SciELO - Scientific Electronic Library Online

 
vol.11 número59Consideraciones básicas para la aplicación de experimentos de elección discreta: una revisiónFactores que influyen en la erosión hídrica del suelo en un bosque templado índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.11 no.59 México may./jun. 2020  Epub 15-Jul-2020

https://doi.org/10.29298/rmcf.v11i59.666 

Scientific article

Moisture retention curves and pedotransfer models in Andosol under different land uses

Silvia Janeth Bejar Pulido1 
http://orcid.org/0000-0002-5163-704X

Israel Cantú Silva1  * 
http://orcid.org/0000-0001-8996-0881

María Inés Yáñez Díaz1 
http://orcid.org/0000-0001-6715-4723

Erik Orlando Luna Robles1 
http://orcid.org/0000-0001-5133-0403

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, México.


Abstract

The purpose of this research was to determine the behavior of the moisture retention capacity of an Andosol considering different land uses (forestry and agricultural (conventional avocado, organic avocado and macadamia)), and to determine the field capacity (CC), the permanent wilting point (PMP) and the available water (AD [CC-PMP]), as well as to validate six pedotransfer functions for CC and PMP. The moisture retention curve (CRH) was applied with the pressure plate and pressure membrane method at different voltages: 33 (CC); 50, 150, 500, 1 000 and 1 500 ([PMP] kPa), using plate extractors on samples collected at two different depths (0-20 and 20-40 cm). The results show that there are significant differences between land uses and between tensions. The CC registered values ranging from 55.95 to 69.03 %, and the PMP, values between 33.54 and 45.66 % at a depth of 0-20 cm, and of 40.99 to 62.02 % and 25.27 to 36.89 % at a depth of 20-40 cm, respectively, for an Andosol. According to the results, the FPT that exhibited the greatest predictive capacity for the determination of water content was that of Rawls and Brakensiek. The change of land use from forest land to agricultural crops modifies the moisture retention capacity of Andosols.

Key words Available water; Andosol; field capacity; pedotransfer functions; permanent wilting point; land use

Resumen

La presente investigación tuvo por objetivos conocer el comportamiento de la capacidad de retención de humedad de un Andosol con presencia de diferentes usos de suelo: forestal y agrícola (aguacate convencional, aguacate orgánico y macadamia); determinar la capacidad de campo (CC), el punto de marchitez permanente (PMP) y el agua disponible (AD [CC-PMP]); y validar seis funciones de pedotransferencia para CC y PMP. La curva de retención de humedad (CRH) se aplicó por medio del método de la placa y membrana de presión a distintas tensiones: 33 (CC); 50, 150, 500, 1 000 y 1 500 ([PMP] KPa), mediante extractores de placa en muestras recolectadas a dos profundidades (0-20 y 20-40 cm). Los resultados demuestran que existen diferencias significativas entre usos de suelo y tensiones. La CC registró valores en un intervalo de 55.95 a 69.03 %, con un PMP entre 33.54 a 45.66 % en la profundidad 0 - 20 cm; y de 40.99 a 62.02 %, con 25.27 a 36.89 % de PMP a una profundidad de 20 - 40 cm. De acuerdo a los resultados, la FPT que presentó la mayor capacidad de predicción para la estimación del contenido de agua fue la de Rawls y Brakensiek. El cambio de uso del suelo de terrenos forestales a cultivos agrícolas modifica la capacidad de un Andosol para retener humedad.

Palabras clave Agua disponible; Andosol; capacidad de campo; funciones de pedotransferencia; punto de marchitez permanente; uso de suelo

Introduction

The moisture retention curves (CRH) of the soil express the existing relationship between the moisture content and its matrix potential, and reflect the water retention capacity of the soil in terms of suction; this relationship depends on the factors associated with the porosity of the soil (Teepe et al., 2003; López et al., 2013; Yáñez et al., 2015; Casanova, 2018).

The properties of Andosols are very complex, due to their high content of sand. According to Torrealba (2008), sandy soils release a large amount of water at very low pressures, as they have a high porosity and low densities, which renders them more susceptible to moisture loss.

The soils of forest plots which have been modified to an agricultural use exhibit alterations in their structure that lead to a degradation process and directly affect the water retention capacity (Meza and Geissert, 2006). However, the type and intensity of the cultures define the level of this impact on the hydrological properties.

Studies on the indirect determination of field capacity (CC), permanent wilting point (PMP) and available water (AD) in the Andosols are scarce; however, certain PedoTransfer Functions (FPT) have been developed for estimating these properties based on other variables, such as organic matter (MO), bulk density (DA) and sand (A), silt (L) and clay (R) content (Rawls and Brakensiek, 1985; Delgado and Barreto, 1988; Malavé, 1991; Pecorari, 1988; Peralta and Barrios, 2006; Chicas et al., 2014).

The soil-water-use relationship is represented by the moisture retention capacity, which is essential to know in order to understand the hydraulic processes that occur in the soil. Its direct determination requires much time and is costly, as it demands a large number of samples, due to the high spatial and temporal variability of the hydraulic properties of the soil. An alternative is the use of FPT models, which estimate the CRH based on easily measurable properties, although the prediction depends on the sample size, as well as on the characteristics of the soil (Pineda and Viloria, 1997; Medeiros et al., 2014; Souza et al., 2016).

The culture of avocado in the state of Michoacán has triggered economic growth; however, this progress has also accelerated the deforestation and land use change processes, from its specific (climate and soil) needs, which coincide with those of the forest ecosystems. This has brought about the loss of soils and the modification of their hydrological properties (Chávez et al., 2012).

It is essential for agriculture to maintain adequate levels of water in the soil, as this ensures the success of the crops, and it is crucial in forest ecosystems, because of the multiple environmental services that they provide (Taboada and Micucci, 2002; Chicas et al., 2014).

The objective of the present research was to estimate the behavior of the moisture retention capacity in an Andosol at different tensions, by determining the CC, PMP, and AD, using the CRH and FPTs in order to assess the effect of land use change from a forest system to the culture of (organic and conventional) avocado (Persea americana L.) and macadamia (Macadamia integrifolia Maiden & Betche).

Materials and Methods

Study area

The study was carried out in the Toreo El Alto ejido, in Uruapan municipality, Michoacán; located in the Transversal Neovolcanic Axis, between 19°28’22.2’’ N and 102°00’19.7’’ W. This area belongs to the Balsas river region, at an altitude of 1 890 m; the climate is temperate humid, with summer rains (Cw) (García, 2004), with an annual mean temperature range of 10 and 27 °C and has an annual mean precipitation above 1 500 mm. The soil type is volcanic Andosol (Alcalá et al., 2001).

Soil sampling

Four plots on an Andosol with different land use were selected: one forest plot and three agricultural plots (for the culture of conventional avocado, organic avocado and macadamia). Four samples consisting of approximately 2 kg were collected from each, at two different depths (0-20 and 20-40 cm) and transported to the Soils Laboratory of the Graduate School of Forest Sciences of the of the Universidad Autónoma de Nuevo León for further analysis.

Determining the moisture retention capacity

The 32 collected samples were dried in the open air and sifted in a 2 mm sieve. CRH was determined by the pressure plate and pressure membrane method with disturbed samples (Yáñez, 2017).

Rings with a 10 cm diameter were placed on the plate; the samples were subsequently saturated in water during 12 hours and were subjected to different pressures: 33, 50, 150, 500, 1 000 and 1 500 kPa in pressure plate extractors (Soil Moisture Equipment Corp.). They were subsequently dried during 24 hours at a temperature of 105 °C, and the soil moisture was determined using the AS-05 method of the NOM-021-RECNAT-2000 (Semarnat, 2002).

θg=(PB+Psh)-(PB+Pss)(PB +Pss)-(PB)*100

Where:

θg = Moisture content (%)

PB = Weight of the container with a lid (g)

Psh = Moist soil weight

Pss = Dry soil waste (g)

PB+Psh = Weight of the container plus weight of the moist soil (g)

PB+Pss = Weight of the container plus weight of the dry soil (g)

CRH, CC (33 kPa), PMP (1 500 kPa) and AD were estimated using the values thus obtained (difference between CC and PMP).

Complementary variables for determining FPTs

Complementary variables are generally utilized for estimating the FPTs, based on a true, acceptable foundation; in this case, the MO content was determined using the method of Walkley and Black modified by Woerner (1989); the texture was determined by using the Bouyoucos hydrometer method, based on the AS-09 technique of the NOM-021-RECNAT-2000 (Semarnat, 2002); and the DA (g cm-3) was determined by using the gravimetric method (Woerner, 1989).

Pedotransfer functions (FPT)

There are numerous pedotransfer equations generated from edaphological variables, with which mathematical models have been developed in order to determine the CC and PMP.

Water retention was estimated by a collection of mathematical functions from various researches (Tables 1 and 2), in order to obtain the CC (33 kPa) and the PMP (1 500 kPa).

Table 1 Regression equations for determining the moisture content at 33 kPa (CC). 

Model Functions
Rawls and Brakensiek, 1985 θ=0.026+0.005*R+0.0158*MO
Delgado and Barreto, 1988 θ=16.55-0.174*A-0.164*L+0.154*R+1.24*MO
Pecorari, 1988 θ=4.04+0.252*R+0.206*L
Malavé, 1991 θ=16.1608-0.1877*A+1.0528*MO
Peralta and Barrios, 2006 θ=15.691+0.566*A+0.092*L+1.787*MO-8.412*DA
Chicas et al., 2014 θ=55.05-28.97*DA-0.23*R

θ= Moisture content; A = Sand; L = Silt; R = Clay; MO = Organic matter; DA = Bulk density.

Table 2 Regression equations for determining the moisture content at 1 500 kPa (PMP). 

Model Functions
Rawls and Brakensiek, 1985 θ=0.2576-0.002*A+0.0036*R+0.0299*MO
Delgado and Barreto, 1988 θ=29.06-0.290*A-0.253*L+0.135* R+2.56*MO
Pecorari, 1988 θ=6.85+0.360*R+L
Malavé, 1991 θ=23.953-0.2228*A+4.6436*MO
Peralta and Barrios, 2006 θ=5.387+0.469*A-0.020*L+0.6909*MO-4.949*DA
Chicas et al., 2014 θ=67.3-33.77*DA-0.23*R

θ = Moisture content; A = Sand; L = Silt; R = Clay; MO = Organic matter; DA = Bulk density.

Statistical analyses

Normality tests were applied to the moisture retention capacity. Since the data did not comply with the normality, the Kruskal-Wallis non-parametric test was used (Berlanga and Rubio, 2012) in order to verify the existence of significant differences in the water content at different tensions between land uses.

Validation of pedotransfer functions

The mean squared error (CME) was estimated in order to validate the fitness of the models, based on the following expression (Patil and Singh, 2016):

CME=(Z*i-Zi)2/n

Where:

Z*i= Moisture retention value estimated for the validation sample i

Zi=Real value for the same sample

n=Total number of validation samples (n=32)

CME allows measuring the error when calculating the moisture content with the regression equation. In addition, the determination coefficient (R 2 ) -which establishes the quality of the model for replicating the results- was estimated (Patil and Singh, 2016).

Results and Discussion

Moisture retention capacity (CRH)

The Kruskal-Wallis test shows significant differences between the land uses assessed at different tensions and depths. According to Daza et al. (2014), the changes in the cover generate loss of soil moisture; this impact is reflected by the results obtained in the present research (Table 3). In general, all types of agricultural practices cause a loss of cover in a given time period, with the resulting exposure of the soil to the air and the increased evaporation on its surface.

Table 3  x2 values, according to the Kruskal-Wallis test for different intervals between tensions and mean values (n=4) in the studied land uses. 

Water retention tension kPa
33 50 150 500 1 000 1 500
0-20 cm
X 2 10.059* 11.294** 11.051* 11.404** 11.404** 11.007*
Forest 63.65 62.47 48.88 46.45 44.33 42.79
Conventional avocado 69.04 61.15 51.36 47.19 45.22 45.66
Organic avocado 55.95 42.72 40.39 35.96 34.87 33.78
Macadamia 55.95 40.18 39.7 34.78 33.65 33.55
20-40 cm
X 2 8.492* 11.801** 13.786** 9.968* 9.992* 10.477*
Forest 62.03 52.57 42.73 38.81 38.42 34.61
Conventional avocado 61.61 60.92 46.84 41.07 39.63 36.89
Organic avocado 52.56 43.05 37.48 32.05 30.04 28.43
Macadamia 44.31 39.41 31.43 29.03 25.65 23.52

*= Significant difference (P≤0.05); ** = Highly significant difference (P≤0.01).

Musso and Suazo (2019) relate it to the distribution of mineral particles (size), specifying that sandy soils are more permeable, unlike the silts and clays, which retain a larger amount of water.

The moisture retention curves show that the land use for the culture of macadamia exhibited the lowest moister content at both depths, unlike the use for the culture of conventional avocado (Figure 1), which depends on the texture. The results indicated 50 to 70 % of sands in macadamia, and 30 to 40 % in conventional avocado (Table 4).

Humedad volumétrica = Volumetric moisture; Forestal = Forestal; A. convencional = Conventional avocado; A. orgánico = Organic avocado.

Figure 1 Moisture retention curves at two different depths (0-20 and 20-40 cm) in the different uses of the soil. 

Table 4 Mean values ± standard deviation of the data to validate the models (n=4). 

Land use MO (%) DA (g cm-3) A (%) L (%) R (%) Texture
0-20 cm
Forest 13.02±1.94 0.56±0.10 48.60±5.89 45.34±6.86 6.06±0.99 CA
Conventional avocado 16.41±1.32 0.57±0.05 27.96±6.00 60.81±5.52 11.23±1.30 CL
Organic avocado 9.05±1.20 0.82±0.12 51.10±4.30 42.13±4.29 6.77±1.78 CA
Macadamia 13.80±2.32 0.69±0.06 56.46±7.03 37.36±5.77 6.18±1.91 CA
20-40 cm
Forest 6.30±3.10 0.65±0.04 56.28±3.46 37.66±2.92 6.06±2.15 CA
Conventional avocado 12.63±0.78 0.59±0.05 37.05±6.48 53.22±7.53 9.73±2.84 CL
Organic avocado 5.56±2.61 0.81±0.13 59.14±1.65 32.91±2.63 7.95±1.27 CA
Macadamia 6.60±1.67 0.73±0.12 67.82±8.70 27.00±8.08 5.18±1.00 CA

MO = Organic matter; DA= Bulk density; A = Sand; L = Silt; R = Clay; Texture: CA = Loamy sandy; CL = Loamy silty.

The forest system registered high water contents at low pressures, with 65 % and 60 % moisture at depths of 0-20 and 20-40 cm, respectively. The organic avocado system started with a 55 and 50 % at depths of 0-20 and 20-40 cm, respectively, and lost 15 % of the moisture content in both conditions.

As depth increases, the moisture retention capacity decreases as a result of the presence of a larger amount of sands. Volverás et al. (2016) determined the moisture retention curves and the impact of agricultural management; the authors stated a negative effect on the moisture retention capacity due to the influence of the depth and slope of the assessed areas. In general, the amount of water available in the soil is associated with the MO content. Minasny and Mcbratney (2018) document that the increase in the amount of water available for the plants due to an increase in MO is uncertain and may be overestimated.

The moisture retention capacity in the forest at CC at a depth of 0-20cm was 65 %; for the culture of organic avocado and macadamia, it decreased by 7 and 13 %, respectively, and for the culture of conventional avocado, it increased by 5 %. The same tendency was observed for PMP (40 % moisture): in the culture of organic avocado, it diminished by 9 %, in macadamia 12 %, and in the conventional avocado, it increased by 3 % (Figure 2).

Humedad = Moisture; Uso de suelo = Land use; Humedad volumétrica = Volumetric moisture; Forestal = Forestal; A. convencional = Conventional avocado; A. orgánico = Organic avocado; CC = Field capacity; PMP = Permanent wilting point; AD = Available water.

Figure 2 Moisture constants at two different depths (A: 0-20 cm, and B: 20-40 cm) in an Andosol with different land uses. 

The amount of available water is in terms of the CC and PMP; at the first 20 cm of depth, it was estimated in approximately 20 % for all land uses; at a depth of 20-40 cm, the forest soil use registered an increase up to 30 % (+10 %) in retention capacity; for the rest of the land uses, there was a slight increase of 1 to 2 %, except for the culture of macadamia, which exhibited 15 % reduction in relation to forest use. La Manna et al. (2018) researched the water retention capacity in Andosols with different textures and indicated AD values of 7 to 15 % in loamy sandy textures, and of 13 to 18 % in loamy silty textures.

Daza et al. (2014) obtained a CC of 80 % and a PMP of 50 % in forests with native vegetation on volcanic soils in Colombia. Meza and Geissert (2006) assessed the stability of Andosols with forest and agricultural use; their results indicate a moisture retention of 50 % at CC and 20 % at the PMP in plots for forest use, and of 30 and 10 %, respectively, in plots for agricultural use. Chicas et al. (2014) report a CC of 13 to 40 % and a PMP of 8 to 30 % in volcanic soils; these values are considered to be low with respect to the values estimated in the present study for forest use, which were 60 to 70 % at CC, and 30 to 45 % at the PMP (Figure 2).

Complementary variables for determining FPTs

Other variables generally associated to the capacity of the soil to retain water had to be assessed in order to determine the FPT. The high MO contents at the first depth (0-20 cm), which ranged between 9 and 16 %, stood out; the DA was low, with a high content of sands and silts, resulting in a loamy sandy texture for most of the assessed soils (Table 4).

At a depth of 20-40 cm, the MO contents diminished noticeably, ranging between 5 and 12 %; the DA increased slightly, while the content of sands and the reduction of the content of silts were noticeable. The content of clays was similar at both depths, with values ranging between 5 and 11 %.

Pedotransfer functions (FPT)

Table 5 shows the CME of the models used for determining the CC and the PMP. It may be seen that the model of Rawls and Brakensiek (1985) exhibited a low CME (CC = 241.10 and PMP = 210.25), and a high R 2 (0.99), which reflects the fact that this model has the best fit with the slightest bias; the rest of the models had higher CMEs: Malavé (1991), followed by Delgado and Barreto (1988) and Chicas et al. (2014), to cite just a few.

Table 5 Values of the mean squared error (CME) of the pedotransfer functions at CC (33 kPa) and PMP (1 500 kPa), and coefficient of determination (R 2 ).  

Model 33 kPa 1 500 kPa R 2
Rawls and Brakensiek (1985) 241.10 210.25 0.99
Delgado and Barreto (1988) 992.05 880.96 0.99
Pecorari (1988) 458.53 737.35 0.96
Malavé (1991) 1 328.03 1 007.69 0.78
Peralta and Barrios (2006) 170.74 120.72 0.39
Chicas et al. (2014) 822.32 443.27 0.99

Peralta and Barrios (2006) point out that the best prediction is represented by the coefficient of determination, which shows that the variations are accounted for by the variables defined in the equation.

The coefficient of determination was high for all models, except for that of Peralta and Barrios (2006), with an R 2 of 0.39, which accounts for goodness of fit; therefore, the fit of this model is the least reliable, compared to that of the rest of the models (Table 5).

Pineda and Viloria (1997) used the equations of Rawls and Brakensiek (1985) and Malavé (1915) and obtained CMEs of 99.73 and 360.21, respectively, at CC, while the values at the PMP were 27.19 and 195.09, respectively. Notably, the model of Rawls and Brakensiek (1985) exhibited a low CME, just as in the present study. For this reason, it is considered to be one of the best predictors for CC and PMP estimation in Andosols.

According to Pineda and Viloria (1997), the regression models represent an inexpensive alternative for estimating the moisture retention in the soil; however, their precision depends on the number of samples and variables utilized for determining it. For example, based on only 57 samples, Chicas et al. (2014) estimate a coefficient of determination of 0.59 % at CC and 0.68 % at the PMP, which accounts for the variability of the data observed using the generated models. On the other hand, Peralta and Barrios (2006) obtained an R 2 of 0.83 % at CC and 0.70 % at the PMP using only 22 samples; in both cases, the variation in field capacity and permanent wilting point is accounted for by the variables used in the generated models (Tables 1 and 2).

Conclusions

Land use change from forest to agricultural plots modifies the moisture retention capacity in an Andosol.

The pedotransfer functions represent an alternative for determining the water retention capacity; the bulk density, MO and granulometric analysis are the variables that offer greater estimation precision in this type of soils.

The Rawls and Brakensiek equation allows optimal modeling of the moisture conditions of Andosol 0-20 cm and 20-40 cm deep. The effects of land use on the soil resource cause a chain reaction on its physical-chemical properties, as these are directly interrelated.

Referencias

Alcalá D., J. M., A. C. Ortiz S. y M. C. Gutiérrez C. 2001. Clasificación de los suelos de la Meseta Tarasca, Michoacán. Terra Latinoamericana 19(3): 227-239. https://www.redalyc.org/pdf/573/57319304.pdf (2 de julio de 2019). [ Links ]

Berlanga, V., y H. M. J. Rubio. 2012. Clasificación de pruebas no paramétricas. Cómo aplicarlas en SPSS. REIRE. Revista d'Innovació i Recerca en Educació 5(2): 101-113. http://hdl.handle.net/2445/45283 (24 de Agosto de 2019). [ Links ]

Casanova, M. 2018. Modelación elastoplástica de la curva de retención de agua en suelos parcialmente saturados. Tesis maestría. Universidad Politécnica de Catalunya. Barcelona, España. 55 p. https://upcommons.upc.edu/bitstream/handle/2117/130976/TFM%20final%20Javier%20Casanova%20M..pdf?sequence=1&isAllowed=y (22 de mayo de 2019). [ Links ]

Chávez L., G., L. M. Tapia V., M. Bravo E., J. T. Sáenz R., H. J. Muñoz F., I. Vidales F., A. Larios G., J. B. Rentería A., F. J. Villaseñor R., J. L. Sánchez P., J. J. Alcántar R. y M. Mendoza C. 2012. Impacto de cambio de uso de suelo forestal a huertos de aguacate. Libro técnico Núm. 13. INIFAP. Uruapan, Mich., México. 102 p. https://www.researchgate.net/publication/265125083_Impacto_del_cambio_de_uso_del_suelo_forestal_a_huertos_de_aguacate_IMPACT_OF_FOREST_LAND_USE_CHANGE_TO_AVOCADO_ORCHARDS (21 de junio de 2019). [ Links ]

Chicas S., R. A., E. A. Vanegas C. y N. García A. 2014. Determinación indirecta de la capacidad de retención de humedad en suelos de la subcuenca del río Torjá, Chiquimula, Guatemala. Revista Ciencias Técnicas Agropecuarias 23(1): 41-46. http://scielo.sld.cu/scielo.php?pid=S2071-00542014000100007&script=sci_arttext&tlng=en (19 de agosto de 2019) [ Links ]

Daza T., M. C., F. Hernández F. y F. A. Triana. 2014. Efecto del uso del suelo en la capacidad de almacenamiento hídrico en el páramo de Sumapaz-Colombia. Revista Facultad Nacional de Agronomía-Medellín 67(1): 7189-7200. Doi:10.15446/rfnam.v67n1.42642. [ Links ]

Delgado, F. y L. Barreto. 1988. Una aproximación matemática para la elaboración de curvas de retención de humedad en suelos representativos de Los Llanos Occidentales. Revista UNELLEZ de Ciencia y Tecnología (1-2):45-50. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=AGRINVE.xis&method=post&formato=2&cantidad=1&expresion=mfn=003341 (2 de junio de 2019). [ Links ]

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppén. Sexta edición, Serie libros. Instituto de Geografía, UNAM. México, D.F., México. 90 p. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1 (30 de junio de 2019). [ Links ]

La Manna, L., M. Tarabini., F. Gómez., P. A. Noli., B. Vogel. y C. G Buduba. 2018. Estimación de la capacidad de retención de agua de suelos volcánicos en función de variables de fácil determinación a campo. Asociación Argentina Ciencia del Suelo 36 (1): 23-29. http://www.suelos.org.ar/publicaciones/volumen3612018/pag%2023-29%20CS526%20Estimaci%C3%B3n%20de%20la%20capacidad%20de%20retenci%C3%B3n%20de%20agua%20de%20suelos%20volc%C3%A1nicos.pdf (10 de junio de 2019). [ Links ]

López I., F., P. D. Kemp., J. Dörner., C. A. Descalzi., O. A. Balocchi. and S. García. 2013. Competitive strategies and growth of neighbouring Bromus valdivianus Phil. and Lolium perenne L. plants under water restriction. Journal of Agronomy and Crop Science 199 (6): 449-459. Doi: 10.1111/jac.12032. [ Links ]

Malavé, N. 1991. Estudio preliminar de las relaciones entre características de retención de humedad y distribución de tamaño de partículas, materia orgánica y densidad aparente. Tesis maestría. Universidad Central de Venezuela, Facultad de Agronomía. Macaray, Aragua, Venezuela. 92 p. [ Links ]

Medeiros, J. C., M. Cooper, J. Dalla R., M. Grimaldi. and Y. Coquet. 2014. Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Revista Brasileira de Ciência do Solo 38(3): 730-743. Doi:10.1590/S0100-06832014000300005. [ Links ]

Meza P., E. y D. Geissert K. 2006. Estabilidad de estructura en andisoles de uso forestal y cultivado. Terra Latinoamericana ; 24 (2): 163-170. https://www.redalyc.org/pdf/573/57311108002.pdf (16 de septiembre de 2019). [ Links ]

Minasny, D. and A. B. Mcbratney. 2018. Limited effect of organic matter on soil available wáter capacity. European Journal of Soil Science 69(1): 39-47. Doi:10.1111/ejss.12475. [ Links ]

Musso, J. y G. Suazo. 2019. Determinación de la curva de retención de agua para relaves multimetálicos de la industria minera de Chile. Obras y Proyectos 25: 22-29. Doi:10.4067/S0718-28132019000100022. [ Links ]

Patil, N. G. and S. K. Singh. 2016. Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review. Pedosphere 26(4): 417-430. Doi:10.1016/S1002-0160(15)60054-6. [ Links ]

Pecorari, C. 1988. Relaciones empíricas entre contenido de agua, textura y materia orgánica en suelos representativos de la Pampa Ondulada. Informe Técnico Núm. 222. Centro Regional Buenos Aires, Centro Experimental Regional Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria. Buenos Aires, Argentina. pp. 3-30. https://biblat.unam.mx/es/revista/informe-tecnico-estacion-experimental-regional-agropecuaria-pergamino-inta/articulo/relaciones-empíricas-entre-contenido-de-agua-textura-y-materia-orgánica-en-suelos-representativos-de-la-pampa-ondulada (27 de mayo de 2019). [ Links ]

Peralta B., R. y D. J. Barrios O. 2006. Determinación de ecuaciones de capacidad de campo y punto de marchitez permanente en suelos del municipio de Corozal, Sucre. Tesis doctoral. Universidad de Sucre, Facultad de Ingenieria. Sincelejo, Colombia. 87 p. https://repositorio.unisucre.edu.co/jspui/bitstream/001/239/2/T631.4786113%20P426.pdf (11 de septiembre de 2019). [ Links ]

Pineda, C. y J. Viloria.1997. Funciones de pedotransferencia para estimar la retención de humedad en suelos de la Cuenca del lago de Valencia. Revista Venesuelos 44(5):39-45. https://www.researchgate.net/profile/Maria_Pineda7/publication/279689530_FUNCIONES_DE_PEDOTRANSFERENCIA_PARA_ESTIMAR_LA_RETENCION_DE_HUMEDAD_EN_SUELOS_DE_LA_CUENCA_DEL_LAGO_DE_VALENCIA/links/55b9f44d08aed621de08b8b6.pdf (14 de octubre de 2019). [ Links ]

Rawls, W. J. and D. L. Brakensiek. 1985. Prediction of soil water properties for hydrologic modeling. In: Jones, E. E. and T. J. Ward. (eds.) Proceedings of Symposium on Watershed Management in the Eighties. ASCE Convention. Denver, CO, USA. pp. 293-299. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0044472 (18 de mayo de 2019). [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). 2002. Norma oficial mexicana, NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. 31 de diciembre de 2002. México, D.F, México. http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf (22 de junio 2019). [ Links ]

Souza D., E., E. I. Fernández F., C. E. G. Reynaud S., N. H. Batjes., G. Rodríguez, S. and L. Machado P. 2016. Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Scientia Agricola; 73 (6): 525-534. Doi:10.1590/0103-9016-2015-0485. [ Links ]

Taboada M., A. y F. G. Micucci. 2002 Fertilidad física de los suelos. Facultad Agronomía. Universidad de Buenos Aires. Buenos Aires, Argentina. 237 p. [ Links ]

Teepe, R., H. Dilling and F. Beese. 2003. Estimating water retention curves of forest soils from soil texture and bulk density. Journal of Plant Nutrition and Soil Science 166(1): 111-119. Doi:10.1002/jpln.200390001. [ Links ]

Torrealba A., A. A. 2008. Aplicación de un modelo numérico para estimar curvas de evaporación a partir de información de granulometría básica. Tesis maestría. Pontificia Universidad Catolica de Chile, Escuela de Ingeniería. Santiago de Chile, Chile. 111 p. https://repositorio.uc.cl/bitstream/handle/11534/1421/502315.pdf?sequence=1&isAllowed=y (30 de Mayo de 2019). [ Links ]

Volverás M., B., E. Amézquita C. y J. M. Campos Q. 2016. Indicadores de calidad física del suelo de la zona cerealera andina del departamento de Nariño, Colombia. Ciencia y Tecnología Agropecuaria 17(3): 361-377. https://dialnet.unirioja.es/servlet/articulo?codigo=5615170 (29 de septiembre de 2019). [ Links ]

Woerner, M. 1989. Métodos químicos para el análisis de suelos calizos de zonas áridas y semiáridas. Departamento Agroforestal. Facultad de Ciencias Forestales. Universidad Autónoma de Nuevo León. Linares, NL., México.105 p. [ Links ]

Yáñez D., M. I. 2017. Caracterización ecopedológica en Vertisoles bajo cuatro sistemas de uso de suelo. Tesis Doctorado. Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. Linares, NL., México. 128 p. http://eprints.uanl.mx/16722/ (16 de Julio de 2019). [ Links ]

Yáñez, N., D. Dec, J. Clunes y J. Dörner. 2015. Estimación de la curva de retención de agua de un Andisol bajo un cultivo de arándano, a través de funciones de pedotransferencia. Agro Sur 43 (3): 63-72. Doi:10.4206/agrosur.2015.v43n3-07. [ Links ]

Received: September 17, 2019; Accepted: February 27, 2020

Conflict of interests

The authors declare no conflict of interests.

Contribution by author

Silvia Janeth Béjar Pulido: field research, statistical analysis, interpretation, structure and design of the manuscript; Israel Cantú Silva: design, interpretation, statistical analysis and editing of the manuscript; María Inés Yáñez Díaz: design, interpretation and analysis of the results obtained, and editing of the manuscript; Erik Orlando Luna Robles: field data collection and processing.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons