SciELO - Scientific Electronic Library Online

 
vol.11 issue58Cedrela odorata L.: opportunities for its conservation and genetic improvementForest dynamics and land use in the watersheds that make up Tomatlán municipality, Jalisco State author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias forestales

Print version ISSN 2007-1132

Rev. mex. de cienc. forestales vol.11 n.58 México Mar./Apr. 2020  Epub June 17, 2020

https://doi.org/10.29298/rmcf.v11i58.592 

Scientific article

Productive potential of cones and seeds of two species of the Pinus genus

José Alexis Martínez Rivas¹ 

Francisco Cruz Cobos¹  * 

José Gonzalo Gurrola Amaya¹  

Juan Abel Nájera Luna¹ 

¹Tecnológico Nacional de México-Instituto Tecnológico de El Salto, División de Estudios Profesionales e Investigación. México.


Abstract

It is important to have forest seeds in sufficient quality and quantity in order to alleviate and reverse the processes of deforestation and land use change that occur at local, national and global levels; therefore, the objective of the present study was to evaluate the productive potential of cones and seeds in two pine species of the El Salto region in Pueblo Nuevo, Durango, Mexico. A total of 63 specimens of Pinus cooperi and 53 of Pinus durangensis were sampled; an average of five cones were collected from each individual, and the total number of the remaining cones in the whole crown of each tree was counted; the length, diameter and biological potential of each cone was determined, and the seeds were classified as infested, aborted and viable, based on X-ray tests. The results showed that only 17 % of the P. cooperi and 21 % of P. durangensis seeds in the region are viable, 34 % and 27 %, respectively, are aborted, and 49 % and 52 % are infested with pests. No statistical differences were found for the variables of the cones and seeds in P. durangensis (α≤0.05 %); however, for P. cooperi, statistical differences were obtained in cone length, biological potential, and developed seeds.

Keywords Seed analysis; reproductive efficiency; Pinus cooperi C.E. Blanco; Pinus durangensis Martínez; biological potential; seed production

Resumen

La necesidad de disponer de semillas forestales de calidad y en cantidad suficiente es importante para mitigar y revertir los procesos de deforestación y de cambio de uso de suelo que ocurren a nivel local, nacional y mundial; por tanto, el objetivo del presente estudio fue evaluar el potencial productivo de conos y semillas de dos especies de pino en la región de El Salto, Pueblo Nuevo, Durango, México. Se muestrearon 63 ejemplares de Pinus cooperi y 53 de Pinus durangensis; de cada árbol se recolectaron, en promedio, cinco conos y se contabilizó el total existente en toda la copa; se determinó la longitud, diámetro y el potencial biológico de cada cono, y se clasificaron las semillas como plagadas, abortadas y viables, mediante pruebas de rayos X. Los resultados mostraron que solo 17 % de las pertenecientes a P. cooperi y 21 % de P. durangensis fueron viables; 34 % y 27 % correspondieron a la categoría de abortadas; mientras que, 49 % y 52 %, respectivamente presentaron plagas. No se obtuvieron diferencias estadísticas para las variables de los conos y semillas en P. durangensis (α≤0.05%); sin embargo, para P. cooperi sí se registraron en la longitud del cono, potencial biológico y semillas desarrolladas.

Palabras clave Análisis de semillas; eficiencia reproductiva; Pinus cooperi C. E. Blanco; Pinus durangensis Martínez; potencial biológico; producción de semillas

Introduction

The number of viable seeds is an indicator of the ability of forests to remain at their original distribution sites (Alba et al., 2003; Vázquez et al., 2004). However, this seed potential varies significantly between years, populations and individuals, and may endanger the reproductive capacity of a species (Cain and Shelton, 2000; Quiroz et al., 2017). The variation in the number of seeds is ascribed, primarily, to environmental, biological (endogamy, pests and diseases), and other intrinsic factors of the tree (Mendizábal et al., 2015); this variability is rendered even more severe, in certain regions, by the selection processes utilized in forest management.

In the state of Durango, in recent years the Comisión Nacional Forestal (National Forestry Commission) has established the goal of producing 20 million pine seedlings in nurseries in order to meet the reforestation needs in areas affected by pests and forest fires, as well as of incorporating new areas into the forest production, for reforestation programs aiming at environmental compensation, and of meeting the demands of the providers of technical services who seek to attend to issues related to lack of renewal resulting from failure of the natural regeneration methods or from other conditioning factors established in the management programs. All of this calls for a strong program for collecting seeds, mostly from natural stands, due to the scarcity of certified seed areas in the state (López et al., 2011).

If it is acknowledged that the success of natural regeneration depends primarily on the number of viable seeds, it is essential to implement constant monitoring in order to determine its modifications and take these into account in forest management programs. However, little is known about the potential viability of seeds of trees from natural stands under management to ensure the establishment of a new forest mass, particularly when regeneration cuttings are applied, or from seed trees; or for estimating the number of seeds required to meet the seedling production goals. Therefore, the objective of the present work was to assess the relationship between tree mensuration variables and the production potential of the cones, as well as the quantity and quality of Pinus durangensis Martínez and Pinus cooperi C. E. Blanco seeds in the El Salto region, in Pueblo Nuevo, Durango. These two species are the most abundant and have the most commercial interest, as they account for 80 % of the timber production in the area (Cruz, 2007).

Materials and Methods

Study area and climate

This study was carried out in the El Salto region, in Pueblo Nuevo, Durango, in geographical areas where P. durangensis and P. cooperi occur; the selected trees were located within three areas: 1) El Brillante and La Victoria ejidos and Adjoining Areas (La Victoria area); 2) La Campana and San Esteban ejidos and Adjoining Areas (San Esteban area), and 3) La Ciudad (La Ciudad area) (Figure 1).

Figure 1 Location of the study area. 

Its climate is temperate (C), a subgroup of semi-warm (A)C(w1) and semi-warm subhumid climates with summer rains, a percentage of winter rainfalls ranging between 5 and 10.2 %, a mean annual precipitation of 800 to 1 200 mm, and a mean annual temperature of 20 to 22 °C (Inegi, 2010). The vegetation is made up of species of the genera Pinus and Quercus, as well as of other taxa associated with conifers and broadleaves, of the genera Arbutus, Juniperus, Pseudotsuga, Abies, and Picea (Inegi, 2005).

Selection of trees

A total of 63 P. cooperi specimens and 53 P. durangensis individuals with cones in mixed and irregular stands under forest management were selected. The normal diameter of each selected tree was measured at 1.3 m from the ground level, using a Haglöf Mantax 59722 caliper; its total height was measured with a Suunto Pm5 Spc clinometer, and the crown diameter was measured, with approximation in the centimeter range, using a TRUPER TP50ME tape. An average of five cones were collected from each individual, and the total number of cones in the crown was counted. This activity was performed during the maturity periods established by García and González (1998); the collections corresponded to the 2015-2017 reproduction cycle, and they were carried out during the months of October to December, 2017.

Assessment of the production potential

The length (Cl) and diameter (Cd) of 740 cones were determined; subsequently, the cones were placed in a brown paper bag for drying in a Yamato DNE-91 oven at 40 °C during 72 hours, in order to facilitate the opening of the scales and the release of the seeds. The seed potential (Sp), or production potential, was estimated according to the methodology of Bramlett et al. (1977), as the number of fertile scales multiplied by two. The biological potential (Bp) was obtained from the total scale count multiplied by two. For the developed seed (Ds), the cone destruction method was followed, and the seeds having completed their development stage were counted. The seeds were analyzed using X-ray tests, with replications with batches of 100 seeds selected at random, adding up to a total of 14 batches of P. durangensis and 19 batches of P. cooperi. Those seeds that interrupted the development of the embryo were classified as aborted, and those that exhibited insects at any stage of their reproduction within the seed were classified as infested; they were kept until the adult insects emerged and were fully identified; the seeds were classified as viable when they were not infested or aborted and had the ability to generate a new individual.

Assessed variables and data analysis

The recorded variables were the total number of cones in the crown, the cone diameter, the cone length, the developed seed, the biological potential and the developed seed potential; the variance analysis was based on the following model:

Yijk=μ+SI+A(S)IJ+eijk

Where:

Yijk = Response variable

μ = General mean

SI = Effect for the i th area factor

A(S)IJ = Effect of the j th level of the tree factor within the area

eijk = Experimental error

In the case of variables with significance, Tukey mean comparison tests were carried out for equal variances and unbalanced data (0.05 %), using the InfoStat 2018 statistical package. In addition, a Pearson’s correlation analysis was applied in order to observe the level of association between the dasometric variables and the reproduction indicators.

Results and Discussion

Production potential

No variable of P. durangensis cones or seeds registered statistical differences between the assessed areas (Table 1), unlike P. cooperi, in which differences in cone length, developed seeds and developed seeds’ potential were detected (Table 2).

Table 1 Variance analysis of Pinus durangensis Martínez by area. 

Var Factor SS DF MS F P-value
Nc Area 13 928.4 2 6 964.2 4.07 0.05
Tree 72 381.61 25 2 895.26 1.69 0.09
Error 44 445.42 26 1 709.44
Total 130 755.43 53
Cl Area 1.15 2 0.57 0.97 0.39
Tree 20.48 25 0.82 1.39 0.2
Error 15.29 26 0.59
Total 36.91 53
Cd Area 0.02 2 0.01 0.17 0.84
Tree 2.32 25 0.09 1.57 0.13
Error 1.54 26 0.06
Total 3.88 53
Ds Area 399.5 2 199.75 1.12 0.34
Tree 4 936.69 25 197.47 1.11 0.4
Error 4 638.98 26 178.42
Total 9 975.17 53
Bp Area 638.95 2 319.48 0.48 0.62
Tree 15 483.82 25 619.35 0.93 0.57
Error 17 280.61 26 664.64
Total 33 403.39 53
Sp Area 227.96 2 113.98 0.14 0.87
Tree 24 930.6 25 997.22 1.18 0.34
Error 21 887.36 26 841.82
Total 47 045.92 53

Var = Variable; Nc = Number of cones; Cl = Cone length; Cd = Cone diameter; Ds = Developed seed; Bp = Biological potential; Sp = Seed potential; SS = Sum of squares; DF = Degrees of freedom; MS = Mean squares; F = Estimated F; P-value = Significance level at 0.05.

Table 2 Variance analysis of Pinus cooperi C. E. Blanco by area. 

Var Factor SS DF MS F P-value
Nc Area 5 135.47 2 2 567.73 2.37 0.11
Tree 17 940.95 25 717.64 0.66 0.86
Error 42 238.63 39 1 083.04
Total 65 315.04 66
Cl Area 13.28 2 6.64 14.33 <0.0001
Tree 12.58 25 0.5 1.09 0.40
Error 18.07 39 0.46
Total 43.93 66
Cd Area 0.24 2 0.12 1.74 0.19
Tree 1.07 25 0.04 0.62 0.90
Error 2.68 39 0.07
Total 3.99 66
Ds Area 2 265.61 2 1 132.8 4.56 0.02
Tree 5 689.65 25 227.59 0.92 0.58
Error 9 684.03 39 248.31
Total 17 639.29 66
Bp Area 1 073.6 2 536.8 0.51 0.61
Tree 24 962.21 25 998.49 0.94 0.55
Error 41 321.35 39 1 059.52
Total 67 357.16 66
Sp Area 8 219.06 2 4 109.53 4.73 0.01
Tree 26 058.57 25 1 042.34 1.2 0.30
Error 33 888.36 39 868.93
Total 68 166 66

*All these variables were described in Table 1.

The lowest cone length average was observed in the San Esteban area, and the highest, in La Ciudad (Table 3). As in this study, Ramírez et al. (1999), Menchaca (2000), Alba et al. (2001), Vázquez et al. (2004), Márquez et al. (2007) and Contreras (2009) register differences in the length of cones in Pinus oaxacana Mirov; Alba et al. (1997), in P. durangensis; Ramírez et al. (2007), in Pinus greggii Engelm; Munive et al. (2008), in Pinus ayacahuite var. veitchii Shaw, and Nieto et al. (2002), in Pinus macrolepis Flous. This relationship is important, as large cones produce large seeds, which in turn produce more vigorous plants (Castro, 1999; Mueller et al., 2005; Quiroz et al., 2017).

Table 3 Mean comparison test for Pinus cooperi and Pinus durangensis Martínez in the El Salto region, in Pueblo Nuevo, Durango

Variable Areas
LV LC SE LV LC SE
Pinus cooperi Pinus durangensis
Nc 21.5 a
(7.44)
41.3 a
(6.01)
35.4 a
(6.26)
20.4 a
(6.31)
42.0 a
(6.44)
17.8 a
(15.78)
Cl 6.4 b
(0.14)
6.8 b
(0.14)
5.6 a
(0.17)
6.0 a
(0.17)
6.3 a
(0.13)
5.8 a
(0.41)
Cd 2.3 a (0.05) 2.4 a (0.05) 2.2 a (0.06) 2.4 a (0.06) 2.4 a (0.04) 2.4 a (0.14)
Ds 30.0 b
(3.04)
22.2 ab
(3.16)
15.3 a
(3.76)
19.0 a
(2.8)
23.6 a
(2.69)
15.4 a
(6.85)
Bp 231.2 a
(6.31)
231.3 a
(6.57)
240.4 a
(7.81)
213.0 a
(5.17)
209.3 a
(4.97)
222.2 a
(12.67)
Sp 91.70 b
(6)
73.7 ab
(6.23)
64.8 a
(7.42)
62.2 a
(6.18)
61.4 a
(5.94)
54.0 a
(15.15)

LV = La Victoria; LC = La Ciudad; SE = San Esteban; Nc = Number of cones; Cl = Cone length; Cd = Cone diameter; Ds = Developed seed, Bp = Biological potential; Sp = Seed potential; average values with different letters are statistically different (p≤0.05); Values between parentheses = Standard error.

With regard to the seeds developed per cone, differences were found between the San Esteban areas and those of La Victoria and La Ciudad (Table 3); although the resulting values were low, they surpassed those registered by González et al. (2006) in Pinus cembroides (2.09) and by García et al. (2014) in P. cembroides subsp. orizabensis D.K. Bailey (2.09), but were lower than those registered by Parra et al. (2016) for Pinus patula Schltdl. et Cham. (77.57); by Owens et al. (2008), for P. albicaulis Engelm. (66); by López and Donahue (1995), for P. greggii Engelm. (46 a 74), and by Alba and Márquez (2006), for two harvests of P. oaxacana (171.76 and 225.51); Ramírez et al. (2007) for P. greggii (155) and Alba et al. (2001) in two P. oaxacana harvests (171.76 y 225.5). On the other hand, they are similar to those registered by Mápula et al. (2007) and by Sivacioglu and Ayan (2008) for Pseudotsuga menziesii (Mirb.) Franco and Pinus sylvestris L.

These differences in the production of developed seeds may be ascribed to endogamy issues in small populations (Gómez et al., 2010), or, perhaps, to the deterioration of the forest due to selective timber extraction, which consists in the removal of the trees with the highest commercial value and the maintenance of a forest mass made up of individuals whose wood is rated low-quality in the market. This may also produce an impact on the genetic structure due to dysgenic selection, with the resulting reduction of the productive amplitude of the forest (Sola et al., 2015).

The lowest potential of developed seeds was recorded in the San Esteban area, and the highest, in La Victoria (Table 3). The values obtained in the El Salto region, Durango, surpass those documented by Sánchez et al. (2002) for P. cembroides subsp. orizabensis, but are lower than those cited by Alba and Márquez (2006) for P. oaxacana (106.1); by Ramírez et al. (2013) for P. patula (138); by Alba et al. (2005), in two years (2003 and 2004), for P. greggii (170.93 and 151.98, respectively); by Bustamante et al. (2012a) in P. engelmannii (143.7); by Alba et al. (2003) in three P. hartwegii Lindl. harvests (152.5, 170.93 and 151.96); by Parra et al. (2016) in P. patula (219), and by Santos et al. (2018), in two years (2013 and 2015), for P. durangensis (86.6 and 113.6, respectively), and in 86 and 109 P. cooperi seeds, also in the El Salto region, Durango.

X-Ray seed analysis

The results of the X-ray tests (Table 4, Figure 2) in the two species proved that the highest percentage of seeds infested with Megastigmus albifrons Walker (Cibrán et al., 1995) was observed in the La Victoria area (58 % and 53 %, respectively), while the least affected area was La Ciudad (with 41 % and 46 %, respectively). These values are increasing, and they are alarming, when compared to those cited by Bustamente et al. (2012b) for P. engelmannii (1.1 %) and by Bustamante et al. (2014) for P. durangensis (1.2%).

Table 4 Mean percentage of viable, aborted and infested seeds by species, area and region. 

Area Pinus cooperi Pinus durangensis
Viable Aborted Infested Viable Aborted Infested
La Ciudad 0.18 0.36 0.46 0.17 0.42 0.41
San Esteban 0.17 0.36 0.47 0.29 0.24 0.47
La Victoria 0.14 0.33 0.53 0.16 0.26 0.58
Region 0.17 0.34 0.49 0.21 0.27 0.52

Yellow = Infested; Blue = Aborted; Green = Full.

Figure 2 X-ray and classification of the seeds.  

The maximum percentages of aborted seeds for P. cooperi were for La Ciudad (0.36 %) and San Esteban (0.36 %), while P. durangensis exhibited a percentage of 0.42 % in La Ciudad. Both these figures are low, compared to the 0.82 % registered by Flores et al. (2012) for Picea martinezii T.F. Patt., but they are similar to those cited by Prieto and Martínez (2006) for P. cooperi (0.33 %) in two seed areas in the San Dimas municipality, Durango.

The average percentage of viable seeds in the region is below 0.21 % for the two species. At the area level, the highest percentage for P. durangensis was obtained in San Esteban (0.29 %) and for P. cooperi in La Ciudad (0.18 %); the lowest percentage was registered in La Victoria. These results are similar to those documented for P. cooperi (0.31 %) (Prieto and Martínez, 2006), but higher than those registered for Picea martinezii (0.12 %) (Flores et al., 2012).

Correlation analysis

The results evidenced the absence of high correlations (R<0.33) between the variables of cones and seeds and the dasometric variables in both species (Table 5). In this regard, other researches showed controversies; certain authors cite correlations with the age, crown size, temperature, and precipitation, for example, in Picea mariana Mill.) Britton, Sterns & Poggenb. (Caron, 1995), Pinus echinata Mill. (Innes, 1994), and P. taeda L. (Cain and Shelton, 2000). However, García and Gómez (1988) did not obtain good correlations between the average production of cones per tree and the tree mensuration variables.

Table 5 Coefficients of correlation of Pearson (p≤0.05) for Pinus cooperi C. E. Blanco and Pinus durangensis Martínez in the El Salto region, Durango

Sp V Nd Cd Nc Cl Cd Ds Bp Sp
P. cooperi Nd 1 0.7 0.33 0.12 0.03 0.01 0.06 0.18
Cd 0.7 1 0.3 0.26 0.18 0.15 0.07 0.03
Nc 0.33 0.3 1 0.1 0.3 0.05 0.04 0.2
Cl 0.12 0.26 0.1 1 0.54 0.37 0.01 0.24
Cd 0.03 0.18 0.3 0.54 1 0.53 0.11 0.3
Ds 0.01 0.15 0.05 0.37 0.53 1 0.21 0.66
Bp 0.06 0.07 0.04 0.01 0.11 0.21 1 0.25
Sp 0.18 0.03 0.2 0.24 0.3 0.66 0.25 1
P. durangensis Nd 1 0.59 0.11 0.16 0.33 0.04 0.07 0.01
Cd 0.59 1 0.29 0.3 0.41 0.31 0.1 0.16
Nc 0.11 0.29 1 0.06 0.12 0.08 0.03 0.11
Cl 0.16 0.3 0.06 1 0.52 0.65 0.47 0.28
Cd 0.33 0.41 0.12 0.52 1 0.4 0.34 0.13
Ds 0.04 0.31 0.08 0.65 0.4 1 0.32 0.47
Bp 0.07 0.1 0.03 0.47 0.34 0.32 1 0.38
Sp 0.01 0.16 0.11 0.28 0.13 0.47 0.38 1

V = Variable, Nd = Normal diameter, Cd = Crown diameter, Nc = Number of cones, Cd = Cone diameter, Cl = Cone length, Ds = Developed seed, Bp = Biological potential and Sp = seed potential.

It is a fact that the production of cones and seeds varies year after year; therefore, it is difficult to predict the number of cones alone based on the dasometric characteristics, partly because it is significantly influenced by the age of the individuals, by heterozygosis, and by the individual and collective ability to interact with the environment in order to produce seeds, as well as by the annual climate conditions that vary significantly in time and space (Aparicio et al., 2002; Alba et al., 2005; Márquez et al., 2007).

Prominent among the variables of cones and seeds are the correlations of the cone length and diameter with the developed seeds, the biological potential, and the seed potential. As in the present study, González et al. (2006) registered that the number of seeds per cone is significantly (p<0.0001) and positively correlated with the cone diameter and length in a P. cembroides plantation aged 15 years, assessed during the two evaluated years.

Conclusions

Correlations of less than 0.33 occur between the number of cones and seeds with the normal diameter and the crown diameter, making it difficult to estimate these reproductive indicators in terms of the dasometric variables for the studied species.

Neither the result of the number of seeds developed by each cone nor the percentages of viable, aborted and infested seeds in the region of El Salto are good indicators of the health status of the forest; for this reason, silvicultural practices are required to improve the potential of viable seeds in order to avoid jeopardizing the continuity of the forest mass.

Acknowledgements

The authors wish to express their gratitude to the Tecnológico Nacional de México (National Technological Institute of Mexico) for the funding the project with code number 6319.17-P, “Análisis de producción de conos y semillas de Pinus cooperi C.E. Blanco y Pinus durangensis Martínez. en la región de El Salto, Pueblo Nuevo, Durango” (Analysis of the production of Pinus cooperi C. E. Blanco and Pinus durangensis Martínez cones and seeds in the El Salto region, Pueblo Nuevo, Durango); to Oscar René Domínguez Moreno, MSc, for his support in the laboratory for the X-rays of the seeds; to the State Management of the Comisión Nacional Forestal, for allowing the use of the seed laboratory, and to the Unidad de Prestación de Servicios Ejidales of El Salto, Dgo., A.C. (Unit of Provision of Communal Land Services of El Salto, Durango), for the facilities provided for the collection of field data.

REFERENCES

Alba L., J., A. Aparicio R., V. Rebolledo C. y L. del C. Mendizábal H. 1997. Variación morfométrica en conos y semillas de Pinus patula Schelct. et Cham. de Huayacocotla, Veracruz. Centro de Genética Forestal. Universidad Veracruzana. Xalapa, Ver., México. Nota técnica 38. 4p. [ Links ]

Alba L., J., L. del C. Mendizábal H. y J. Márquez R. 2001. Comparación del potencial de producción de semillas de Pinus oaxacana Mirov de dos cosechas en Los Molinos, Veracruz, México. Foresta Veracruzana 3(1):35-38. http://www.redalyc.org/articulo.oa?id=49730106 (2 de enero de 2020). [ Links ]

Alba L., J., A. Aparicio R. y J. Márquez R. 2003. Potencial y eficiencia de producción de semillas de Pinus hartwegii Lindl. de dos poblaciones de México. Foresta Veracruzana, 5(1):25-28. http://www.redalyc.org/articulo.oa?id=49750104 (2 de enero de 2020). [ Links ]

Alba L., J., J. Márquez R. y H. S. Bárcenas C. 2005. Potencial de producción de semillas de Pinus greggii Engelm. en tres cosechas de una población ubicada en Carrizal Chico, Zacualpan, Veracruz, México. Foresta Veracruzana 7 (2):37-40. http://www.redalyc.org/articulo.oa?id=49770206 (2 de enero de 2020). [ Links ]

Alba L., J. y J. Márquez R. 2006. Potencial y eficiencia de producción de semillas de Pinus oaxacana Mirov de Los Molinos, Perote, Veracruz. Foresta Veracruzana 8(1):31-36. http://www.redalyc.org/articulo.oa?id=49780106 (2 de enero de 2020). [ Links ]

Aparicio R., A., L. del C. Mendizábal H. y J. Alba L. 2002. Variación en semillas de Pinus oaxacana Mirov de dos cosechas procedentes de una plantación natural del estado de Veracruz, México. Foresta Veracruzana 4(2):11-16. http://www.redalyc.org/articulo.oa?id=49740202 (2 de enero de 2020). [ Links ]

Bramlett, D. L., E. W. Belcher, G. L. DeBarr, G. D. Helteer, R. P. Karrafalt, C. W. Lantz, T. Miller, K. O. Ware and H. O. Yates. 1977. Manual de análisis de conos. Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. Linares, NL., México, pp. 3-21. [ Links ]

Bustamante G., V., J. A. Prieto R., E. Merlín B., R. Álvarez Z., A. Carrillo P. y J. C. Hernández D. 2012a. Potencial y eficiencia de producción de semilla de Pinus engelmannii Carr. en tres rodales semilleros del estado de Durango, México. Madera y Bosques 18(3):7-21. Doi: 10.21829/myb.2012.183355. [ Links ]

Bustamante G. V., J. A. Prieto R., R. Álvarez Z., A. Carrillo P., J. J. Corral R. and E. Merlín B. 2012b. Factors Affecting Seed Production of Pinus engelmannii Carr in Seed Stands in Durango State, México. Southwestern Entomologist 37(3):351-359. Doi: 10.3958/059.037.0311. [ Links ]

Bustamante G., V., J. A. Prieto R., A. Carrillo P., R. Álvarez Z., H. González R. and J. J. Corral R. 2014. Seed production and quality of Pinus durangensis Mart., from seed areas and a seed stand in Durango, Mexico. Pakistan Journal Botanic 46(4):1197-1202. https://www.pakbs.org/pjbot/PDFs/46(4)/07.pdf (2 de enero de 2020). [ Links ]

Cain, M. D. and G. Shelton M. 2000. Revisiting the relationship between common weather variables and loblolly-shortleaf pine seed crops in natural stands. New Forests 19:187-204. Doi: 10.1023/A:1006624907975. [ Links ]

Caron, G. E. 1995. Seed-cone and pollen-cone production models for young black spruce seedling seed orchards: a first approximation. Canadian Journal of Forest Research 25:921-928. Doi: 10.1139/X10-067. [ Links ]

Castro, J. 1999. Seed mass versus seedling performance in Scots pine: a maternally dependent trait. New Phytologist 144:153-161. Doi: 10.1046/j.1469-8137.1999.00495.x. [ Links ]

Cibrán T., D., J. T. Méndez M., R. Campos B., H. O. Yates III and J. Flores L. 1995. Insectos forestales de México. Forest insects of México. Universidad Autónoma de Chapingo. Chapingo, Edo. de Méx., México. 453 p. [ Links ]

Contreras y Z., J. L. 2009. Análisis de conos de Pinus oaxacana Mirov, de una población natural ubicada en Los Molinos, Perote, Veracruz. Tesis de maestría. Instituto de Genética Forestal. Universidad Veracruzana. Xalapa, Ver., México. 74 p. https://www.uv.mx/iif/files/2014/10/Tesis-JLCZ-Completa-MC.pdf (2 de enero de 2020). [ Links ]

Cruz C., F. 2007. Modelos de volumen y crecimiento en altura dominante para Pinus cooperi Blanco en el estado de Durango, México. Tesis doctoral. Colegio de Postgraduados. Montecillo, Texcoco, Edo de Méx., México. 69 p. [ Links ]

Flores L., C., G. Gaeda L., J. López U. y E. López R. 2012. Producción de semillas e indicadores reproductivos en poblaciones naturales de Picea martinezii T. F. Patterson. Revista Forestal Baracoa 31(2):49-58. http://www.actaf.co.cu/revistas/rev_forestal/Baracoa-2012-2/FAO2%202012/PRODUCCI%C3%93N%20DE%20SEMILLAS%20E%20INDICADORES.pdf (2 de enero de 2020). [ Links ]

García A., A. y M. S. González E. 1998. Pináceas de Durango. Instituto de Ecología. Xalapa, Ver., México. 187 p. [ Links ]

García F., E., E. O Ramírez G., L. del C. Mendizábal H., J. Alba L. y J. Márquez R. 2014. Parámetros de producción de semillas de Pinus cembroides subsp. orizabensis D.K. Bailey de una plantación en la región de Perote, Veracruz, México. Foresta Veracruzana 16(2):37-42. http://www.redalyc.org/articulo.oa?id=49732560005 (2 de enero de 2020). [ Links ]

García M. E. y R. Gómez A. 1988. Estimación de la producción de piñón en los piñoneros del estado de San Luis Potosí. Agrociencia 71:225-237. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=COLPOS.xis&method=post&formato=2&cantidad=1&expresion=mfn=038302 (2 de enero de 2020). [ Links ]

Gómez J., D. M., C. Ramírez H, J. Jasso M. y J. López U. 2010. Variación en características reproductivas y de germinación de semillas de Pinus leiophylla Schiede ex Schltdl. & Cham. Revista Fitotecnia Mexicana 33(4):297-304. https://www.revistafitotecniamexicana.org/documentos/33-4/3a.pdf (2 de enero de 2020). [ Links ]

González A., J., E. García M., J. J. Vargas H., A. Trinidad S., A. Romero. M. y V. M. Cetina A. 2006. Evaluación de la producción y análisis de conos y semillas de Pinus cembroides Zucc. Revista Chapingo Serie Ciencias Forestales y del Ambiente 12(2):133-138. [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (Inegi). 2005. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Pueblo Nuevo, Durango. 3. http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/10/10023.pdf (2 de enero de 2020). [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (Inegi). 2010. Conjunto de datos vectoriales de la carta de Uso del suelo y vegetación. Escala 1:250 000. Serie IV (Continuo Nacional) Durango. http://www.conabio.gob.mx/informacion/metadata/gis/usv250s5ugw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no (2 de enero de 2020). [ Links ]

Innes J., L. 1994. The occurrence of flowering and fruiting on individual trees over 3 years and their effects on subsequent crown condition. Trees 8:139-150. Disponible en: https://doi.org/10.1007/BF00196638 (2 de enero de 2020). [ Links ]

López-Upton, J. and J. K. Donahue. 1995. Seed production of Pinus greggii Engelm. in natural stands in Mexico. Tree Planters Notes 46(3):86-92. https://www.researchgate.net/profile/Javier_Upton/publication/286776202_Seed_production_of_Pinus_greggii_in_natural_stands_in_Mexico/links/566f3e5908aecdcd23562094/Seed-production-of-Pinus-greggii-in-natural-stands-in-Mexico.pdf (2 de enero de 2020). [ Links ]

López U., J., C. Ramírez H., J. Jasso M., M. Jiménez C., M. Aguilera R., J. R. Sánchez V. y D. A. Rodríguez T. 2011. Situación de los recursos genéticos forestales en México. Food and Agriculture Organization of the United Nations (FAO). https://coin.fao.org/coin-static/cms/media/11/13310714832850/informe_rgf.pdf (2 de febrero de 2020). [ Links ]

Mápula L., M., J. López U., J. J. Vargas and A. Hernández L. 2007. Reproductive indicators in natural populations of Douglas-fir in Mexico. Biodiversity and Conservation 16:727-742. Doi: 10.1007/s10531-005-5821-y. [ Links ]

Márquez R. J., V. Rebolledo C. y J. L. Zaya. 2007. Variación de conos de Pinus oaxacana Mirov. en una población de Los Molinos, municipio de Perote, Veracruz. Foresta Veracruzana 9(2):45-50. http://www.redalyc.org/articulo.oa?id=49790207 (2 de enero de 2020). [ Links ]

Menchaca G. R. 2000. Variación de conos y semillas de Pinus oaxacana Mirov. en tres sitios de la zona del Cofre de Perote. Tesis de Maestría. Instituto de Genética Forestal, Universidad Veracruzana. Xalapa, Ver., México. 65 p. [ Links ]

Mendizábal H., L. del C., J. Alba L., L. Hernández J., E. O. Ramírez G. y M. C. Rodríguez G. 2015. Potencial de producción de semillas de Pinus chiapensis (Martínez) Andersen. Foresta Veracruzana 17(2):47-52. http://www.redalyc.org/articulo.oa?id=49743956007 (2 de enero de 2020). [ Links ]

Mueller, R. C., B. D. Wade, C. A. Gehring and T. G. Whitham. 2005. Chronic herbivory negatively impacts cone and seed production, seed quality and seedling growth r susceptible pinyon pines. Oecologia 143:558-565. Doi:10.1007/s00442-005-0029-0. [ Links ]

Munive M., E., O. Vázquez C., E. M. Zamora C., E. Fernández P. and E. García, G. 2008. Variación de conos y semillas de Pinus ayacahuite var. veitchii Shaw de dos procedencias del estado de Tlaxcala. Foresta Veracruzana 10(1):39-46. en: en: http://www.redalyc.org/articulo.oa?id=49711434005 (2 de enero de 2020). [ Links ]

Nieto P., Ma. de L., L. del C. Mendizábal H. y E. O. Ramírez G. 2002. Variación en conos de Pseudotsuga macrolepis Flous de tres sitios del Estado de Tlaxcala, México. Foresta Veracruzana en México 4(1):21-24. http://www.redalyc.org/articulo.oa?id=49740104 (2 de enero de 2020). [ Links ]

Owens, J. N, T. Kittirat and F. Mahalovich M. 2008. Whitebark pine (Pinus albicaulis Engelm.) seed production in natural stands. Forest Ecology and Management 255(3-4):803-809. Doi: 10.1016/j.foreco.2007.09.067. [ Links ]

Parra S., G., H. Cruz J., J. Márquez R., A. Aparicio R. y R. A. Pedraza P. 2016. Producción de semilla de Pinus patula Schl. et Cham en una prueba de progenie de nueve años en Tlacolulan, Veracruz. Foresta Veracruzana . 18(2):45-52. http://www.redalyc.org/articulo.oa?id=49748829006 (2 de enero de 2020). [ Links ]

Prieto R., J. A. y J. Martínez A. 2006. Análisis de conos y semillas en dos áreas semilleras de Pinus cooperi Blanco en San Dimas, Durango. El Sitio Permanente de Experimentación Forestal (SPEF) "Cielito Azul" a 40 años de su establecimiento. INIFAP. Campo Experimental Valle del Guadiana. Durango, Dgo., México. Publicación especial Núm. 23. pp. 15-30. [ Links ]

Quiroz V., R. I., J. López U., V. M. Cetina A. y G. Ángeles P. 2017. Capacidad reproductiva de Pinus pinceana Gordon en el límite de sur de su distribución natural. Agrociencia. 51(1):91-104. http://www.scielo.org.mx/scielo.php?pid=S1405-31952017000100091&script=sci_arttext (2 de enero de 2020). [ Links ]

Sánchez T., V., L. del C. Mendizábal H. y V. Rebolledo C. 2002. Variación en conos y semillas de Pinus cembroides subsp. orizabensis D.K. Bailey de las cuevas, Altzayanca, Tlaxcala. Foresta Veracruzana en México 4(1):25-30. http://www.redalyc.org/articulo.oa?id=49740105 (2 de enero de 2020). [ Links ]

Santos S., O. O., M. González T. y R. López A. 2018. Producción de semilla y potencial biológico de tres especies de Pinus en Durango. Revista Mexicana de Ciencias Forestales 9(50):538-549. Doi: 10.29298/rmcf.v9i50.264. [ Links ]

Sivacioglu, A. and S. Ayan. 2008. Evaluation of seed production of Scots pine (Pinus sylvestris L.) clonal seed orchard with cone analysis method. African Journal of Biotechnology 7 (24):4393-4399. https://www.ajol.info/index.php/ajb/article/view/59596 (2 de enero de 2020). [ Links ]

Sola, G., H. Attis B., L. Chauchard y L. Gallo. 2015. Efecto del manejo silvicultural sobre la regeneración de un bosque de Nothofagus bombeyi, N. alpina y N. obliqua en la Reserva Nacional Lanin (Argentina). Bosque 36(1):113-120. Doi: 10.4067/S0717-92002015000100012. [ Links ]

Ramírez G., E. O., J. Alba L. y L. Mendizábal H. 1999. Variación en semillas de Pinus teocote Schl et Cham. de tres procedencias del estado de Veracruz. Foresta Veracruzana 1(3):7-10 (2 de enero de 2020). [ Links ]

Ramírez G., E. O., J. Márquez R. y O. Hernández C. 2007. Estudio de conos y semillas de Pinus greggii Engelm. de una plantación en el municipio de Naolinco, Veracruz, México. Foresta Veracruzana 9(2):39-44. http://www.redalyc.org/articulo.oa?id=49790206 (2 de enero de 2020). [ Links ]

Ramírez G., E. O., J. C. Sánchez R., J. Márquez R. y H. Cruz J. 2013. Características de estructuras reproductivas en progenitores seleccionados de Pinus patula Schl. et Cham. Foresta Veracruzana 15(1):37-44. [ Links ]

Vázquez C., O. G., E. O. Ramírez G. y J. Alba L. 2004. Variación de conos y potencial de producción de semillas de Pinus oaxacana Mirov en una población del Estado de Tlaxcala, México. Foresta Veracruzana 6(2):31-36. http://www.redalyc.org/articulo.oa?id=49760206 (2 de enero de 2020). [ Links ]

Received: June 12, 2019; Accepted: September 19, 2019

Conflict of interests

The authors no conflict of interests.

Contribution by author

José Alexis Martínez Rivas: field data collection, capturing of data, data analysis, interpretation of the results, and drafting and edition of the manuscript; Francisco Cruz Cobos: data analysis, statistical analysis, interpretation of the results and revew of the manuscript; José Gonzalo Gurrola Amaya: data analysis, analysis of the results and review of the manuscript; Juan Abel Nájera Luna: review of the final manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons