SciELO - Scientific Electronic Library Online

 
vol.12 número66Hongos en semillas de Pinus montezumae Lamb. y Pinus greggii Engelm. ex Parl. almacenadas bajo dos humedades relativasToxicidad del plomo en la germinación y el crecimiento de plántulas de Parkinsonia aculeata L. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.12 no.66 México jul./ago. 2021  Epub 04-Oct-2021

https://doi.org/10.29298/rmcf.v12i66.806 

Scientific article

Schizophyllum commune Fr. associated to Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. in Mexico

Iris Marley Pérez Gálvez1 

Victoria Ayala Escobar1 

Elías Ortiz Cervantes2 

Adriana Rosalía Gijón Hernández3 

Sergio Aranda Ocampo1 

1Colegio de Postgraduados, Campus Montecillo. México.

2 Instituto Nacional de Investigaciones Forestales, Agrícola y Pecuarias. CIR-Golfo Centro. Campo Experimental El Palmar. México.

3Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Cenid- Conservación y Mejoramiento de Ecosistemas Forestales. México.


Abstract

Hevea brasiliensis is the most economically important species of the Hevea genus, from which 99 % of the world's natural rubber production is obtained. During 2018, total production was 75 922 tons obtained from 28 172 ha planted in five states of Mexico: Chiapas, Oaxaca, Tabasco, Veracruz and Puebla. Veracruz is in first place with 66 % production. The diseases in the rubber tree affect the optimal production of latex worldwide. In 2018, the incidence in nursery of a rot in rubber stumps grafted with the clone IAN-873 in Martínez de la Torre municipality was detected; therefore, the objective of this investigation was to identify the agent associated to stump rot in this place. Samples of woody tissue with rot and mycelium were cultured in Malta Agar medium (MA) and incubated at 28 ± 1 °C for 72 h from which colonies with white-cream, cottony mycelium developed. Based on the culture morphology in the MA medium and the phylogenetic analysis by amplification of the ITS region with the ITS5 and ITS4 universal primers from the isolation, Schizophyllum commune was identified as the fungus associated to H. brasiliensis stump rot, thus becoming the first report in Mexico.

Key words: Phylogeny; rubber; identification; stumps; rot; Schizophyllum commune Fr

Resumen

Hevea brasiliensis es la especie de mayor importancia económica del género Hevea, de la cual se obtiene 99 % de la producción mundial de hule natural. En México, durante 2018 se registró una producción total de 75 922 toneladas que se obtuvieron de 28 172 ha plantadas en cinco estados: Chiapas, Oaxaca, Tabasco, Veracruz y Puebla. De ellos, Veracruz ocupa el primer lugar, con 66 % de la producción. Las enfermedades en el árbol del hule afectan la óptima producción de látex en todo el mundo. En 2018, se detectó la incidencia en vivero de una pudrición en tocones de hule injertados con el clon IAN-873 en el municipio Martínez de la Torre; por lo anterior, el objetivo de esta investigación fue identificar el agente asociado a la pudrición de tocones en dicho lugar. Se cultivaron muestras de tejido leñoso con pudrición y micelio en medio Extracto de Malta Agar (MEA) y se incubaron a 28 ± 1 °C por 72 h; se desarrollaron colonias algodonosas, con micelio color blanco-crema. Con base en la morfología del cultivo en el medio MEA y el análisis filogenético cono la secuencia de la región ITS, obtenida mediante la amplificación con los primers ITS5/ITS4 del aislamiento, se identificó a Schizophyllum commune como el hongo asociado a la pudrición de los tocones de H. brasiliensis, lo que corresponde al primer registro para México.

Palabras clave: Filogenia; hule; identificación; tocones; pudrición; Schizophyllum commune Fr

Introduction

The Hevea genus belongs to the Euphorbiaceae family and includes the species H. brasiliensis (Willd. Ex A. Juss.) Müll. Arg., H. spruceana (Benth.) Müll. Arg., H. benthamiana Müll. Arg., H. guianensis Aubl., H. pauciflora (Spruce ex Benth.) Müll. Arg. and H. rigidifolia (Spruce ex Benth.) Müll. Arg. Among these, the most important is H. brasiliensis from which 99 % of the world's natural rubber production is obtained (Picón et al., 1997).

In Mexico, rubber cultivation and latex production is an important economic activity; During 2018, a total production of 75 922 tons of latex was recorded in the states of Veracruz, Chiapas, Oaxaca, Tabasco and Puebla. Among these, Veracruz is the main producer with 48.7 % of the planted area and 50 229 tons concentrated in the areas of Uxpanapa, Las Choapas, Hidalgotitlán and Tezonapa, which as a whole, represents 66 % of the total national production (SIAP, 2018).

Diseases in the rubber tree are an important limitation that annually cause considerable losses in terms of latex production (Jaimes and Rojas, 2011). Most of these diseases are of fungal etiology that can affect different phenological stages and types of tree tissue. Worldwide, the main diseases in H. brasiliensis include “South American Leaf Disease” (SALB) caused by Microcyclus ulei (Henn.) Arx; anthracnose by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (Castro, 2011); and downward death or stem rot by Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Izquierdo, 2008; Grupo Técnico Procaucho, 2012), among others.

Rot diseases in H. barasiliensis that have been identified include mold rot by Ceratocystis fimbriata Ellis & Halst.; in roots the white rot (Rigidoporus sp.), brown rot (Fomes noxius Corner), black rot (Xylaria thwaitesii Berk. & Cooke) and red rot (Ganoderma pseudoferreum (Wakef.) Overeem & B. A, Steinm.) (Rodríguez, 1993; Izquierdo, 2008).

In Mexico, there is little research that addresses the study of rubber diseases in the main producing areas. During 2018, in a nursery in Martínez de la Torre municipality, Ver., an incidence between 10 and 15 % of a rotting disease was detected, presumably of fungal etiology, with a proliferation of grayish-white mycelium in the woody tissue affecting stumps grafted with the rubber clone IAN-873. Therefore, the objective of this study was to identify morphologically and genetically the fungus associated with the rot of rubber stumps in the place.

Materials and Methods

Mycelium isolation

Vegetable tissue samples were collected from rubber tree stumps grafted with the IAN-873 clone with rot symptoms in a nursery in Martínez de la Torre (20°05'57.88" N, 97°04'52.3" W), Veracruz, Mexico . The samples were placed on brown paper and inside sealed plastic bags for analysis in the Phytobacteriology Laboratory of the Colegio de Postgraduados, Montecillo Campus.

The mycelium isolation was carried out from fungal structures associated with the tissue with the symptoms of rot disease. From each sample, pieces of the sporome aroind 0.5 cm2 were cut and disinfested with sodium hypochlorite (NaOH) at 1.5 % for 1 min, followed by three washes with sterile distilled water. The disinfected pieces were seeded in Malt Agar Extract (MEA) culture medium and incubated at 28 ± 1 °C for 72 h. Mycelium was obtained in axenic culture and preserved in slants in MEA culture medium and sterile mineral oil for subsequent studies.

Morphological description

Partially developed basidiomas were collected from stumps of rubber trees with rot symptoms for microscopic measurement of fungal structures, as well as those grown in the MEA medium; the identification was based on the taxonomic keys elaborated by Olivo and Herrera (1994) for Schizophyllum species.

Genetic characterization

For the genetic characterization, a colony of mycelium from an axenic culture of eight days of growth in MEA medium of the fungus isolated and identified in this study with the code MZVMT_01 was used. DNA extraction was carried out by the modified AP method (Sambrook and Russell, 2001). The ITS region was amplified with the universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3 ') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3') (White et al., 1990), which are located in the conserved regions of the 18S genes and 28S, respectively. The PCR reactions were carried out in a volume of 25 µL, with 2 µL of DNA at 50 ng µL-1 and 1 µL of each of the primers at a concentration of 10 µM; PCR buffer 0.5x final concentration; MgCl2 at 1.25 mm; dNTP's at 0.2 mm and 0.1 U µL-1 of Taq DNA Polymerase (Promega). The amplification was carried out in a T100 thermal cycler (Biorad) under the following conditions: initial denaturation temperature at 94 °C for 3 minutes, 35 cycles of 94 °C for 30 seconds, alignment of 58 °C for 30 seconds and an extension of 72 °C for 1 min; final extension at 72 ºC for 7 minutes and conservation at 4 °C. The amplified fragments were visualized by 1 % agarose gel electrophoresis, with 0.4 µL of ethidium bromide for 50 minutes at 90 V. Gels were visualized in an Infinitity-ST5 Vilber Lourmat photodocumenter.

The PCR product was purified with the WIZARD® SV Gel kit and the PCR Clean-Up System, according to the manufacturer's specifications (Promega Corporation, 1999). The purified PCR products were sequenced at Macrogen Korea in Seoul, Republic of Korea.

The DNA sequences were edited and assembled to create the consensus sequence of the amplified regions with the BioEdit Sequence Alignment Editor version 7.0.5.3 program. The assemblies were used to perform a similarity search using BLAST (Basic Local Alignment Search Tool) in the nucleotide database of the National Center of Biotechnology Information (http://www.ncbi.nlm.nih.gov/Blast). For the phylogenetic analyzes, the consensus sequences were aligned with the clustal method with the CLUSTAL OMEGA 1.2.2 program (Sievers and Higgins, 2014) and the search for the best nucleotide substitution model for each of the species was carried out with the program ModelTest-NG (Darriba et al., 2019). Phylogenetic reconstruction was performed with Bayesian inference using Markov Chains Monte Carlo (MCMC), implemented in the BEAST v1.10.4 program (Suchard et al., 2018) with different generations until the chains stabilized. For the best tree annotation, 25 % of the trees produced were discarded and the subsequnt probability was determined with the remaining trees.

Results and Discussion

Of the rot symptoms in stumps of H. brasiliensis from the Martínez de la Torre nursery, small partially developed basidiomas were observed, which did not exceed one centimeter in their widest area, fan-shaped, of a grayish-white color (Figure 1).

A) Diseased stumps; B) Fruiting bodies in the tissue.

Figure 1 Rot symptoms and fungal structures in stumps of the rubber tree in Martínez de la Torre

From the basidiome fragments that were inoculated in the MEA medium, pure strains of the fungus were isolated that formed creamy-white, cottony colonies and sporomas 10 days after sowing (Figure 2).

A) White-creamy, cottony colony in MEA culture medium; B) Formation of fruiting bodies 10 days after sowing.

Figure 2 Morphological characteristics of the fungal isolation of Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. stumps. 

Morphological description

The sporomas observed in the stumps of H. brasiliensis with rot were grouped, small in size, between 0.5-2 cm wide, without stipe with an irregular shell shape, with white to grayish mycelium. The sporoma was gymnocarpal with the sporiferous part limited only to the lower part of the lid and the hymenophore limited to the lower part. The culture of the sporomas in the MEA medium developed colonies of white to cream color, cottony, with branched and irregular growth, of smooth texture and rough surface. Microscopic analysis of the sporomes identified the fungus associated with stump rot of H. brasiliensis as Schizophyllum commune Fries (1815). From the last taxonomic scrutiny, it is classified (Kirk, 2020) as:

Kingdom: Fungi

Phylum: Basidiomycota

Class: Agaricomycetes

Order: Agaricales

Family: Schizophyllaceae

Genus: Schizophyllum

Species: S. commune

Genetic identification

Genetic analysis confirmed the morphological identification of the fungus associated with H. brasiliensis stump rot. The PCR products with the ITS4 and ITS5 rDNA primers amplified an approximate 600 bp fragment of the MZVMT_01 strain morphologically identified as S. commune (Figure 3). Buzina et al. (2001) obtained amplifications with these same primers in the 660 bp range for S. commune isolates (Figure 3).

M = 1kb molecular marker, lane 1 to 3 samples of Schizophyllum commune; (+) = Positive control; (-) = Negative control (Nuclease-free water).

Figure 3 Amplification of the PCR product of Schizophyllum commune Fr. associated with stump rot of Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. 

The search for similarity analysis by BLAST identified Schizophyllum commune with a maximum identity of 99.47 % with sequences deposited in the NCBI (accession number MN781967 and EU853847).

The phylogenetic tree of Schizophyllum commune was generated from 2 000 000 generations. Phylogenetic reconstruction showed that the MZVMT_01 isolate clustered in the same clade with the S. commune sequence MN781967 (Figure 4), which corresponds to a strain in a study of wood decay fungi in Northwest Arkansas forests (Alshammari and Stephenson, 2018).

Figure 4 Phylogenetic consensus tree based on Bayesian inference illustrating the relationship of Schizophyllum commune Fr. associated with Hevea brasiliensis (Willd. Ex A. Juss.) Müll. Arg. stump rot in Mexico. 

S. commune is a cosmopolitan fungus with wide distribution on all continents and is associated with the colonization of woody tissue and wood rot. It was previously considered a weak pathogen and was considered more of a saprophytic microorganism related to the decomposition of branches, dead wood and stored wood. However, it is now recognized as an important emerging pathogen in plants (Schmidt and Liese, 1980; Ohm et al., 2010; Takemoto et al., 2010) and humans (Chowdhary et al., 2013; Saha et al., 2013; Michel et al., 2015).

S. commune is included in the group of pathogens that cause the “white rot” disease, among which Schwarze et al. (2000) have stated that it harbors the greatest variety of degradation mechanisms; it is considered an omnivorous pathogen that invades living tissue and is highly aggressive among basidiomycetes (Takemoto et al., 2010).

The host range includes at least 150 genera of timber, coniferous, fruit, and ornamental trees; in Asia more than 260 species in 150 plant genera are identified as natural hosts and only in Japan 32 species in 22 woody plant genera (De Jong et al., 2006 cited by Ohm et al., 2010; Takemoto et al., 2010). Interaction with other pathogens has been demonstrated in young apple trees (Malus sp.) and propagation material that causes white root rot (Havenga et al., 2019).

Genome sequencing of S. commune revealed unique characteristics and increased numbers of genes among other basidiomycetes that code for the production of enzymes that degrade pectin, cellulose, hemicellulose and a unique mechanism to degrade lignin (Ohm et al., 2010). Other studies determined the high production of xylanase, laccase, cellulase, esterases and peroxidase (Schmidt and Liese et al., 1980; Špániková et al., 2007; Hirai et al., 2008). Likewise, among 75 basidiomycetes analyzed, S. commune showed greater pectinolytic activity due to the production of polygalacturonases (Xavier et al., 2004). Therefore, it is postulated that S. commune is capable of degrading practically all the components of the cell wall in woody tissue cells (et al., 2010).

Studies on the colonOhm ization of S. commune showed that it invades the woody tissue through the lumen vessels, tracheids, woody vessels, fibers and xylem where cellulose, hemicellulose or pectin are used as carbon sources for its development and subsequent use of lignin and polysaccharides contained in woody tissue (Ohm et al., 2010; Padhiar and Albert, 2011; 2012).

The worldwide distribution of S. commune indicates that it is one of the fungi that adapts to a wide variety of conditions, since it inhabits both temperate and tropical climates. It is stated that the degree of severity of white rot depends on the host species, environmental conditions and growth rate of the fungus; temperature, high relative humidity, global warming and pH have been associated among the most important environmental conditions that influence the aggressiveness of this pathogen (Schmidt and Leise, 1980; Takemoto et al., 2010). This adaptation to diverse climate and host conditions suggests that genetic variability may exist; this was demonstrated among populations of S. commune that formed different lineages with a close relationship with the geographic origin in North America and Europe; and a more recently expanding lineage in the Caribbean (James et al., 1999; 2001). The above could suggest that it is also possible that there are differences in virulence and aggressiveness between populations as a phytopathogen; however, there are still no studies documenting these differences as a plant pathogen.

S. commune was recorded in Mexico, in the humid tropics with annual rainfall levels exceeding 2,500 mm (Carreño-Ruíz et al., 2019). In the state of Tabasco, Ficus benjamina L., which also produces latex, has been recognized in fallen wood in Centro, Huimanguillo, Tacotalpa, Teapa, Tenosique and Macuspana municipalities (Olivo and Herrera, 1994; Carreño-Ruíz et al., 2019). These climatic conditions related to the presence of S. commune exist in Mexico in several rubber-producing localities in the states of Chiapas, Oaxaca, Tabasco, Veracruz and Puebla, with hot humid climates with abundant rains in summer or all year round and ranges of annual precipitation between 1 900 and 4 500 mm per year (Inegi, 2009).

The dissemination of S. commune occurs mainly due to the abundant dispersal of basidiospores by air, which colonize the woody tissue, mainly in young trees; injuries to tissue due to cold, frostbite and sunburn are the main routes of entry and infection (Takemoto et al., 2010). Likewise, pruning, improper pruning, poor nursery management and fertilization practices promote a high incidence of S. commune (Snieðkienë and Juronis, 2001); the wide dispersal ability and prevalence of S. commune up to four years have been documented by Badalyan et al. (2002).

In Hevea brasiliensis, the basidiomycete Rigidoporus microporus (Sw.) Overeem (1924) has been identified as a causal agent of “white rot” in roots (Oghenekaro, 2016), but not S. commune. In the interaction of Hevea brasiliensis with S. commune, the little information available is limited to the study of the association of this basidiomycete as part of the saprophytic community in the decomposition of fallen branches and stored wood (Hong, 1982; Seephueak et al., 2011a; 2011b), but not as a parasite and pathogen in plants. The high genetic uniformity in the rubber crop, the nursery management and the climatic conditions could be important factors in the establishment, dispersal and aggressiveness of S. commune in Hevea brasiliensis in Mexico.

Conclusions

Schizophyllum commune was identified in the rot symptoms in the woody tissue that was affecting stumps grafted with the IAN-873 rubber clone in Martínez de la Torre, Veracruz. The climatic conditions and annual precipitation in the main rubber-producing states in Mexico are located in the environmental range for the optimal development of Schizophyllum commune, so future studies deserve to deepen on the distribution, virulence and severity of this fungus in the different clones used in other rubber producing states, as well as the establishment of efficient control strategies.

This is the first report of Schizophyllum commune associated with stumps of Hevea brasiliensis with rot symptoms in Mexico; no international investigations were found that refer to the pathogenicity of Schizophyllum commune in Hevea brasiliensis.

Referencias

Alshammari, N. and S. L. Stephenson. 2018. A preliminary study of wood decay fungi in forests of northwest Arkansas. Current Research in Environmental & Applied Mycology 8(5): 556-563. Doi: 10.5943/cream/8/5/4. [ Links ]

Badalyan, S. M., G. Innocenti and N. G. Garibyan. 2002. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathologia Mediterranea 41(3): 220-225. Doi: 10.1400/14513. [ Links ]

Buzina W., D. Lang-Loidolt, H. Braun, K. Freudenschuss and H. Stammberger. 2001. Development of molecular methods for identification of Schizophyllum commune from clinical samples. Journal of clinical microbiology 39(7): 2391-2396. Doi: 10.1128/JCM.39.7.2391-2396.2001. [ Links ]

Castro N., O. M. 2011. Caracterización de los patosistemas foliares de importancia económica en caucho (Hevea brasiliensis Müll. Arg) en la Altillanura estructural plana del Meta (Colombia). Tesis de Maestría. Facultad de Agronomía. Universidad Nacional de Colombia. Bogotá, Colombia. 74 p. [ Links ]

Carreño-Ruiz, S. D., A. A. Ávalos L., S. Capello G., R. Gaitán H., J. Chen, G. K. Guillén N., L. V. García F., N. C. Jiménez P., M. Torres de la C., J. Cifuentes B. and R. E. Cappello. 2019. New record of Schizophyllum (Schizophyllaceae) from Mexico and the confirmation of its edibility in the humid tropics. Phytotaxa 413(2): 137-148. Doi: 10.11646/phytotaxa.413.2.3. [ Links ]

Chowdhary, A., H. S. Randhawa, S. N. Gaur, K. Agarwal, S. Kathuria, P. Roy, C. H. Klaassen and J. F. Meis. 2013. Schizophyllum commune as an emerging fungal pathogen: a review and report of two cases. Mycoses 56(1): 1-10. Doi: 10.1111/j.14390507.2012.02190.x. [ Links ]

Darriba, D., D. Posada, A. M. Kozlov, A. Stamatakis, B. Morel and T. Flouri. 2019. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution Vol. 37(1):291-294. Doi: 10.1093/molbev/msz189. [ Links ]

Grupo Técnico Procaucho. 2012. Manejo Integrado de plagas enfermedades en el cultivo del caucho (Hevea brasiliensis) Medidas para la temporada invernal. Instituto Colombiano Agropecuario (ICA). Bogotá, Colombia. 32 p. [ Links ]

Havenga, M., G. M. Gatsi, F. Halleen, C.F. Spies, R. van der Merwe and L. Mostert 2019. Canker and Wood Rot Pathogens Present in Young Apple Trees and Propagation Material in the Western Cape of South Africa. Plant Disease 103(12): 3129-3141. Doi: 10.1094/PDIS-04-19-0867-RE. [ Links ]

Hirai, H., Y. Kashima, K. Hayashi, T. Sugiura, K. Yamagishi, H. Kawagishi and T. Nishida. 2008. Efficient expression of laccase gene from white-rot fungus Schizophyllum commune in a transgenic tobacco plant. FEMS microbiology letters. 286(1): 130-135. Doi: 10.1111/j.1574-6968.2008.01267.x. [ Links ]

Hong, L. T. 1982. The decay of tropical hardwoods. II. Mass loss and degradation of cell-wall components of Hevea brasiliensis caused by Ganoderma applanatum, Poria sp., Schizophyllum commune and Trametes corrugata. The Malaysian forester 45: 124-126. https://www.jstor.org/preview-page/10.2307/43594285?seq=1 (12 de junio de 2020). [ Links ]

Instituto Nacional de Estadística y Geografía (Inegi). 2009. Prontuarios de información geográfica municipal de los Estados Unidos Mexicanos. https://www.inegi.org.mx/temas/climatologia/ (10 de diciembre de 2020). [ Links ]

Izquierdo B., H. 2008. Diagnóstico del manejo de cosecha y aplicación de estimulantes en plantaciones de hule Hevea basiliensis Müell Arg. en Tabasco. Tesis de maestría. Producción Agroalimentaria en el trópico. Colegio de Postgraduados. H. Cárdenas, Tab., México. 83 p. [ Links ]

Jaimes S., Y. Y. y J. Rojas M. 2011. Enfermedades foliares del caucho (Hevea brasiliensis Muell. Arg.) establecido en un campo clonal ubicado en el Magdalena Medio Santandereano (Colombia). Corpoica Ciencia y Tecnología Agropecuaria 12 (1): 65-76. Doi: 10.21930/rcta.vol12_num1_art:216. [ Links ]

James, T. Y., D. Porter, J. L. Hamrick and R. Vilgalys. 1999. Evidence for limited intercontinental gene flow in the cosmopolitan mushroom, Schizophyllum commune. Evolution 53(6): 1665-1677. Doi: 10.2307/2640430. [ Links ]

James, T. Y., J. M. Moncalvo, S. Li and R. Vilgalys. 2001. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 157(1): 149-161. Doi: 10.1093/genetics/157.1.149. [ Links ]

Kirk, P. M. 2020. Species Fungorum Plus: Species Fungorum for CoL+ (version Feb 20120). In: Roskov, Y., G. Ower, T. Orrell, D. Nicolson., N. Bailly, P. M. Kirk, T. Bourgoin, R. E. DeWalt W. Decock, E. van Nieukerken and L. Penev. (eds.). Species 2000 & ITIS Catalogue of Life, 2020-04-16 Beta Digital resource. Species 2000: Naturalis, Leiden, the Netherlands. http://www.catalogueoflife.org/col . 2405-8858 (12 de junio de 2020) [ Links ]

Michel, J., D. Maubon, D. A. Varoquaux, C. Boulze, A. C. Normand, C. A. Righini and S. Ranque. 2015. Schizophyllum commune: an emergent or misdiagnosed fungal pathogen in rhinology? Sabouraudia. 54(3): 301-309. Doi: 10.1093/mmy/myv084. [ Links ]

Oghenekaro, A. O. 2016. Molecular Analysis of the Interaction between White Rot Pathogen (Rigidoporus microporus) and Rubber Tree (Hevea brasiliensis). Department of Forest Sciences Faculty of Agriculture and Forestry, Helsinki. University of Helsinki. Helsinki. Finland. 57 p. [ Links ]

Ohm, R. A., J. F. de Jong, L. G. Lugones, A. Aerts, E. Kothe, J. E. Stajich, R. P. de Vries, E. Record, A. Levasseur, S. E. Baker, K. A. Bartholomew, P. M. Coutinho, S. Erdmann, T. J. Fowler, A. C. Gathman, V. Lombard, B. Henrissat, N. Knabe, U. Kues, W. W. Lilly, E. Lindquist, S. Lucas, J. K. Magnuson, F. Piumi, M. Raudaskoski, A. Salamov, J. Schmutz, F. W. Schwarze, P. A. vanKuyk, J. S. Horton, I. V. Grigoriev and H. A. Wosten. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature biotechnology 28(9): 957. Doi: 10.1038/nbt.1643. [ Links ]

Olivo F. y T. Herrera. 1994. Las especies de Schizophyllum en México, su distribución ecológica e importancia etnomicológica. Revista Mexicana de Micología 10: 21-32. http://www.scientiafungorum.org.mx/index.php/micologia/article/ view/810 (10 junio de 2020). [ Links ]

Padhiar, A. and S. Albert. 2011. Anatomical changes in Syzygium cumuini Linn. wood decayed by two white rot fungi Schizophyllum commune Fries. and Flavodon flavus (Klotzsch) Ryvarden. Journal of the Indian Academy of Wood Science 8: 11-20. Doi 10.1007/s13196-011-0017-4. [ Links ]

Padhiar, A. and S. Albert. 2012. Anatomical studies on decaying wood of Mangifera indica by two white rot fungi Schizophyllum commune and Flavadon flavus. Journal of the Indian Academy of Wood Science 9(2): 143-153. Doi: 10.1007/s13196-012-0079-y. [ Links ]

Picón R., L., E. Ortiz C. y J. M. Hernández C. 1997. Manual para el cultivo del hule Hevea brasiliensis Muell Arg. Folleto técnico Núm. 18. Campo Experimental, El Palmar. INIFAP. Tezonapa, Ver., México. 128 p. [ Links ]

Promega Coorporation. 1999. GenePrint@Fluorescent STR Systems Technical Manual. Promega Coorporation. Madison, WI, USA.https://worldwide.promega.com/-/media/files/resources/protocols/technical-bulletins/101/wizard-sv-gel-and-pcr-clean-up-system-protocol.pdf?la=en (20 de enero de 2020). [ Links ]

Rodríguez M., R. 1993. Enfermedades del hule Hevea brasiliensis Müell. Arg. SARH. INIFAP. CIRGOC. Campo Experimental El Palmar. División Forestal. Folleto técnico. Núm. 20. Veracruz, Ver., México. 14 p. [ Links ]

Saha, S., J. Sengupta, D. Banerjee, A. Khetan and S. M. Mandal. 2013. Schizophyllum commune: a new organism in eye infection. Mycopathologia 175(3-4): 357-360. Doi: 10.1007/s11046-013-9625-4. [ Links ]

Sambrook, J. and D. Russell. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY, USA. 2100 p. [ Links ]

Schmidt, O. and W. Liese. 1980. Variability of wood degrading enzymes of Schizophyllum commune. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 34(2): 67-72. Doi: 10.1515/hfsg.1980.34.2.67. [ Links ]

Schwarze, F. W. M. R., S. Baum and S. Fink. 2000. Resistance of fibre regions in wood of Acer pseudoplatanus degraded by Armillaria mellea. Mycological Research 104(9): 1126-1132. Doi: 10.1017/S0953756200002525. [ Links ]

Seephueak, P., S. Phongpaichit, K. D. Hyde and V. Petcharat. 2011a. Diversity of saprobic fungi on decaying branch litter of the rubber tree (Hevea brasiliensis). Mycosphere 2(4): 307-330. http://mycosphere.org/pdf/MC2_4_No3.pdf ( 6 de junio de 2020). [ Links ]

Seephueak, P., S. Phongpaichit, K. D. Hyde and V. Petcharat. 2011b. Diversity of saprobic fungi on decaying rubber logs (Hevea brasiliensis). Sydowia 63(2): 249-282. http://www.sydowia.at/syd63-2/T9-Seephueak.htm (6 de junio de 2020). [ Links ]

Servicio de Información Agropecuaria y Pesquera (SIAP). 2018. Anuario Estadístico de la Producción Agrícola. Cierre de producción Agrícola 2018. https://nube.siap.gob.mx/cierreagricola/ (12 de abril de 2020). [ Links ]

Sievers, F., and D. G. Higgins, 2014. Clustal omega, accurate alignment of very large numbers of sequences; In: Russell, D. J. (ed.). Multiple Sequence Alignment Methods. Humana Press. Totowa, NJ, USA. pp. 105-116. Doi: 10.1007/978-1-62703-646-7_6. [ Links ]

Snieðkienë, V. and V. Juronis. 2001. Distribution of the fungus Schizophyllum commune Fr. in plantings of trees in the Kaunas city. Biologija 3: 5-47. http://elibrary.lt/resursai/LMA/Biologija/B-45.pdf (8 de junio de 2020). [ Links ]

Špániková, S., M. Poláková, D. Joniak, J. Hirsch and P. Biely. 2007. Synthetic esters recognized by glucuronoyl esterase from Schizophyllum commune. Archives of microbiology. 188(2): 185-189. Doi: 10.1007/s00203-007-0241-x. [ Links ]

Suchard M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond and A. Rambaut 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution 4(1): vey016. Doi: 10.1093/ve/vey016. [ Links ]

Takemoto, S., H. Nakamura, Y. Imamura and T. Shimane, T. 2010. Schizophyllum commune as a ubiquitous plant parasite. Japan Agricultural Research Quarterly: JARQ. 44(4): 357-364. Doi: 10.6090/jarq.44.357. [ Links ]

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic Press, Inc. New York, NY, USA. pp. 315-322. [ Links ]

Xavier S., S., C. C. Carvalho, M. Bonfá, R. Silva, M. Capelari and E. Gomes. 2004. Screening for pectinolytic activity of wood-rotting basidiomycetes and characterization of the enzymes. Folia microbiologica 49(1): 46-52. Doi: 10.1007/BF02931645. [ Links ]

Received: June 20, 2020; Accepted: December 16, 2020

Conflict of interests

The authors declare n conflict of interests.

Contribution by author

Iris Marley Pérez Gálvez: laboratory analysis and writing of the manuscript; Victoria Ayala Escobar: morphological identification; Elías Ortiz Cervantes: field trips and sampling; Adriana Rosalía Gijón Hernández: support in molecular analysis; Sergio Aranda Ocampo: research follow-up, review and correction of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons