómenos meteorológicos extremos. Efecto de las bajas temperaturas en la vegetación arbórea del área metropolitana de Monterrey. Ciencia UANL 14(2):115-120. https://www.redalyc.org/pdf/402/40218433002.pdf . (25 de enero de 2022). [ Links ]

Alcántara O., S. 2019. Hacia una cultura de la salvaguarda del paisaje Latinoamericano. In: Navarrete, A. A., F. A. Martínez S., A. R. Sá C. y J. Marques da S. (Coords.). Paisaje y jardín como patrimonio cultural. Diversas miradas desde México y Brasil. Universidad Autónoma Metropolitana, Unidad Azcapotzalco. Azcapotzalco, CdMx., México. pp. 152-177. http://zaloamati.azc.uam.mx/handle/11191/7437 . (04 de junio de 2022). [ Links ]

Benavides M., H. M. y D. Y. Fernández G. 2012. Estructura del arbolado y caracterización dasométrica de la segunda sección del Bosque de Chapultepec. Madera y Bosques 18(2):1-71. Doi: 10.21829/myb.2012.182352. [ Links ]

Canizales V., P. A., E. Alanís R., V. A. Holguín E., S. García G. y A. C. Chávez C. 2020. Caracterización del arbolado urbano de la ciudad de Montemorelos, Nuevo León. Revista Mexicana de Ciencias Forestales 11(62):111-135. Doi: 10.29298/rmcf.v11i62.768. [ Links ]

Corona N., G. 2021. Servicios ecosistémicos del bosque urbano. In: Miranda N., L. y M. A. Santinelli R. (Coords.). Responsabilidad social y sostenibilidad: disrupción e innovación ante el cambio de época. Universidad Anáhuac México, Facultad de Responsabilidad Social. Hiuxquilucan, Edo.Méx., México. pp. 513-526. [ Links ]

Cultid-Medina, C. A. y F. Escobar. 2019. Pautas para la estimación y comparación estadística de la diversidad biológica (qD). In: Moreno, C. E. (Ed.) La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. Universidad Autónoma del Estado de Hidalgo. Pachuca de Soto, Hgo., México. pp. 175-202. https://www.researchgate.net/publication/340104672_Pautas_para_la_estimacion_y_comparacion_estadistica_de_la_diversidad_biologica_qD . (27 de febrero de 2022). [ Links ]

de Almeida, A. C. y J. F. Cândido J. 2017. A importância de parques urbanos para a conservação de aves. Arquivos de Ciências Veterinarias e Zoologia 20(4):189-199. Doi: 10.25110/arqvet.v20i4.5476. [ Links ]

Devisscher, T., C. Ordóñez-Barona, C. Dobbs, M. Dias B., … and F. J. Escobedo. 2022. Urban forest management and governance in Latin America and the Caribbean: A baseline study of stakeholder views. Urban Forestry & Urban Greening 67:127441. Doi: 10.1016/j.ufug.2021.127441. [ Links ]

Housset, J. M., M. P. Girardin, M. Baconnet, C. Carcaillet and Y. Bergeron. 2015. Unexpected warming‐induced growth decline in Thuja occidentalis at its northern limits in North America. Journal of Biogeography 42(7):1233-1245. Doi: 10.1111/jbi.12508. [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI) . 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Hualahuises, Nuevo León Clave geoestadística 19029. https://docplayer.es/24771182-Prontuario-de-informacion-geografica-municipal-de-los-estados-unidos-mexicanos-hualahuises-nuevo-leon-clave-geoestadistica-19029.html . (7 de marzo de 2022). [ Links ]

Jost, L. 2006. Entropy and diversity. Oikos 113(2):363-375. Doi: 10.1111/j.2006.0030-1299.14714.x. [ Links ]

Leal E., C. E., N. Leal E., E. Alanís R., M. A. Pequeño L., A. Mora-Olivo y E. Buendía R. 2018. Estructura, composición y diversidad del arbolado urbano de Linares, Nuevo León. Revista Mexicana de Ciencias Forestales 9(48):252-270. Doi: 10.29298/rmcf.v8i48.129. [ Links ]

Livesley, S. J., E. G. McPherson and C. Calfapietra. 2016. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality 45(1):119-124. Doi: 10.2134/jeq2015.11.0567. [ Links ]

MacGregor-Fors, I. 2008. Relation between habitat attributes and bird richness in a western Mexico suburb. Landscape and urban planning 84(1):92-98. Doi: 10.1016/j.landurbplan.2007.06.010. [ Links ]

Macías-Sámano, J. E. 2007. Manual de podas para árboles con énfasis en el uso de podas para el control del barrenador Hypsipyla grandella, plaga del Cedro y la Caoba. El Colegio de la Frontera Sur ECOSUR. Lerma Campeche, Camp., México. 28 p. https://sistemamid.com/panel/uploads/biblioteca/7097/7098/7110/7114/82962.pdf . (4 de junio de 2022). [ Links ]

Martínez-Trinidad, T., P. Hernández L., S. F. López-López y L. Mohedano C. 2021. Diversidad, estructura y servicios ecosistémicos del arbolado en cuatro parques de Texcoco mediante i-Tree Eco. Revista Mexicana de Ciencias Forestales 12(67):202-223. Doi: 10.29298/rmcf.v12i67.880. [ Links ]

Mõttus, M., M. Sulev and M. Lang. 2006. Estimation of crown volume for a geometric radiation model from detailed measurements of tree structure. Ecological Modelling 198(3-4):506-514. Doi: 10.1016/j.ecolmodel.2006.05.033. [ Links ]

Ortíz, N. L. y C. V. Luna. 2019. Diversidad e indicadores de vegetación del arbolado urbano en la Ciudad de Resistencia, Chaco-Argentina. Agronomía & Ambiente Revista de la Facultad de Agronomía UBA 39(2):54-68. http://ri.agro.uba.ar/files/download/revista/agronomiayambiente/2019ortiznicolasleandro.pdf . (21 de marzo de 2022). [ Links ]

Pagès i Clavaguera, J. M. 2005. Viveros ornamentales en España. Horticultura internacional (1):30-35. http://www.horticom.com/revistasonline/extras/2005/J_M_Pages.pdf . (5 de junio de 2022). [ Links ]

Rocha E., A., T. E. Torres C., M. de C. González de la R., S. J. Martínez L. y M. A. Alvarado V. 1998. Flora ornamental en plazas y jardines públicos del área metropolitana de Monterrey, México. SIDA, Contributions to Botany 18(2):579-586. https://www.jstor.org/stable/41967647 . (11 de marzo de 2022). [ Links ]

Rodríguez-Laguna, R., J. Meza-Rangel, J. Vargas-Hernández y J. Jiménez-Pérez. 2009. Variación en la cobertura de suelo en un ensayo de procedencias de Pinus greggii Engelm. en el cerro El Potosí, Galeana, Nuevo León. Madera y Bosques 15(1):47-59. Doi: 10.21829/myb.2009.1511196. [ Links ]

Saavedra-Romero, L. de L., P. Hernández-de la Rosa, D. Alvarado-Rosales, T. Martínez-Trinidad y J. Villa-Castillo. 2019. Diversidad, estructura arbórea e índice de valor de importancia en un bosque urbano de la ciudad de México. Polibotánica 47:25-37. Doi: 10.18387/polibotanica.47.3. [ Links ]

Tropicos. 2022. Tropicos connecting the world to botanical data since 1982. Missouri Botanical Garden. http://www.tropicos.org . (6 de febrero de 2022). [ Links ]

Zamudio C., E. 2001. Análisis del Comportamiento del arbolado urbano público durante el período de 1995 a 1999 en la ciudad de Linares, Nuevo León. Tesis de Maestría, Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. Linares, Nuevo León. 128 p. http://eprints.uanl.mx/1122/ . (31 de julio de 2022). [ Links ]

Zhu, Z., C. Kleinn and N. Nölke. 2021. Assessing tree crown volume-a review. Forestry An International Journal of Forest Research 94:18-35. Doi: 10.1093/forestry/cpaa037. [ Links ]

Received: April 20, 2022; Accepted: July 22, 2022

Conflict of interests

The authors declare no conflict of interest.

Contribution by author

Eduardo Alanís-Rodríguez: manuscript development and statistical analysis; Arturo Mora-Olivo: interpretation of results; Víctor Manuel Molina-Guerra: data analysis; Homero Gárate-Escamilla: review of the manuscript; José Ángel Sigala Rodríguez: statistical analysis.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons