SciELO - Scientific Electronic Library Online

 
vol.12 issue64Density management guide for natural stands of Pinus rudis Endl. in Oaxaca author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias forestales

Print version ISSN 2007-1132

Rev. mex. de cienc. forestales vol.12 n.64 México Mar./Apr. 2021  Epub May 21, 2021

https://doi.org/10.29298/rmcf.v12i64.710 

Scientific article

Growth of Pinus greggii Engelm. ex Parl. provenances on degraded soils of the Mixteca Alta, Oaxaca State

Rubén Ortiz Mendoza1 

Oscar Alberto Aguirre Calderón1 

Martín Gómez Cárdenas2 

Eduardo Javier Treviño Garza1 

Marco Aurelio González Tagle1 

1Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. México.

2Campo Experimental Uruapan, Michoacán, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México.


Abstract

The growth of pines in eroded soils is limited by low organic matter. Knowing the growth of different origins of a species in degraded soils allows understanding its adaptability, and thus, favoring decision-making in subsequent reforestation. The aim of this work was to know the growth of 13 provenances of Pinus greggii var. greggii and Pinus greggii var. australis established on eroded soils of two localities of Mixteca Alta of Oaxaca. Height, normal diameter, basimetric diameter, and crown diameter were measured in 3 central trees for each experimental unit of 3 × 3 and 12 complete blocks at random. An ANOVA and Tukey's test were performed with a confidence level of 95 % for the comparison of means. After 17 years of plantation, survival was 89 %. The greater average growth was in var. australis with a height of 10.99 m in the provenance El Madroño, Qro. and in El Piñón, Hgo., with a greater average growth of basimetric diameter with 20.33 cm, normal diameter with 15.88 cm, crown diameter with 4.52 m and crown area with 17.81 m2 tree-1. Results indicate the existence of an interaction effect of provenance growth in each locality. The provenances of var. australis indicate to be the most appropriate in reforestation of eroded soils in Oaxaca.

Key words Erosion; Mixteca Alta; Pinus gregii var australis Donahue & López; Pinus greggii var. greggii Engelm.; plantation; reforestation

Resumen

El crecimiento de los pinos en suelos erosionados es limitado, por la existencia de poca materia orgánica. Conocer el crecimiento de diferentes procedencias de una especie en suelos degradados permite entender su adaptabilidad, lo que favorece la toma de decisiones en reforestaciones posteriores. El objetivo del presente trabajo fue conocer el crecimiento de 13 procedencias de Pinus greggii var. greggii y Pinus greggii var. australis establecidas en suelos erosionados de dos localidades de la Mixteca Alta de Oaxaca. Se midió la altura, diámetro normal, diámetro basal y diámetro de copa en tres árboles centrales por cada unidad experimental de 3 × 3; se utilizó un diseño de 12 boques completos al azar. Se realizó un ANOVA y prueba de Tukey con un nivel de confianza de 95 % para la comparación de medias. Después de 17 años de la plantación, la supervivencia fue de 89 %. El mayor crecimiento promedio se registró en P. greggii var. australis, con una altura de 10.99 m en la procedencia El Madroño, Qro.; y en la de El Piñón, Hgo., con mayor crecimiento promedio de diámetro basal (20.33 cm), diámetro normal de 15.88 cm, diámetro de copa con 4.52 m y área de copa con 17.81 m2 árbol-1. Los resultados indican la existencia de un efecto de interacción del crecimiento de procedencias en cada localidad. Las procedencias de la variedad australis son las más apropiadas para las reforestaciones de suelos erosionados de Oaxaca.

Palabras clave Erosión; Mixteca alta; Pinus gregii var australis Donahue & López; Pinus greggii var. greggii Engelm.; plantación; reforestación

Introduction

Conifers are dominant vegetation components in Mexico, but their distribution is affected by soil erosion (Cardoza et al., 2007; Gernandt and Pérez, 2014). The loss of large amounts of soils due to water, wind and anthropogenic erosion accelerates the process by reducing the soil's potential for plant development (Contreras-Hinojosa et al., 2003; Guerrero et al., 2010).

In order to reduce erosion, provenance trials are conducted to identify species that adapt to the conditions of eroded soils. The tests evaluate growth and adaptation of the plants according to the geographic regions and the variation in growth between stands and between individuals (Zitácuaro and Aparicio, 2004; White et al., 2007). In the same way, they are used to preserve biologically and economically sustainable genes (Chhin et al., 2018).

In the tree growth process during the test, the interaction between the environmental conditions in which the essay is established and the genotype define the phenotype with characteristics of the heritable component and the environment where the tree grows (Climent et al., 2002; White et al., 2007). Environmental conditions have an influence on the increase in tissues due to cell division, elongation and thickening of meristems, as well as on the genotypic characteristics of the tree (Klepac, 1983; Gadow et al., 2007; Imaña and Encinas, 2008).

In eroded soils, tests are carried out with Pinus sp. due to their structural and functional adaptation, and because where they are established, the economy of water and its potential to improve the soil are optimized, in addition to being affordable and easy to manage in the nursery (Alía et al., 1999; López et al., 2004). One of the species with these attributes is Pinus greggii Engelm ex Parl. (Gómez et al., 2012), and knowing the growth of the provenances of older specimens allows evaluating their variation as a function of time (López et al., 2004). In addition, compared to P. oaxacana Mirov, a native species from the same region where this work was carried out (López et al., 2017), it contributes a greater amount of litter to the soil, which suggests its potential to develop plantations in degraded soils.

In the Mixteca Alta region of the state of Oaxaca, Pinus greggii is used for reforestation in eroded areas. However, the species is naturally distributed in the Sierra Madre Oriental, in the states of Coahuila, Nuevo León, San Luis Potosí, Hidalgo, Veracruz and Puebla (Perry, 1991). The objective of the present work was to analyze the growth of 13 provenances of P. greggii established in two places of the Mixteca Alta of Oaxaca to know their response according to the growth in height, basal diameter, normal diameter, crown diameter and crown area.

Materials and Methods

Study area

The work was carried out in two plots located in the aforementioned Mixteca Alta region: in Magdalena Zahuatlán locality and in Tlacotepec Plumas.

The Tlacotepec Plumas lot is located between 17°52’11.02’’ N and 97°26’16.97’’ W at 2 143 masl. There, the climate is temperate semi-dry, with an average annual temperature of 16 °C, average rainfall of 420.8 to 650 mm; soils have 7.66 pH, 2.80 % organic matter content, 16.50 mg kg-1 phosphorus and 0.16 % nitrogen (Sedesol-CIBCEC, 2003).

The Magdalena Zahuatlán lot is located at 17°24’14.97’’ N and 97°12’32.22’’ W, with 2 166 meters above sea level. The climate in the place is temperate semi-dry, with an annual average temperature of 15 °C, average rainfall of 650; soils have 8.12 pH, 2.68 % organic matter content, 13.1 mg kg-1-phosphorus and 0.08 % nitrogen (Valencia et al., 2006; INEGI, 2010, Velasco et al., 2012).

Experimental material

With the plan of the plantation provided by the INIFAP-Valles Centrales de Oaxaca Experimental Field, the distribution of the provenances within the plot was specified. The plantations were established in 1997 with 13 provenances of P. greggii, of which six grow naturally in northern Mexico (P. greggii var. greggii Engelm.) and seven in central Mexico (P. greggii var. australis Donahue & López) (Table 1).

Table 1 Environmental characteristics of the Pinus greggii Engelm.assessed provenances. 

Provenance North Latitude West Longitude Altitude (masl) T (°C) Pp (mm) Soil pH
1. Puerto Los conejos, Coahuila g 25°28’ 100°34’ 2 450 16 600 6.0
2. Santa Anita, Coahuila g 25°27’ 100°34’ 2 500 16 600 6.8
3. Puerto San Juan, Coahuila g 25°25’ 100°33’ 2 650 16 600 6.1
4. Los Lirios, Coahuila g 25°23’ 100°34’ 2 400 16 600 7.4
5. Jamé, Coahuila g 25°21’ 100°36’ 2 450 16 600 7.2
6. Galeana, Nuevo León g 24°56’ 100°10’ 2 100 15 650 7.1
7. El Madroño, Querétaro a 21°16’ 99°10’ 1 650 17 737 4.5
8. Tres Lagunas, Querétaro a 21°20’ 90°08’ - 17 722.8 -
9. El Piñón, Hidalgo a 20°56’ 99°12’ 1 830 17 700 6.2
Con una antigüedad de 10. Laguna Atezca, Hidalgo a 20°49’ 98°46’ 1 330 20 1 438 4.5
11. Molango, Hidalgo a 20°48’ 98°46’ 1 200 17 1 750 4.4
12. Xichicoatlán, Hidalgo a 20°47’ 98°40’ 1 700 17 1 625 4.5
13. Zimapan, Hidalgo a 20°46’ 99°23’ 1 850 17 1 100 6.0

masl = Meters above sea level; T = Temperature; °C = Degrees centigrade; Pp = Mean annual rainfall; mm = Milimeters; g = Pinus greggii var. greggii; a = Pinus greggii var. australis.

The plantation was carried out in a common strain system of 40 × 40 × 40 cm in a staggered arrangement at a distance of 3 m, with an experimental design of complete random blocks with 12 blocks (replications) and nine plants per experimental unit (3 × 3), which gave a total of 1 404 trees per location.

Measurement of growth parameters

The study plantations are 17 years old. The three central trees of the experimental unit were selected, considering that they showed lower competition effects with trees from other sources. The height of each one was measured with a Haga altimeter, the normal diameter at 1.30 m from the ground and the basal diameter at 10 cm from the ground with a Forestry Suppliers Model 283D/5M diameter tape, and the crown diameter with two measurements, one in the north-south direction and another in an east-west direction with a Spencer Logger’s Model 975DC tape. A total number of 36 trees were measured by provenance in each location, with a total of 468 trees per location. A dead tree or a stump without a tree was recorded, with which survival was calculated. From the crown diameter, the crown area was calculated for each individual.

Data analysis

An analysis of variance was performed by using a randomized complete block model to compare the means of height, normal diameter, basal diameter, crown diameter and crown area between provenances and localities. When significant differences were defined, the Tukey test was applied with a confidence level of 95 % for the comparison of means. The R program was used with the agricolae library version 1.2-3 (Mendiburu, 2015). The survival data were transformed with the arcsen function (p '= arcsin√p) for homoscedasticity and normality in which p are the proportions from 0 to 1 (Zar, 1999).

yijk=μ+Li +Pj+Bk+LPij+LBij+Eijk

Where:

y ijk = Value of the observation in the i th locality, in the j th provenance of the k th block

µ = General mean effect

L i = Effect of the i th locality

P j = Effect of the j th provenance

B k = Effect of the k th block

LP ij = Effect of the interaction between the i th locality and the j th provenances

LB ij = Effect of the interaction between the i th locality and the j th block

E ijk = Effect of the interaction between the i th locality of the j th provenance and of the k th block (experimental error)

Results and Discussion

At 17 years of establishment of the plantation, survival was 95.9 % in Tlacotepec Plumas and 82.4 % in Magdalena Zahuatlán, with 89 % average between both locations. The slope of the plots probably influenced the growth between localities, as confirmed by Gómez et al. (2012) when recognizing survival variation on different slopes.

The longest survival occurred in P. greggii var. australis in the provenance of Zimapán, Hgo. (97.7 %) while in P. greggii var. greggii it was Puerto San Juan, Coah. (94.07 %). These data are similar to those obtained by Rodríguez et al. (2008) in Galeana, Nuevo León and by Gómez et al. (2012) who identified that in degraded areas, P. greggii reached 70 % survival after P. cembroides Zucc. and P. devoniana Lindl. with 80 and 90 %, respectively.

Differences between localities

The statistical analysis showed the existence of significant differences between localities (p <0.001) in all the assessed variables (Table 2). In Magdalena Zahuatlán, the provenances recorded an average height of 7.18±2.85 m, 14.07±6.03 cm in basal diameter, 10.55±5.54 cm in normal diameter, 3.48±1.24 m in crown diameter and 10.74±7.55 m2 tree-1 in the crown area. In Tlacotepec Plumas, the average growth was higher, with an average height of 10.50±2.20 m, 18.28±5.48 cm in basal diameter, 14.33±4.64 cm in normal diameter, 4.22±1.13 m in crown diameter and 15.03±8.03 m2 tree-1 in the crown area.

Table 2 Observed F values and size of the effects obtained from the mean comparison between localities and provenances. 

Assessed variables Between localities
(df=1/468)
Between provenances
(df=12/78)
F Effect F Effect
Height 538.52 0.41 24.16 0.27
Basal diameter 143.61 0.16 16.31 0.20
Normal diameter 144.76 0.16 12.74 0.16
Crown diameter 94.66 0.11 9.98 0.13
Crown area 73.17 0.09 10.57 0.14

The higher growths of Tlacotepec Plumas suggest better quality of the site for the growth of provenances (Table 3), which coincides with López et al. (2017) as there is a greater accumulation of litter in soils of Tlacotepec Plumas than in Magdalena Zahuatlán. Growth was favored by 50 % more nitrogen and 42 % more potassium concentration in soils of Tlacotepec Plumas (Velasco et al., 2012), which favor growth in height and diameter (Vázquez et al., 2018).

Table 3 Range of growth values in the studied localities.  

Assessed variables Magdalena Zahuatlán Tlacotepec Plumas
Height 1.00-13.50 3.00-16.00
Basal diameter 2.55-31.51 8.28-32.79
Normal diameter 0.64-28.01 1.91-26.74
Crown diameter 0.85-8.15 1.19-8.30
Crown area 0.57-52.17 1.11-54.11

Differences between provenances

Growth between provenances showed significant differences (P <0.001) in all the variables evaluated (Table 2). The analysis of the localities as a whole indicated greater growth of the provenances of P. greggii var. australis. The provenance with the highest average growth in height was El Madroño, Qro. (10.99±3.07 m) and in basal diameter, normal diameter, crown diameter, and crown area, El Piñón Hgo., with values of 20.33±7.27 cm, 15.88±6.32 cm, 4.52±1.50 m and 17.81±10.75 m2 tree-1, respectively. The provenances of P. greggii var. greggii recorded lower average height; the highest growth was reached by the specimens from Puerto San Juan, Coah. with 8.86±3.15 m in height, 16.21±7.47 cm in basimetric diameter, 12.63±6.57 cm in normal diameter, 3.79±1.44 m in crown diameter and 12.89±10.06 m2 tree-1 in crown area (Tables 4 and 5).

Table 4 Height and basimetricdiameter growth of 13 Pinus greggii Engelm. provenances in the Mixteca Alta, Oaxaca

Provenance Height
(m)
Basimetric diameter
(cm)
MZ TP Prom. G MZ TP Prom. G
El Madroño, Qro. 8.82 12.97 10.99±3.07 a 15.78 22.04 19.03±5.77 abc
El Piñón, Hgo. 8.35 12.23 10.35±3.30 ab 17.78 22.74 20.33±7.27 a
Zimapan, Hgo. 8.10 11.85 10.15±2.83 abc 16.21 21.91 19.32±6.18 ab
Molango, Hgo. 8.08 11.20 9.79±2.71 abcd 16.41 20.55 18.68±6.34 abc
Santa Anita, Coah. 7.82 9.07 8.50±1.97 efg 12.74 14.50 13.69±3.64 fgh
Tres Lagunas, Qro. 7.52 11.60 9.78±3.19 bcd 13.58 19.83 17.04±6.38 bcd
Puerto San Juan, Coah. 7.07 10.25 8.86±3.15 def 13.40 18.40 16.21±7.47 cdefg
Xichicotlán, Hgo. 6.98 10.96 9.14±2.90 cde 13.62 19.44 16.77±5.33 bcde
Laguna Atezca, Hgo. 6.82 11.20 9.29±2.81 bcde 12.94 19.39 16.58±5.66 bcdef
Jamé, Coah. 6.48 8.93 7.76±2.31 fg 14.21 14.60 14.41±4.42 defgh
Puerto Los Conejos, Coah. 5.95 8.68 7.45±2.07 gh 12.38 14.24 13.40±3.64 gh
Los Lirios, Coah. 5.50 8.64 7.28±2.65 gh 11.16 13.90 12.71±4.25 h
Galeana, N. L. 5.48 8.78 7.21±2.75 h 11.84 15.77 13.90±5.07 efgh

MZ = Magdalena Zahuatlán; TP = Tlacotepec Plumas; Prom = Average of the two localities; Qro = Querétaro; Hgo = Hidalgo; Coah = Coahuila; N. L. = Nuevo León; G = Growth groups. Letters indicate formed groups, same letters indicate that the means are not statistically different (Tukey P<0.05).

Table 5 Growth of normal diameter, crown diameter and crown area of 13 provenances of Pinus greggii Engelm. in the Mixteca Alta, Oaxaca. 

Provenance Normal diameter (cm) Crown diameter (m) Crown area (m2 árbol-1)
MZ TP Prom. G MZ TP Prom. G MZ TP Prom. G
EPH 13.88 17.76 15.88±6.32 a 4.14 4.87 4.52±1.50 a 15.84 19.67 17.81±10.75 a
MH 12.56 16.00 14.44±5.70 ab 4.12 4.59 4.38±1.16 ab 14.85 17.22 16.15±7.37 ab
ZH 12.44 16.48 14.68±5.37 ab 3.84 4.79 4.36±1.28 ab 12.70 19.10 16.26±9.03 ab
EMQ 11.95 17.81 15.02±4.99 ab 3.73 4.94 4.36±1.12 ab 11.72 19.79 15.94±7.42 ab
PSJC 10.10 14.60 12.63±6.57 bcd 3.42 4.07 3.79±1.44 bcd 10.88 14.46 12.89±10.06 bcd
JC 10.99 11.62 11.32±4.30 cde 3.51 3.61 3.56±0.86 cd 10.55 10.59 10.57±4.89 cd
SAC 9.93 11.38 10.71±3.46 cde 3.32 3.72 3.54±0.93 cd 9.55 11.33 10.51±5.25 cd
LAH. 9.46 15.20 12.70±5.17 bcd 3.30 4.32 3.88±1.08 abcd 9.39 15.34 12.75±6.62 bcd
TLQ 9.78 15.33 12.85±5.66 bc 3.20 4.63 3.99±1.53 abc 9.18 18.53 14.36±10.43 abc
LLC 8.31 10.82 9.73±4.17 e 3.22 3.57 3.42±1.03 cd 9.14 10.71 10.31±5.63 d
GNL 8.44 12.63 10.63±4.83 cde 3.12 3.60 3.37±1.11 cd 8.99 10.73 9.90±5.83 d
XH 9.57 15.36 12.65±4.94 bcd 3.24 4.56 3.94±1.12 abc 8.66 17.23 13.22±10.43 bcd
PLCC 9.02 11.07 10.14±3.39 de 2.94 3.55 3.28±0.85 d 7.50 10.27 9.02±4.36 d

MZ = Magdalena Zahuatlán; TP= Tlacotepec Plumas; EPH= El Piñón, Hgo.; MH= Molango, Hgo.; ZH= Zimapan, Hgo.; EMQ= El Madroño, Qro.; PSJC= Puerto San Juan, Coah.; JC= Jamé, Coah.; SAC= Santa Anita, Coah.;LAH= Laguna Atezca, Hgo.; TLQ= Tres Lagunas, Qro.; LLC= Los Lirios Coah.; GNL= Galenana N.L.; XH= Xichicotlán, Hgo.; PLCC= Puerto Los Conejos, Coah.; Prom. = Average of the two lots; G = Growth groups. Letters indicate formed groups, same letters indicte that the means are not statistically different (Tukey P<0.05).

In the provenances of P. greggii var. greggii at higher altitudes, a lower growth was observed, while those of P. greggii var. australis present at longitudes, latitudes, altitudes and lower soil pH, the data were higher. Being distributed near the area of the establishment of the plantations, the provenances of P. greggii var. australis showed better adaptation in the eroded areas of the Mixteca Alta de Oaxaca with a larger crown area, which protects the ground and provides woody residues and mulch, reduces the dragging of soil particles and decreases erosion, suitable conditions for reforestations in arid zones.

Pinus greggii shows a good response to erosion in the Mixteca Alta de Oaxaca, which coincides with the results of Gómez et al. (2012) who concluded that in degraded areas, P. greggii increases growth in height and basal diameter as the years have passed since its planting. This has a positive effect by providing more needles and carbon to the soil than P. oaxacana, a native species of the region where the present work was carried out (López et al., 2017). However, the provenances of Pinus greggii var. australis grew faster than P. greggii var. greggii, as described by Donahue and López (1996) and Velasco et al. (2012).

The difference in growth between provenances and localities in the study area began to be verified 2.5 years after the plantations were established, according to the work carried out by Velasco et al. (2012), who recorded the highest growth in Magdalena Zahuatlán, in particular with the same outstanding provenances in this work. The variation in growth between varieties may be due to the absence of nutrients in the soil (Velasco et al., 2012), which had repercussions in both provenances as reported by Sánchez et al. (2017) in P. greggii var. australis and Vázquez et al. (2018) in P. greggii var. greggii, a variation that recommends the application of nitrogen and phosphate fertilizers in plantations.

Outstanding growth results are shown by provenances of P. greggii var. greggii in this study are opposite to those of Rodríguez et al. (2013) obtained in Galeana, Nuevo León; the provenances of P. greggii var. greggii with a distribution closer to the poles showed a slow growth, which can be explained by the influence of temperature and the precipitation regime (Chhin et al., 2018; Taïbi et al., 2018). The highest growth of the of P. greggii var. australis provenances is related to its distribution at lower latitudes, where conditions are less restrictive for its development, compared to the of P. greggii var. greggii provenances (Valencia et al., 2017); therefore, they are better adapted to warmer, more humid environments and with higher rainfall (Donahue and López, 1996).

The P. greggii var. australis provenances have genotypes with sufficiently vigorous roots to reach the available moisture in the deep layers, as well as a greater accumulation of biomass, characteristics that influence a greater protection of the soil from erosion (Asbjornsen et al., 2004; Villegas et al., 2013); consequently, the nearness of the distribution environment of the provenances of P greggii var. australis with the study area favored its adaptation and growth by resisting temperature and drought Some essays established in Brazil, Colombia and South Africa with the same species and the same provenances (White et al., 2007; Aitken and Bemmels, 2016). Dvorak et al., (1996) produced similar results in terms of higher growth of this species.

The results of the present work suggest the existence of a strong relationship between growth and the descriptive variables of the places of natural distribution of each provenance, which agrees with the findings of Salazar et al. (1999) in Puebla, that at a younger age there is a positive correlation between height and altitude and, at an older age, the correlation becomes negative. In addition, with time, provenances of lower altitude adapt better by showing more noticeable growth in height, basal diameter and crown diameter.

Conclusions

17 years after the Pinus greggii plantations were established, the species had greater survival in Tlacotepec Plumas, which implies greater potential and better condition of the site for growth in height, basal diameter, normal diameter, crown diameter and crown area; these provenance data were grouped according to the variety of the species with more prominent values for P. greggii var. australis. The most outstanding of them were El Madroño, Qro. and El Piñón, Hgo., by showing better growths in eroded areas, as they provide protection to the soil from erosion which is proper to the Mixteca Alta region of Oaxaca.

These results provide important information on the growth variation between the two varieties of P. greggii in eroded soils after almost two decades of establishment. It is convenient to convert the essays into seed orchards and apply thinning by genotypic and phenotypic selection.

Referencias

Aitken, S. N. and J. B. Bemmels. 2016. Time to get moving: assisted gene flow of forest trees. Evolutionary Applications 9: 271-290. Doi:10.1111/eva.12293. [ Links ]

Alía, R., R. Galera, S. Martin, D. Agúndez, J. de Miguel y S. Iglesias. 1999. Mejora genética y masas productoras de semillas de los pinares españoles. INIA. Madrid, España. 239 p. https://www.miteco.gob.es/es/biodiversidad/publicaciones/monografias_inia_forestal_n1_tcm30-155903.pdf (18 de febrero de 2021). [ Links ]

Asbjornsen, H., K. A. Vogt and M. S. Ashton. 2004. Synergistic responses of oak, pine and shrub seedlings to edge environments and drought in a fragmented tropical highland oak forest, Oaxaca, Mexico. Forest Ecology and Management 192(2-3): 313-334. Doi:10.1016/j.foreco.2004.01.035. [ Links ]

Cardoza V., R., L. Cuevas F., J. S. García C., J. A. Guerrero H., J. C. González O., H. Hernández M., M. L. Lira Q., J. L. Nieves F., D. Tejada S. y C. M. Vásquez M. 2007. Protección, restauración y conservación de suelos forestales: Manual de obras y prácticas. CONAFOR-SEMARNAT. Zapopa, Jal., México. 70 p. http://www.conafor.gob.mx:8080/documentos/docs/20/1310Manual%20de%20Conservacion%20de%20Suelos%20.pdf (17 de febrero de 2021). [ Links ]

Climent, J. M., L. Gil, E. Pérez y J. A. Pardos. 2002. Efectos de la procedencia en la supervivencia de plántulas de Pinus canariensis Sm. en medio árido. Madrid, España. Investigación Agraria. Sistemas y Recursos Forestales 11(1): 171-180. https://recyt.fecyt.es/index.php/IA/article/view/2527 (17 de febrero de 2021). [ Links ]

Contreras-Hinojosa, J. R., V. Volke-Haller, J. L. Oropeza-Mota, C. Rodríguez-Franco, T. Martínez-Saldaña y A. Martínez-Garza. 2003. Estado actual y causas de la degradación de los agostaderos en el municipio de Yanhuitlán, Oaxaca. Revista Terra Latinoamericana 21(03): 427-435. https://www.redalyc.org/articulo.oa?id=57311097001 (18 de febrero de 2021). [ Links ]

Chhin, S., R. S. Zalesny Jr., W. C. Parker and J. Brissette 2018. Dendroclimatic analysis of white pine (Pinus strobus L.) using long-term provenance test sites across eastern North America. Forest Ecosystems 5:18. Doi:10.1186/s40663-018-0136-0. [ Links ]

Donahue, J. K. and J. Lopez U. 1996. Geographic variation in leaf, cone and seed morphology of Pinus greggii in native forest. Forest Ecology and Management 82:145-157. Doi:10.1016/0378-1127(95)03677-6. [ Links ]

Dvorak, W. S., J. E. Kietzka and J. K. Donahue. 1996. Three-year survival and growth of provenances of Pinus greggii in the tropic and subtropics. Forest Ecology and Management 83(1-2): 123-131. Doi:10.1016/0378-1127(95)03673-3. [ Links ]

Gadow R., V., S. Sánchez O. y J. G. Álvarez G. 2007. Estructura y crecimiento del bosque. Universidad de Göttingen. Göttingen, Alemania. 287 p. [ Links ]

Gernandt D., S. y J. A. Pérez-de la Rosa. 2014. Biodiversidad de Pinophyta (Coníferas) en México. Revista Mexicana de Biodiversidad 85(1):126-133. Doi:10.7550/rmb.32195. [ Links ]

Gómez R., M., J. C. Soto C., J. A. Blanco G., C. Sáenz R., J. Villegas y R. Lindig C. 2012. Estudio de especies de pino para restauración de sitios degradados. Agrociencia 46:795-807. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952012000800005 (17 de febrero de 2021). [ Links ]

Guerrero A., R., E. Jiménez y H. Santiago. 2010. La transformación de los ecosistemas de la Mixteca Alta Oaxaqueña desde el Pleistoceno Tardío hasta el Holoceno. Revista Ciencia y Mar 14(40):61-68. https://biblat.unam.mx/hevila/Cienciaymar/2010/no40/4.pdf (17 de febrero de 2021). [ Links ]

Imaña E., J. y O. Encinas B. 2008. Epídometría Forestal. Departamento de Engenharia Forestal, Universidad de Brasilia, Brasilia, Brasil/ Facultad de ciencias forestales, Universidad de Los Andes, Mérida, Venezuela. 72 p. https://www.academia.edu/39203782/EPIDOMETRIA_FORESTAL (18 de febrero de 2021). [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2010. XII Censo de población y vivienda. Instituto Nacional de Estadística, Geografía e Informática Instituto Nacional de Estadística, Geografía e Informática https://www.inegi.org.mx/rnm/index.php/catalog/141/related_materials?idPro= (17 de febrero de 2021). [ Links ]

Klepac, D. 1983. Crecimiento e incremento de árboles y masa forestales. Universidad Autónoma Chapingo. Departamento de Enseñanza, Investigación y Servicio en Bosques. Chapingo, México. 279 p. [ Links ]

López U., J., C. Ramírez H., O. Plascencia y J. Jasso. 2004. Variación en crecimiento de diferentes poblaciones de las dos variedades de Pinus greggii. Revista Agrociencia 38(4):457-464. https://www.redalyc.org/articulo.oa?id=30200409&iCveNum=1109 (18 de febrero de 2021). [ Links ]

López O., M., R. B. Sánchez G., J. R. Contreras H. , A. D. Armenta B. y J. A. Félix H. 2017. Captación de carbono en suelos asociados a Pinus greggii Engelm. y Pinus oaxacana Mirov. En la Mixteca Alta, Oaxaca. Ecología Aplicada 16(2). Doi: Doi:10.21704/rea.v16i2.1016. [ Links ]

Mendiburu, F. D. 2015. Agricolae: Stastitical Procedures for Agricultural Research R Package. Version 1.2-3. http://CRAN.R-project.org/package=agricolae (18 de febrero de 2021). [ Links ]

Perry, J. P. 1991. The pines of Mexico and Central America. Timber Press. Portland, OR, USA. 231 p. [ Links ]

Rodríguez L., R., S. Valencia, J. Meza, M, A. Capó y A. Reynoso. 2008. Crecimiento y características de la copa de procedencias de Pinus greggii Engelm. en Galeana, Nuevo León. Revista Fitotecnia Mexicana 31(1): 19-26. https://www.uaeh.edu.mx/investigacion/productos/2968/ (17 de febrero de 2021). [ Links ]

Rodríguez L., R. , R. Razo Z., S. Valencia M. y J. Meza R. 2013. Características dasométricas de Pinus greggii Engelm ex Parl. var. greggii de nueve procedencias en Galena, Nuevo León. Revista Mexicana Ciencias Forestales 4(18): 116-125. Doi:10.29298/rmcf.v4i18.394. [ Links ]

Salazar G., J. G., J. J. Vargas, J. Jasso, J. D. Molina, C. Ramírez y J. López. 1999. Variación en el patrón del crecimiento en altura de cuatro especies de Pinus en edades tempranas. Madera y Bosques 5(2):19-34. Doi:10.21829/myb.1999.521345. [ Links ]

Sánchez V., O., V. M. Cetina A., M. A. López L. y L. I. Trejo T. 2017. Efecto del sistema de producción de Pinus greggii Engelm. var. australis en vivero sobre su desarrollo morfológico en campo. Agroproductividad 10(8): 59-64. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/1076 (17 de febrero de 2021). [ Links ]

Secretaría de Desarrollo Social-Cédula de Información Básica para Centros Estratégicos Comunitarios (Sedesol- CIBCEC). 2003. Tlacotepec. http://www.microrregiones.gob.mx/cedulas/localidadesDin/ubicacion/relieve.asp?micro=COIXTLAHUACA&clave=205520001&nomloc=TLACOTEPEC%20PLUMAS (18 de febrero de 2021). [ Links ]

Taïbi, K., A. D. Del Campo, A. Vilagrosa, J. M. Bellés, M. P. López-Gresa, J. M. López-Nicolás and J. M. Mulet. 2018. Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology 18(236). Doi:10.1186/s12870-018-1464-5. [ Links ]

Valencia M., S., M. V. Velasco G., M. Gómez C., M. Ruiz M. y M. A. Capó A. 2006. Ensayo de procedencias de Pinus greggii engelm. en dos localidades de la Mixteca Alta de Oaxaca, México. Revista Fitotecnia Mexicana 29(1): 27-32. https://www.revistafitotecniamexicana.org/documentos/29-1/4a.pdf (17 de febrero de 2021). [ Links ]

Valencia M., S. , I. Playas R., E. H. Cornejo O. y C. Flores L. 2017. Patrón de alargamiento del brote terminal en un ensayo de procedencias de Pinus greggii Engelm. en la Sierra de Arteaga, Coahuila. Madera y Bosque 23(1): 133-141. Doi:10.21829/myb.2017.2311555. [ Links ]

Vázquez C., I., J. A. Prieto R., M. A. López L., C. Wehenkel, P. A. Domínguez C. y F. E. Muñoz S. 2018. Crecimiento y supervivencia de una plantación de Pinus greggii Engelm. ex Parl. var. greggii bajo diferentes tratamientos de fertilización. Revista Chapingo Serie Ciencias Forestales y del Ambiente 24(2): 251-264. Doi:10.5154/r.rchscfa.2017.05.036. [ Links ]

Velasco, V. V. A., J. R. Enríquez, G. Rodríguez, G. V. Campos, M. Gómez y M. L. García. 2012. Evaluación de procedencias de Pinus greggii Engelm. ex. Parl. en plantaciones de la Mixteca Oaxaqueña. Revista Mexicana de Ciencias Forestales 3(9): 41-50. Doi:10.29298/rmcf.v3i9.534. [ Links ]

Villegas, J. D. E., G. Rodríguez, V. A. Velasco, J. Ruiz, J. C. Carrillo y S. E. Ramírez. 2013. Partición de biomasa aérea en procedencias de Pinus greggii plantadas en el sur de México. Revista Fitotecnia Mexicana 36(4): 421-427. http://www.scielo.org.mx/pdf/rfm/v36n4/v36n4a8.pdf (17 de febrero de 2021). [ Links ]

White, T. L., W. T. Adams and D. B. Neale. 2007. Forest Genetics. CAB International, London. UK. 682 p. [ Links ]

Zar, H. J. 1999. Biostatistical Analysis. Fourth edition. Prentice Hall. Upper Saddle River, NJ, USA. 663 p. [ Links ]

Zitácuaro, C. F. H. y A. Aparicio R. 2004. Variación de altura y diámetro de plántulas de Pinus oaxacana Mirov de tres poblaciones de México. Foresta Veracruzana 6(1): 21-26. https://www.redalyc.org/articulo.oa?id=49760105 (17 de febrero de 2021). [ Links ]

Received: December 10, 2019; Accepted: November 24, 2020

Conflict of interest

The authors declare no conflict of interest.

Contribution by author

Ruben Ortiz Mendoza: field work, data analysis and writing of the manuscript; Oscar Alberto Aguirre Calderón: review of the manuscript and its correction; Martín Gómez Cárdenas: design of the study and field work; Eduardo Javier Treviño Garza: review of the manuscript; Marco Aurelio González Tagle: review of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons