SciELO - Scientific Electronic Library Online

 
vol.12 issue68Structure and floristic composition of forests associated to Theobroma species in the Colombian AmazonDamage to infrastructure (pavement) caused by urban trees in Puerto Vallarta, Jalisco author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias forestales

Print version ISSN 2007-1132

Rev. mex. de cienc. forestales vol.12 n.68 México Nov./Dec. 2021  Epub Feb 28, 2022

https://doi.org/10.29298/rmcf.v12i68.982 

Scientific article

Effect of different land use in the physical and hydrological properties of a Luvisol in the state of Oaxaca

Celestino Sandoval García1 
http://orcid.org/0000-0002-0717-3321

Israel Cantú Silva1  * 
http://orcid.org/0000-0001-8996-0881

Humberto González Rodríguez1 
http://orcid.org/0000-0003-0798-0825

María Inés Yánez Díaz1 
http://orcid.org/0000-0001-6715-4723

José Guadalupe Marmolejo Monsiváis1 
http://orcid.org/0000-0002-8869-0805

Marco Vinicio Gómez Meza2 
http://orcid.org/0000-0002-3047-7278

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.

2Universidad Autónoma de Nuevo León, Facultad de Economía. México.


Abstract

Changes in land use in the southern sierra and coast of Oaxaca have caused the deterioration of the forest ecosystem. Thus, given the scarce information on their impact on soil properties, the objective was to evaluate the effect of different land uses on the physical and hydrological properties of a Luvisol. The treatments evaluated were: pasture, agricultural, forest plantation, pine forest (control), and agricultural-livestock, located in the micro-watershed of the La Venta River, Copalita, Oaxaca. The parameters measured in the field were: hydraulic conductivity (K), bulk density (AD), total porosity (Po), which were obtained in undisturbed soil samples, mechanical resistance to penetration (MRP), initial infiltration (I a ), cumulative infiltration (I b ) and infiltration capacity (I c ). The determination of sand (S), silt (Si) and clay (Cl) particles, field capacity (FC), permanent wilting point (PWP), and available water (Aw) was performed on eight disturbed samples (four per depth) at each use, for a total of 40. Significant differences were observed in Po, MRP, AD, K, FC, PWP, Aw, and in the proportion of sand between land uses. K exhibited a significant positive correlation (p≤0.05) with PWP, Aw, S, I a , I b , and I c ; the last three were positively correlated. Agricultural, pasture and agricultural-livestock uses showed more negative impacts on infiltration and hydraulic conductivity, as well as on apparent density, porosity, mechanical resistance, and water availability; the forest plantation had a positive effect on the evaluated properties.

Key words Pine forest; infiltration; Luvisol; hydrological properties; forest soil; land use

Resumen

Los cambios de uso del suelo en la Sierra Sur y Costa de Oaxaca han provocado el deterioro del ecosistema forestal. Así, ante la escasa información sobre su impacto en las propiedades del suelo, se planteó el objetivo de evaluar el efecto de distintos usos del suelo en las propiedades físicas e hidrológicas de un Luvisol. Los tratamientos evaluados fueron: pastizal, agrícola, plantación forestal, bosque de pino (control) y agropecuario; ubicados en la microcuenca Río La Venta, Copalita, Oaxaca. Los parámetros medidos en campo fueron: conductividad hidráulica (Ks), densidad aparente (DA), porosidad total (Po) que se obtuvieron en muestras inalteradas de suelo; además de, la resistencia mecánica a la penetración (RMP), infiltración inicial (I a ), infiltración acumulada (I b ) y capacidad de infiltración (I c ). La determinación de las partículas de arena (A), limo (L) y arcilla (Ar), capacidad de campo (CC), punto de marchitez permanente (PMP) y el agua disponible (Ad) se realizó en ocho muestras disturbadas (cuatro por profundidad) en cada uso, para un total de 40. Se registraron diferencias significativas en Po, RMP, DA, Ks, CC, PMP, Ad y en la proporción de arena entre usos de suelo. Ks presentó una correlación positiva significativa (p≤0.05) con PMP, Ad, A, I a , I b e I c ; las tres últimas tuvieron correlación positiva. Los usos agrícola, pastizal y agropecuario evidenciaron más impactos negativos en la infiltración y conductividad hidráulica; así como en la densidad aparente, porosidad, resistencia mecánica y disponibilidad del agua; la plantación forestal registró un efecto positivo en las propiedades evaluadas.

Palabras clave Bosque de pino; infiltración; Luvisol; propiedades hidrológicas; suelo forestal; uso del suelo

Introduction

Soil is an important natural resource on which society depends (George et al., 2016). However, the pressure exerted by man in recent years is degrading it (FAO-ITPS, 2015). Impacts on the soil begin with the removal of natural vegetation. In Mexico, the primary vegetation change rate is -0.6 % for the period 2000-2010, and -0.7 % from 1990 to 2015 (FAO, 2015). Likewise, the analysis conducted by Mas et al. (2009) indicates that the annual deforestation rate in the country ranges from -4.2 to -8.15 % for the high evergreen forest and is -10.1 % in the mesophilic mountain forest. In other words, the rate of deforestation varies with the type of ecosystem, but is generally higher in tropical ecosystems.

On the other hand, it is important to note that deforestation and forest degradation cause a significant loss of carbon stored in the aboveground and belowground biomass of terrestrial ecosystems (de Jong et al., 2018). Therefore, it is necessary to have information at an appropriate scale for the agricultural, forestry and other land use sectors to estimate the greenhouse gas emissions, as this data will serve as a basis for determining public policies on climate change (Paz et al., 2020).

Luvisols are soils that develop in temperate climates, have the highest clay content in the subsoil, and are very productive for agricultural and forestry use (IUSS-WRB-FAO 2015), as in the case of the upper part of the Copalita River sub-basin, Oaxaca (INEGI, 2013). Therefore, land use changes may result in changes in their physical and hydrological properties. Studying these changes will allow us to identify the main effects of land use and their relationship as a main factor in the loss of vegetation cover due to socioeconomic activities. The objective of this study was to evaluate the physical and hydrological properties of a Luvisol under agricultural, pasture, pine plantation, pine forest and agricultural-livestock land uses in the micro-watershed of the La Venta River, in Copalita, Oaxaca, Mexico. The hypothesis was that over time, the magnitude of the changes in the physical and hydrological properties of the researched Luvisol varies according to the type of land use.

Materials and Methods

Study area

The study area is located in the micro-watershed of the La Venta River, in Copalita, state of Oaxaca, Mexico (16°120” N, 96°2530” W), at an average altitude of 2 850 m (Figure 1). According to the Köppen classification as modified by García (2004), the study area has a C (w) climate: semi-cold sub-humid, with a cool and long summer; winter rainfall less than 5 % of the annual rainfall, with an average annual precipitation above 1 300 mm, an average maximum of 215 mm during the month of July, and an average minimum of less than 10 mm in February. Average annual temperature of 18 to 20 °C, with a maximum of 24 °C in April and May and a minimum of 0 to 5 °C in December and January. The soil type is Luvisol; which have a high potential for agriculture, but also for temperate and tropical forests (INEGI, 2013).

Figure 1 Location of the study area. 

Description of the sampling sites

The present research was carried out in five land uses with the Luvisol soil type (INEGI, 2013):

a) Pasture. The area has different species of grasses ―Bouteloua repens (Kunth) Scribn. & Merr., Muhlenbergia robusta (E. Fourn.) A. Hitchc., Panicum bulbosum Kunth, Panicum mertensii Roth., P. parviglume Hack., and Paspalum convexum Humb, et Bonpl. ex Flüggé (Pacheco-Rivera and Dávila-Aranda, 2004)― that were naturally established on plots used for agricultural production for about 10 years, which were later converted to grassland currently, they have 32 years with the same land use.

b) Agricultural use. This occurs in areas of no more than 5 ha, where rainfed agriculture is practiced, with corn crops associated with broad beans and sometimes interspersed with potato crops, as they are species adapted to these conditions; no change of land use has been recorded in 42 years.

c) Pine tree plantation. Established in agricultural areas that were 10 years old, subsequently used as grassland for 17 years. Currently, the plantation is around 15 years old; the planting was staggered, with a density of 1 111 trees per hectare and an equidistance of 3 m × 3 m, the species used were Pinus ayacahuite Ehrenb. ex Schltdl., P. douglasiana Martínez and Abies religiosa (Kunth) Schltdl. et Cham.

d) Original pine forest (control). It consists of different taxa: P. ayacahuite, P. douglasiana, P. patula var. longepedunculata Loock. ex Martínez, P. leiophylla Schltdl. & Cham, and Abies religiosa.

e) Agricultural-livestock use. Farmers use these plots for grazing cattle, goats and sheep. These are agricultural areas that have been fallow for 1 to 2 years and have had intermittent agricultural activity for the last 20 years.

Soil sampling and analysis

In each soil use, four composite samples (from four subsamples) were collected at two depths (0-10 cm and 10-30 cm), for a total of 40, which were analyzed in the soil laboratory of the School of Forest Sciences of the Universidad Autónoma de Nuevo León. The samples were dried and sieved with a 2 mm metal mesh for the different analyses (Table 1).

Table 1 Methods for the determination of the physical and hydrological properties. 

Property Unit Method
Physical
S 1,2 % AS-09 Method of the norm NOM-021-RECNAT-2000 (Semarnat, 2002).
Cl 1,2 %
Si 1,2 %
AD 1 g cm-3 Gravimetric method (Woerner, 1989; Zhang et al., 2017).
MRP 1 Mpa Hardness meter /penetrometer (Yamanaka type, 22110 Orion, MKK Co, Japan)
Po 1 % The estimation was based on the apparent density values, assuming a particle density of 2.65 g cm-3 (McPhee et al., 2015).
Hydrological
K 1 cm s-1 Cylinder method (Das, 2002).
I a 1 mm h-1 Double ring method (Zhang et al. 2017).
I b 1 mm
I c 1 mm h-1
FC 1,2 (0.033 MPa) % Pressure plate and membrane method, using pressure strippers (Soil Moisture Equipment Corp., Santa Barbara, CA) (Klute and Dirksen, 1986).
PWP 1,2 (1.5 MPa) %
Aw 1,2 %

S = Sand; Cl = Clay; Si = Silt; AD = Bulk density; MRP = Mechanical resistance to penetration; Po = Porosity; M = Moisture; K = Hdraulic conductivity; I a = Initial infiltration; I b = Cumulative infiltration; I c = Infiltration capacity; FC = Field capacity; PWP = Permanent wilting point; Aw = Available water; 1 = 0 to 10 cm; 2 = 10 to 30 cm.

Physical and hydrological properties

Table 1 shows the methodologies used to determine the physical and hydrological variables.

Statistical analyses

All variables were subjected to the Kolmogorov-Smirnov test with Liliefors and Levene's correction (Steel and Torrie, 1988) to determine whether the distribution was normal and the homogeneity of variance. A logarithmic transformation (Log10) was applied to the cumulative infiltration (I b ), infiltration capacity (I c ) and hydraulic conductivity variables, and an arctangent transformation was used for the initial infiltration variable (I a ). In the end, only the variables Po, I a , I b , and I c met the assumptions of normality and homoscedasticity. Subsequently, an analysis of variance (ANOVA) was performed for the different land uses. The Kruskal-Wallis test was used in the variables K, AD, MRP, S, Cl, Si, FC, PWP, and Aw at a depth of 0 to 10 cm, and in S, Cl, Si, FC, PWP, and Aw at a depth of 10 to 30 cm, as these do not meet the assumptions required for parametric analysis.

The Kruskal-Wallis Bonferroni post hoc test was also performed with pairwise comparisons for each land use. The relationship between the variables was analyzed using Spearman's correlation for the two depths sampled. Tukey's test (p=0.05) was used to compare means. Each of the statistical analyses was performed with a significance level () 0.05, in the statistical software SPSS ® (Statistical Package for the Social Sciences) version 22.

Results and Discussion

Infiltration capacity and porosity

The results of Initial Infiltration (I a ), Cumulative Infiltration (I b ), and Infiltration Capacity (I c ) for each land use are illustrated in Figure 2.

The plotted values represent the mean (n=X), ± standard error. Means with different letters indicate statistical differences according to Tukey's test (p =0.05).

Figure 2 Initial infiltration (a), Cumulative infiltration (b), Infiltration capacity (c), and Porosity (d) for different soil uses at the depth of 0 to 10 cm. 

The pine forest (control) exhibited the highest value of I a (4 500 mm h-1), followed by the pine plantation (2 100 mm h-1), the agricultural area (760 mm h-1), the grassland (500 mm h-1) and the agricultural-livestock use (480 mm h-1). The other components of infiltration (I b and I c ) had a similar behavior according to the land use.

The results of the analysis of variance showed that the variables I a , I b , I c , and Po exhibited significant differences (p≤0.05) between land uses (Table 2).

Table 2 One-way analysis of variance (land use), Levene's test and Kolmogorov Smirnov (K-S) test with Lilliefors correction. 

Variables F value
(4,10)
P
value
Levene’s
F test
(4,10)
P
value
K-S P value
I a (mm h-1) 6.31 0.008 3.06 0.068 0.18 0.186
I b (mm) 51.93 0.001 2.97 0.074 0.20 0.077
I c (mm h-1) 51.14 0.001 3.10 0.067 0.21 0.072
Po (%) 7.65 0.001 2.44 0.092 0.11 0.200

I a = Initial infiltration; I b = Cumulative infiltration; I c = Infiltration capacity; Po = Porosity; K-S = Kolmogorov-Smirnov with Lilliefors correction. P value of 0.001, when the p-value is equal to or less than 0.001.

The infiltration observed in the different kinds of land use, when compared to that of the pine forest (control), clearly shows the effect of the change in land use on this characteristic. Properties such as porosity, apparent density, mechanical resistance to penetration, and soil management practices cause modifications in the infiltration rates.

Luna et al. (2020) evaluated infiltration in an Umbrisol type soil, subjected to different forestry treatments in a pine forest, and registered values below those obtained in the present research for the pine forest and in the pine plantation; the same applies to the study by Chagoya et al. (2015).

Pine forest had the highest porosity (76 %), followed by grassland and pine plantation (70 %), agricultural-livestock (63 %), and the use with the lowest value was agricultural (61 %). The former data indicate the difference in infiltration and porosity between the pine forest (control) and the other evaluated uses. This shows that changing the use of forest land affects the different physical and hydrological variables. Soil porosity in the pine forest and pine plantation is associated with the incorporation of organic matter, while that of the grassland is associated with the large number of roots of herbaceous plants and grasses that are added each year and penetrate the surface, promoting aeration and infiltration of water into the soil.

Figure 3 shows the average infiltration behavior for each assessed land use during 210 minutes; it shows the difference between pine forest and pine plantation in relation to agricultural, grassland and agricultural-livestock uses. From the 90th minute on, infiltration stability was observed for all kinds of land use.

The plotted values represent the average (n=x).

Figure 3 Average infiltration curves for different land uses. 

According to the Kruskal-Wallis test for the K, AD, MRP, S, FC, PWP and Aw variables, the null hypothesis of equality of centrality parameters for the different kinds of land use in the 0 to 10 cm depth was rejected (Table 3); while, at soil 10 to 30 cm deep, only the variable Aw registered significant differences (p≤0.05) between kinds of land use (Table 4).

Table 3 Kruskal-Wallis test to detect significant differences in soil physical and hydrological properties among the analyzed soil uses (depth from 0 to 10 cm). 

Statistic K
cm s-1
AD
g cm-3
MRP
Mpa
S
(%)
Cl
(%)
Si
(%)
FC
(%)
PWP
(%)
Aw
(%)
N 20 20 20 20 20 20 20 20 20
Mean 0.007 0.84 2.30 67.05 6.65 26.35 42.22 25.63 16.56
Median 0.002 0.90 1.75 68.00 6.00 26.00 40.62 21.85 16.77
X 2 (4) 15.44 12.57 12.27 12.21 4.16 8.95 13.10 17.17 14.64
Asymptotic significance 0.004 0.014 0.015 0.016 0.385 0.062 0.011 0.002 0.006

K = Hydraulic conductivity; AD = Bulk density; MRP = Mechanical resistance to penetration; S = Sand; Cl = Clay; Si = Silt; FC = Field capacity; PWP = Permanent wilting point; Aw = Available water. Bold numbers indicate the variables that exhibited significance.

Table 4 Kruskal-Wallis test to detect significant differences in physical and hydrological properties between the analyzed soil uses (depth from 10 to 30 cm). 

Statistic S
(%)
Cl
(%)
Si
(%)
FC
(%)
PWP
(%)
Aw
(%)
N 20 20 20 20 20 20
Mean 69.60 5.30 25.10 38.43 24.12 14.31
Median 70.00 6.00 25.00 38.14 22.15 14.43
X2 (4) 7.78 5.60 6.47 5.64 8.94 13.21
Asymtotic significance 0.100 0.231 0.167 0.227 0.063 0.010

S = Sand; Cl = Clay; Si = Silt; FC = Field capacity; PWP = Permanent wilting point; Aw = available water. Bold numbers indicate the variables that showed significance.

Post Hoc Kruskal-Wallis tests were also performed for independent samples with pairwise comparisons and Bonferroni correction for land use. These showed significant differences for the variables K, AD, FC, PWP, S in the kinds of use of the Agriculture-Forest combination, as well as for K, PWP, and Aw the Forest-Agricultural-Livestock use at a depth 0-10 cm, while Aw had differences between Pine Plantation and the Agricultural-Livestock use at a depth 10-30 cm (Table 5).

Table 5 Kruskal-Wallis post hoc test with Bonferroni correction to detect significant differences for the physical and hydrological variables at the depth of 0 to 10 cm and 10-30 cm for the variable Aw

Soil uses 1 and 2 Variables
MRP K AD FC PWP Aw 1 Aw 2 S
Adjusted significance
Agricultural-Pine plantation 1.000 0.168 0.786 0.198 0.168 1.000 1.000 0.223
Agricultural-Forest 1.000 0.050 0.024 0.004 0.002 0.831 1.000 1
Agricultural-Agricultural-livestock 1.000 1.000 1.000 1.000 1.000 0.558 0.486 1.000
Agricultural-grassland 0.070 1.000 0.560 0.639 0.232 1.000 0.070 1.000
Pine plantation-forest 1.000 1.000 1.000 1.000 1.000 0.270 1.000 1.000
Pine plantation-Agricultural-livestock 1.000 0.168 1.000 1.000 1.000 1.000 0.013 1.000
Pine plantation-pasture 1.000 1.000 1.000 1.000 1.000 1.000 .486 1.000
Forest-Agricultural-livestock 1.000 0.008 0.068 0.486 0.034 0.003 0.050 0.666
Forest-grassland 0.070 0.163 1.000 0.943 1.000 1.000 0.070 0.353
Agricultural-livestock-grassland 1.000 1.000 1.000 1.000 1.000 0.102 1.000 1.000

Each row tests the null hypothesis that land use distributions 1 and 2 are equal.

Each row tests the null hypothesis that land use distributions 1 and 2 are equal. MRP = Mechanical resistance to penetration; K = Hydraulic conductivity; AD = Apparent density; Aw 1 = Available water (0-10 cm); Aw 2 = Available water (10-30 cm); FC = Field capacity; PWP = Permanent wilting point; S = Sand. Asymptotic significances (bilateral tests) are shown. The significance level is 0.05.

Hydraulic conductivity

The saturated hydraulic conductivity (K) showed significant differences among the kinds of land use that were analyzed. The mean K values were 0.001 cm s-1 for agricultural and agricultural-livestock uses; 0.002 cm s-1 for pasture; 0.008 cm s-1 for pine plantation, and 0.022 cm s-1 for pine forest. The low value of K for agricultural-livestock use is due to the increase in apparent density and the decrease in porosity. The static and dynamic pressure exerted by livestock on the surface soil causes compaction and mechanical resistance. The results for K are similar to those obtained in other studies (Quichimbo et al., 2012; Jaurixje et al., 2013; Novillo-Espinosa et al., 2018).

Bulk density

The mean AD values for depth 0 to 10 cm were 0.63 g cm-3 for pine forest, 0.78 g cm-3 for pasture, 0.79 g cm-3 for pine plantation, 0.98 g cm-3 for agricultural-livestock, and 1.03 g cm-3 for agricultural use. The low DA in the pine forest is due to its porosity and mechanical resistance, in addition to its sandy loam textural class. This shows that land use change increases DA, which also results in an increase in RMP and a decrease in K.Cruz-Ruiz et al. (2012), Carlos-Gómez et al. (2014), Chagoya et al. (2015) and Alejandro-Martínez et al. (2019) document similar values of bulk density and porosity, and also indicate that AD tends to increase at greater depths and Po decreases in loam, sandy loam and clay textures.

Mechanical resistance to penetration of the soil

The MRP of the soil at a depth of 0 to 10 cm exhibited significant differences between kinds of land use. Grassland recorded the highest value for hardness (0.42 Mpa), followed by the agricultural-livestock use (0.27 Mpa). While, agricultural uses, pine plantation and pine forest had a MRP (0.15 Mpa). The high MRP value observed in the grassland is due to soil compaction caused mainly by livestock, in addition to increased AD and decreased Po; the exposure and lack of cover favored a greater loss of soil moisture. Yáñez-Díaz et al. (2019) cited similar results for mechanical resistance to penetration in a Vertisol soil, in which hardness is common when it loses moisture. Conversely, Medina-Guillén et al. (2017) indicated lower MRP values that may vary according to the type of vegetation, management and stocking rate present.

Soil Texture

At the 0-10 cm depth, only the proportion of sand had significant differences between land uses, ranging from 62 to 72 %. The proportion of clay and silt was in the range of 5 to 8 % and 22 to 30 %, respectively. For these two variables, no significant differences were observed between the kinds of land use.

At the depth of 10 to 30 cm, none of the texture variables showed significant differences, and the percentages of sand ranged from 67 to 73 %; silt ranged from 23 to 27 %, and clay, from 4 to 6 %. The texture assessment for the 0-10 cm depth corresponded to the classifications sandy loam (grassland, agricultural, pine plantation, and agricultural-livestock) and loamy sand (pine forest). The 10-30 cm depth corresponded to sandy loam (pasture, agricultural, agricultural-livestock) and loamy sand (pine plantation and pine forest). This means that the pine plantation and forest have lower apparent density and mechanical resistance to penetration but higher porosity; this favors the hydraulic conductivity and infiltration of the soil, which contribute to the recharging of aquifers and reduces the risk of erosion.

The results of the present research coincide with those obtained by Lozano-Trejo et al. (2020), who evaluated a Luvisol soil in the Copalita River sub-basin.

Soil water characteristics

Field capacity (FC). The FC at a soil depth of 0 to 10 cm exhibited significant differences between the kinds of uses under study; values ranged from 33.59 to 51.86 % water; the pine forest (51.86 %) and the agricultural use (33.59 %) had the highest and lowest percentage, respectively, of water retention at field capacity. The FC of the remaining uses were: agricultural-livestock (39.64 %), grassland (42.77 %) and pine plantation (43.57 %).

No significant differences between kinds of use were detected at a depth of 10 to 30 cm. The FC ranged from 32.81 to 42.70 %, with agricultural use having the lowest value (32.81 %), and grassland, the highest (42.77 %); pine plantation registered 36.44 %; the agricultural-livestock use, 39.49 %, and pine forest, 40.22 %.

Pine forest was the land use with the highest FC value, probably because the organic matter content in the soil favors moisture retention, and due to its low density and mechanical resistance to penetration, all of which allows water infiltration.

Field capacity is affected by the change of use; thus, agricultural use had the lowest FC. This is due to its porosity and texture (FAO, 2005); in addition, the high apparent density, lower organic matter content, lack of cover, low hydraulic conductivity and soil compaction increase the mechanical resistance to penetration, which, therefore, does not allow a larger amount of water to be retained (FAO, 2009).

Permanent Wilting Point (PWP). The PWP of the 0 to 10 cm depth of the Luvisol showed significant differences between the kinds of land use, with a variation between 16.77 % and 39.72 %. Agricultural use had the lowest value (16.77 %), and the highest value corresponded to pine forest (39.72 %). The agricultural-livestock, pine plantation and grassland types of use registered: 19.02, 25.94, and 26.76 %, respectively. The PWP range for the depth of 10 to 30 cm was 18.70 % to 29.15 %; the agricultural sector had the lowest value (18.70 %), followed by agricultural-livestock (20.76 %), pine plantation (24.91 %), and grassland (27.09 %); the highest value, of 29.15 %, was determined in the pine forest. In general, a low clay content was observed in the Luvisol, which consequently exhibited lower moisture retention.

These results are similar to those obtained by Muñoz-Iniestra et al. (2013). Silva et al. (2011) state that, by maintaining a cover, an agroforestry system allows for greater soil moisture.

Available water (Aw). The Aw content exhibited significant differences between the land uses at the two sampling depths (0-10 cm and 10-30 cm). At the depth of 0 to 10 cm, it ranged between 12.14 and 20.62 %; pine forest exhibited a lower percentage of Aw (12.14 %), followed by pasture (15.71 %), agricultural (16.83 %) and pine plantation (17.66 %) and agricultural-livestock use registered the highest percentage (20.62 %). The Aw at the depth of 10 to 30 cm fluctuated between 11.08 and 19.13 %; likewise, the pine forest had the lowest percentage, of 11.08 %, followed by pine plantation, with 11.54 %; agriculture, with 12.13 %, and grassland, with 15.69 %; while the agricultural-livestock use had the highest percentage, of 19.13 %.

The lowest percentage of available water was obtained in the pine forest and pine plantation, since these were the uses with a textural class (loamy sand) with a high percentage of sand, mainly at the depth of 10-30 cm. The higher the number of macropores, the faster the water seeps into the subsoil, as gravitational water.

These available water values are higher than those documented by González-Nivia (2014) and La Manna et al. (2018), but lower than those indicated by Béjar-Pulido et al. (2020) in andosols in Uruapan, state of Michoacán, because sandy soil has a higher water infiltration, and, therefore, the percentage of available water there is lower. Bachmair et al. (2009) point out that land use change has an impact on the vertical and horizontal movement of water.

Correlation of physical and hydrological variables

Table 6 shows Spearman’s correlations (r s ) for the physical and hydrological variables evaluated at the 0 to 10 cm depth interval. The AD correlated significantly, but negatively, with the Po, FC, and PWP. The MRP exhibited a negative and highly significant correlation with I a and I b . At the depth of 10-30 cm, only the field capacity (FC) had a significant positive correlation with S, Aw, and PWP.

Table 6 Spearman’s correlation coefficients (r s ) for the physical and hydrological variables evaluated at the depth of 0-10 cm. 

AD
(n=20)
MRP
(n=20)
Po
(n=20)
K
(n=20)
Ia
(n=15)
Ib
(n=15)
Ic
(n=15)
FC
(n=20)
PWP
(n=20)
Aw
(n=20)
S
(n=20)
Cl
(n=20)
Si
(n=20)
AD - 0.730 0.000 0.015 0.146 0.086 0.071 0.000 0.000 0.033 0.031 0.363 0.279
MRP 0.082 - 0.762 0.130 0.003 0.001 0.003 0.586 0.824 0.336 0.551 0.542 0.982
Po -0.988** -0.072 - 0.009 0.124 0.079 0.060 0.000 0.000 0.035 0.041 0.367 0.319
K -0.536* -0.350 0.565** - 0.000 0.001 0.001 0.018 0.000 0.008 0.001 0.138 0.015
I a -0.394 -0.712** 0.415 0.789** - 0.000 0.000 0.085 0.044 0.121 0.011 0.498 0.045
I b -0.458 -0.764** 0.468 0.779** 0.927** - 0.000 0.071 0.025 0.022 0.025 0.604 0.069
I c -0.300 -0.603* 0.325 0.690** 0.774** 0.692** - 0.063 0.049 0.634 0.002 0.105 0.045
FC -0.760** 0.130 0.785** 0.523* 0.459 0.479 0.524* - 0.000 0.420 0.006 0.859 0.010
PWP -0.861** 0.053 0.883** 0.720** 0.525* 0.575* 0.602* 0.916** - 0.028 0.002 0.464 0.013
Aw 0.478* 0.227 -0.473* -0.577** -0.418 -0.586* -0.570* -0.191 -0.490* - 0.204 0.813 0.291
S -0.484* -0.142 0.461* 0.692** 0.637* 0.575* 0.569* 0.595** 0.645** -0.523 - 0.010 0.661
Cl 0.215 0.145 -0.213 -0.344 -0.190 -0.146 -0.075 -0.042 -0.174 -0.481 0.927** - 0.000
Si 0.254 0.005 -0.235 -0.534* -0.523* -0.481 -0.500 -0.561* -0.546* -0.480 0.925** 0.999** -

r s values in the lower triangular matrix, p values in the upper triangular matrix; MRP = Mechanical resistance to penetration; K = Hydraulic conductivity; AD = Bulk density; Po = Porosity; FC = Field capacity; PWP = Permanent wilting point; Aw = Available water; S= Sand; Cl= Clay; Si= Silt; I a = Initial infiltration; I b = Cumulative infiltration; I c = Infiltration capacity; * = Significant correlation with (p≤0.05); ** = Highly significant correlation (p≤0.01).

Conclusions

The results indicate that Luvisol subjected to different land uses undergoes modifications in its physical and hydrological properties as a consequence of the changes in land use, mainly, when it occurs from forest to agricultural use, where the variables hydraulic conductivity, bulk density, field capacity, permanent wilting point, and sand are significantly different. The variables hydraulic conductivity, permanent wilting point and available water exhibit significant differences with the change from forest to agricultural-livestock use.

Pine forests were shown to have a greater infiltration capacity and, in this respect, they are superior to the rest of the researched land uses, which accounts for their high capacity to provide hydrological environmental services. When the land use changes, there is a significant decrease in this variable, as observed in the case of agricultural-livestock use and grassland which have the lowest infiltration capacity.

Low apparent density of the soil in the pine forest is the result of low compaction. On the contrary, the agricultural-livestock use exhibits a high apparent density, due to the compaction caused by grazing.

The hydraulic conductivity is clearly dependent on the type of land use; therefore, the pine forest exhibits a high value compared to the other uses, which have a lower permeability.

The variables with most differences due to change of land use are infiltration capacity, hydraulic conductivity, bulk density, and mechanical resistance to penetration, resulting in the modification of the field capacity, permanent wilting point, and available water.

The results obtained from the present investigation show the impact caused by land use change in the micro-watershed of the La Venta River, Copalita; and we conclude that it is important to conserve the tree vegetation, since this will help to maintain the recharge of the aquifers, as well as the environmental functions of the ecosystem.

Acknowledgemments

The authors thank the authorities of the San Felipe Cieneguilla Ejido, San Sebastián Río Hondo municipality, Miahuatlán, Oaxaca, Mr. Pablo Ramírez Pascual and Mrs. Nazaria Ramírez Río, for their support in the field work. As well as Conacyt for the doctoral scholarship awarded to the first author.

REFERENCES

Alejandro-Martínez, P., M. De la Cruz-Morales, D. J. Palma-López, H. J. Megia-Vera y D. J. Palma-Cancino. 2019. Efecto del cambio de uso de suelo sobre las propiedades edáficas en La Sabana, Huimanguillo, Tabasco, México. Agroproductividad 12 (7): 95-100. Doi.org/10.32854/agrop.v0i0.1476. [ Links ]

Bachmair S., M. Weiler and G. Nützmann. 2009. Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone. Journal of Hydrology 369: 241-252. Doi: 10.1016/j.jhydrol.2009.02.031. [ Links ]

Béjar-Pulido, S. J., I. Cantú-Silva, M. I. Yáñez-Díaz y E. O. Luna-Robles. 2020. Curvas de retención de humedad y modelos de pedotransferencia en un Andosol bajo distintos usos de suelo. Revista Mexicana de Ciencias Forestales 11 (59). 31-50. Doi:10.29298/rmcf.v11i59.666. [ Links ]

Carlos-Gómez, G., R. Munive-Cerrón, T. Mallma-Capcha y C. Orihuela-Villacencio. 2014. Evaluación de la tasa de infiltración en tierras agrícolas, forestales y de pastoreo en la subcuenca del río Shullcas. Apuntes de Ciencia y Sociedad 4 (01):32-43. Doi: 10.18259/acs.2014004. [ Links ]

Chagoya F., J. L., C. Mallen R., M. A. McDonal, F. Jiménez O, M. Akbar I., L. Velázquez F. y F. Becerra L. 2015. Información hidrológica, primer paso para diseñar una política local de pago por servicios ambientales. Revista Mexicana de Ciencias Forestales 6 (29): 24-43. Doi: 10.29298/rmcf.v6i29.214. [ Links ]

Cruz-Ruiz, E., A. Cruz-Ruiz, I. Aguilera Gómez, H. T. Norman-Mondragón, A. Velázquez R, G. Nava-Bernal, L. Dendooven y B. G. Reyes-Reyes. 2012. Efecto en las características edáficas de un bosque templado por el cambio de uso de suelo. Terra Latinoamericana 30 (2): 189-197. http://www.scielo.org.mx/pdf/tl/v30n2/2395-8030-tl-30-02-00189.pdf (8 de junio de 2020). [ Links ]

Das, B. M. 2002. Soil Mechanics Laboratory Manual. 6th edition. Oxford, NY, USA. 216 p. https://www.pdfdrive.com/soil-mechanics-laboratory-manual-e42049849.html . (12 de febrero de 2020). [ Links ]

de Jong, B., M. Olguín, F. Rojas, V. Maldonado y F. Paz. 2018. Base de datos de la biomasa de los sitios del inventario nacional forestal y de suelos del ciclo 2004-2007. Elementos para Políticas Públicas 2:69-84. http://www.elementospolipub.org/ojs/index.php/epp/article/view/19/17 (15 de abril de 2020). [ Links ]

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Serie Libros, Núm. 6. Instituto de Geografía, Universidad Nacional Autónoma de México, México. D. F. 97 p. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1 (6 de mayo de 2020). [ Links ]

George, J., L. Baby, A. P. Arickal and J. Dev Vattoly. 2016. Land Use/Land cover Mapping with Change Detection Analysis of Aluva Taluk Using Remote Sensing and GIS. International Journal of Science, Engineering and Technology 4 (2): 383-389. https://www.ijset.in/wp-content/uploads/2016/03/10.2348.03160383.pdf (18 de abril de 2020). [ Links ]

González-Nivia, J. 2014. Efecto del uso y ocupación en las propiedades físicas y químicas en un suelo del pie de monte llanero. Tesis de magister en Ingeniería Agrícola. Universidad Nacional de Colombia. Bogotá, Colombia. 123 p. [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). 2013. Carta Edafológica, Villa de Zaachila, Serie II, escala 1: 250 000. Edición: 1. Aguascalientes, Ags., México. s/p. [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). 2015. Carta de uso de suelo y vegetación, Villa de Zaachila, Serie V, escala 1: 250 000. Aguascalientes, Ags., México. s/p. [ Links ]

Jaurixje, M., D. Torres, B. Mendoza, M. Henríquez y J. Contreras. 2013. Propiedades físicas y químicas del suelo y su relación con la actividad biológica bajo diferentes manejos en la zona de Quíbor, Estado Lara. Bioagro 25 (1): 47-56. http://ve.scielo.org/pdf/ba/v25n1/art06.pdf (20 de mayo de 2020). [ Links ]

Klute, A. and C. Dirksen. 1986. Hydraulic conductivity and diffusivity. Laboratory methods. In: Klute, A. (Ed.). Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. ASA and SSSA Madison, WI, United States. pp. 123-131. [ Links ]

La Manna, L., M. Tarabini, F. Gómez, P. A. Noli, B. Vogel y C. G. Buduba. 2018. Estimación de la capacidad de retención de agua en suelos volcánicos en función de variables de fácil determinación a campo. Asociación Argentina Ciencia del Suelo 36 (1): 23-29. http://www.suelos.org.ar/publicaciones/volumen3612018/pag%2023-29%20CS526%20Estimaci%C3%B3n%20de%20la%20capacidad%20de%20retenci%C3%B3n%20de%20agua%20de%20suelos%20volc%C3%A1nicos.pdf (10 de junio de 2020). [ Links ]

Lozano-Trejo, S., J. Olazo-Aquino, M. I. Pérez-León, E. Castañeda-Hidalgo, G. O. Díaz-Zorrilla y G. M. Santiago-Martínez. 2020. Infiltración y escurrimiento de agua en suelos de una cuenca en el sur de México. Terra Latinoamericana 38: 57-66. Doi:10.28940/terra.v38i1.443. [ Links ]

Luna, E. O., I. Cantú S., M. I. Yáñez D., H. González R., J. G. Marmolejo M. y S. J. Béjar P. 2020. Ajuste de modelos empíricos de infiltración en un Umbrisol bajo diferentes tratamientos silvícolas. Revista Mexicana de Ciencias Forestales . (11) 57:132-152. Doi:10.29298/rmcf.v11i57.643. [ Links ]

Mas, J. F., A. Velázquez y S. Couturier. 2009. La evaluación de los cambios de cobertura/uso del suelo en la República Mexicana. Investigación ambiental 1 (1): 23-39. https://www.researchgate.net/publication/263255508_La_evaluacion_de_los_cambios_de_coberturauso_del_suelo_en_la_Republica_Mexicana (18 de abril de 2020). [ Links ]

McPhee, J. E., P. L. Aird, M. A. Hardie and S. R. Corkrey. 2015. The effect of controlled traffic on soil physical properties and tillage requirements for vegetable production. Soil and Tillage Research 149: 33-45. Doi:10.1016/j.still.2014.12.018. [ Links ]

Medina-Guillén, R., I. Cantú-Silva, H. González-Rodríguez, M. Pando-Moreno, T. Kubota y M. V. Gómez-Meza. 2017. Efectos del rodillo aireador y el fuego en las propiedades físicas e hidrológicas del suelo en matorrales de Coahuila, México. Agrociencia 51: 471-485. http://www.scielo.org.mx/pdf/agro/v51n5/1405-3195-agro-51-05-00471.pdf (12 de abril de 2020). [ Links ]

Muñoz-Iniestra, D. J., M. Ferreira-Ramírez, I. B. Escalante-Arriaga y J. López-García. 2013. Relación entre la cobertura del terreno y la degradación física y biológica de un suelo aluvial en una región semiárida. Terra Latinoamericana 31 (3): 201-210. http://www.scielo.org.mx/pdf/tl/v31n3/2395-8030-tl-31-03-00201.pdf (16 de mayo de 2020). [ Links ]

Novillo-Espinosa, I. D., M. D. Carrillo-Zenteno, J. E. Cargua-Chavez, V. Nabel-Moreira, K. E. Alban-Solarte y F. L. Morales-Intrigo. 2018. Propiedades físicas del suelo en diferentes sistemas agrícolas en la provincia de los Ríos, Ecuador. Temas Agrarios 23 (2): 177-187. Doi:10.21897/rta.v23i2.1301. [ Links ]

Organización de las Naciones Unidad para la Agricultura y la Alimentación (FAO). 2005. Optimización de la humedad del suelo para la producción vegetal, el significado de la porosidad del suelo. Roma, Italia. 128 p. [ Links ]

Organización de las Naciones Unidad para la Agricultura y la Alimentación (FAO). 2009. Guía para la descripción de los suelos. Organización de las Naciones Unidas para la Agricultura y la alimentación. Cuarta edición. Roma, Italia. pp. 29-66. [ Links ]

Pacheco-Rivera, D. y P. Dávila-Aranda. 2004. Sinopsis de las gramíneas de Oaxaca, México. Acta Botánica Mexicana 69: 83-114. Doi: 10.21829/abm69.2004.982. [ Links ]

Paz, F., M. I. Marín, M. Bolaños-González, J. D. Etchevers, B. de Jong., J. Herrera y A. S. Velázquez-Rodríguez. 2020. La urgente necesidad de México de contar con datos de actividad a escala apropiada para el sector agricultura, forestería y otros usos del suelo. Elementos para Políticas Públicas 4:61-71. http://www.elementospolipub.org/ojs/index.php/epp/article/view/30/28 (25 de mayo de 2020). [ Links ]

Quichimbo, P., G. Tenorio, P. Borja, I. Cárdenas, P. Crespo y R. Célleri. 2012. Efectos sobre las propiedades físicas y químicas de los suelos por el cambio de la cobertura vegetal y uso de suelo: Paramo de Quimsacocha al Sur de Ecuador. Suelos Ecuatoriales 42 (2): 138-153. https://www.researchgate.net/publication/260389572_EFECTOS_SOBRE_LAS_PROPIEDADES_FISICAS_Y_QUIMICAS_DE_LOS_SUELOS_POR_EL_CAMBIO_DE_LA_COBERTURA_VEGETAL_Y_USO_DEL_SUELO_PARAMO_DE_QUIMSACOCHA_AL_SUR_DEL_ECUADOR (20 de junio de 2020). [ Links ]

Secretaria de Medio Ambiente y Recursos Naturales (Semarnat). 2002. NOM-021- SEMARNAT -2000. Establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. Segunda edición. 28 de octubre de 2002. México, D. F. México 73 p. [ Links ]

Silva, G. L., H. V. Lima, M. M. Campanha, R. J. Gilkes and T. S. Oliveira. 2011. Soil physical quality of Luvisol under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma 167-168: 61-70. Doi: https://doi.org/10.1016/j.geoderma.2011.09.009. [ Links ]

Steel, R. G. D. y J. H. Torrie. 1988. Bioestadística: principios y procedimientos. McGraw-Hill. Segunda Edición. 622 p. [ Links ]

Unión Internacional de las Ciencias del Suelo- Centro Internacional de Información y Referencia de Suelos- Organización de las Naciones Unidas para la Alimentación y Agricultura (IUSS-WRB-FAO). 2015. Base referencial mundial del recurso suelo 2014, Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Actualización 2015. Informes sobre recursos mundiales de suelos (106). FAO. Roma, Italia. 218 p. [ Links ]

Food and Agriculture Organization of the United Nations)- Intergovernmental Technical Panel on Soils) (FAO-ITPS. 2015. Status of the World’s Soil Resources (SWSR)-Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, Italy. 605 p. http://www.fao.org/3/a-i5199e.pdf (5 de agosto de 2020). [ Links ]

Organización de las Naciones Unidad para la Agricultura y la Alimentación (FAO). 2015. Evaluación de los recursos forestales mundiales 2015, compendio de datos. Roma, Italia. 253 p. http://www.fao.org/3/a-i4808s.pdf (15 de julio de 2020). [ Links ]

Woerner, M. 1989. Método químico para el análisis de suelos calizos de zonas áridas y semiáridas. Facultad de Ciencias Forestales, Departamento Agroforestal, Universidad Autónoma de Nuevo León. Linares, N. L., México. 103 p. [ Links ]

Yáñez-Díaz, M. I., I. Cantú-Silva, H. González-Rodríguez and L. Sánchez-Castillo. 2019. Effects of land use change and seasonal variation in the hydrophysical properties in Vertisols in northeastern Mexico. Soil Use and Management 35 (3): 10. Doi: 10.1111/sum. 12500. [ Links ]

Zhang, J., T. Lei, L. Qu, P. Chen, X. Gao, C. Chen, L. Yuan, M. Zhang, and G. Su. 2017. Method to measure soil matrix infiltration in forest soil. Journal of Hydrology 552: 241-248. Doi:10.1016/j.jhydrol.2017.06.032. [ Links ]

Received: November 26, 2020; Accepted: May 28, 2021

Conflict of Interest

The authors declare no conflict of interest.

Contribution by author

Celestino Sandoval García: research development, structure and design of the manuscript; Israel Cantú Silva: design of the experiment and correction of the manuscript; Humberto González Rodríguez: review and corrections of the manuscript; María Inés Yáñez Díaz: statistical analysis and correction of the manuscript; José Guadalupe Marmolejo Monsiváis: review of the manuscript; Marco Vinicio Gómez Meza: statistical analysis and review of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons