SciELO - Scientific Electronic Library Online

 
vol.10 número56Mecanismos de respuesta al estrés abiótico: hacia una perspectiva de las especies forestalesDiversidad de mamíferos y aves en bosques de coníferas bajo manejo en el Eje Neovolcánico Transversal índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.10 no.56 México nov./dic. 2019  Epub 30-Abr-2020

https://doi.org/10.29298/rmcf.v10i56.479 

Review article

Review on the distribution and conservation of Taxus globosa Schltdl. (Taxaceae) in Mexico

Liliana Muñoz-Gutiérrez1  * 

Susana E. Ramírez-Sánchez2 

Mario Valerio Velasco-García1 

1Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, INIFAP. México

2Departamento de Producción Agrícola y Animal Universidad Autónoma Metropolitana. México.


Abstract

Taxus globosa is a conifer that has been little studied from the biological, ecological and reproductive point of view. It produces a pseudo-alkaloid called taxol, which acts against various types of cancer, including ovarian and breast cancer. In Mexico, this species is cataloged under special protection in the Mexican Official Norm NOM-059-SEMARNAT-2010, which implies that it could be threatened by negative factors that affect its distribution, development and regeneration. At the international level, it is included in the red list of the International Union for Conservation of Nature (UICN) as an endangered species. Therefore, it is necessary to know the range of distribution of the natural populations and understand their mechanisms of regeneration and propagation in order to develop technologies that will allow their domestication and production. The present review has compiled the bibliographic information on T. globosa and its current and potential distribution, and reviews the conditions of the populations, the association with other plant species, the number of juvenile and adult individuals, and aspects related to their regeneration and their conservation status, in order to identify the research lines of this forest resource, which contributes to the conservation and sustainable use of this species.

Key words Conservation; natural distribution; potential distribution; ecology; reproduction; Taxus globosa Schltdl

Resumen

Taxus globosa es una conífera poco estudiada desde el punto de vista biológico, ecológico y reproductivo. Importante por la sustancia química que produce llamada taxol, útil en el tratamiento de cáncer de ovario y de mama, principalmente. En México está catalogada como especie Sujeta a Protección Especial en la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, lo que implica que podría estar amenazada por factores negativos que inciden en su distribución, desarrollo y regeneración. En el ámbito internacional, se incluye en la lista roja de especies amenazadas de la Unión Internacional para la Conservación de la Naturaleza (UICN) como especie en peligro de extinción. Por lo anterior, es necesario conocer la situación que guardan las poblaciones naturales en su intervalo de distribución natural y comprender sus mecanismos de regeneración y propagación, para el desarrollo de tecnologías que permitan su domesticación y producción. En la presente revisión se recopiló la información existente acerca de T. globosa en México, se expone la distribución actual y potencial; además de revisar las condiciones de las poblaciones en cuanto a la asociación con otras especies vegetales, densidad de individuos adultos y juveniles, aspectos de regeneración, y en consecuencia del estado de conservación de las poblaciones. Con la finalidad de identificar líneas de investigación particulares de este recurso forestal que contribuyan a su conservación y aprovechamiento sustentable.

Palabras clave Conservación; distribución natural; distribución potencial; ecología; reproducción; Taxus globosa Schltdl

Introduction

Taxus globosa Schltdl. belongs to the Taxaceae family (Cope, 1998); it is an evergreen dioic conifer that reproduces through seeds (Zavala, 2001). This small, slowly-growing tree species, usually between 6 and 10 meters tall and with normal diameters of 30 to 40 cm (Shemluck et al., 2003), produces taxol, a substance that is useful in the treatment of various types of cancer, including cervical and breast cancer (Hansen et al., 1994; Soto et al., 2000; Zavala, 2001; Shemluck et al., 2003; Barrales-Cureño and Soto-Hernández, 2012). Taxus globosa, or Mexican yew is known in Spanish by the names of tejo mexicano, palmira and tlascal (Zavala, 2001, 2002); in northern Mexico it is called chiper, and in central and southern Mexico, romerillo or granadillo (Contreras and Luna, 2001; Soto et al., 2011).

Of the four native taxa of this genus in the Western hemisphere ―the least known, until recent years― was the Mexican species Taxus globosa, which is sporadically distributed from the central part of the Northeastern region (Nuevo León and Tamaupipas), the Gulf of Mexico basin and the Transversal Neovolcanic Axis to the south of Honduras (Zamudio, 1992; Zavala, 2001, 2002; Spjut, 2007b). According to Spjut (2007a; 2007b), there are two varieties: T. globosa var. globosa Schlecht. and T. globosa var. floridana (Nutt. ex. Champ.) Spjut; the difference between them lies in the shape of the papillae on the leaves: in the globosa variety, distributed between El Salvador and Northeastern Mexico, the papillae are prominent in most of the surface of the underside, and the marginal cells are mostly sinuous, whereas in the floridana variety, which occurs only in the states of Nuevo León, Tamaulipas and Veracruz, the papillae are less prominent in the central nervation and in the marginal area, and the marginal cells are more or less rectangular in shape.

The species of the Taxus genus are conifers that are susceptible of forest exploitation (poles, firewood and charcoal), in addition to their pharmaceutical use, since they produce the drug known as taxol, which is important in the treatment of ovarian and breast cancer (Wani et al., 1971) and is promising for the treatment of other types of malign tumors (Arbuck and Blaylock, 1995). Chemically, taxol is a diterpene pseudoalkaloid, isolated little over 20 years ago from the bark of the yew of the Pacific or from the American yew (Taxus brevifolia Nutt), which is thin (approximately 3 mm). In average, a tree aged one-hundred years produces 3 kg of bark, which yield only 300 mg of taxol (Appendino et al., 1994). On the other hand, in the Mexican species, the levels of taxol vary between 0.013 % in 20 g of foliage and 0.0085 % in 20 g of bark (Soto et al., 2000). The fact that the largest proportion of the active principle is found in the leaves confers it particular interest, as its exploitation is based on the foliage, for debarking causes the death of the tree.

For this reason, the objective of the present work is to show the status of the knowledge of the natural and potential distribution of the species in Mexico, the vegetal associations, the conservation status, and the aspects of the reproduction of Taxus globosa, in order to orient the future research on these topics to promote conservation actions and sustainable techniques for the exploitation of the species.

Current and potential distribution

Taxus globosa is a native species of Mexico and of northern Central America (Zamudio, 1992; Spjut, 2007). Its distribution area covers from 25°23’ N in the state of Nuevo León, Mexico, to 14°19’ N in the department of Chalatenango, in El Salvador (Contreras-Medina et al., 2011) (Shemluck et al., 2003). In Mexico, its distribution is sporadic along the Eastern Sierra Madre in Nuevo León, Tamaulipas, Querétaro, Hidalgo, Puebla and Veracruz (Contreras and Luna, 2001); San Luis Potosí (García and Castillo, 2000); in Sierra Juárez, Oaxaca (Zamudio, 1992), and in the Highlands of Chiapas (Contreras and Luna, 2001).

It is also found in the temperate forests of Guatemala, located in the Sierra de las Minas Biosphere Reserve, in the Sierra of Cuchumatanes, and in the Volcanic Chain (Standley and Steyermark, 1958; Parker, 2008); in Southern El Salvador, on the top of the Pital mountain (Moldenke and Moldenke, 1984), and in Western Honduras, in the Santa Bárbara, Celaque and Tilarán national parks, the last of which is considered as the southernmost boundary of its distribution area (Zamudio, 1992; Contreras-Medina et al., 2010,2011; López and García, 2015) (Figure 1).

Taken from López and García (2015).

Figure 1 Geographic distribution of Taxus globosa Schltdl. 

Taxus globosa requires very particular microclimate conditions for its establishment, including specific levels of light, water, temperature and humidity determined by the microtopography of the site (García and Castillo, 2000; Contreras and Luna, 2001). In this regard, Sánchez (2012) determined that in two localities of Veracruz, the populations of Taxus were at sites with average temperatures of 14.5 and 15.4 °C, with relative humidity above 80 % and with levels of light of 2.5 to 3.2 mmol m-2 s-1; furthermore, García and Castillo recorded their presence in ravines with north-northeast exposures.

In particular, Mexican populations are geographically restricted and do not form large stands (López and García, 2015); seemingly, their distribution is partly influenced by historical factors of how conifers were introduced to Mexico and Central America by the northern part of the hemisphere in the second half of the Tertiary period (Mirov, 1967; Hils, 1993), and therefore, for Rzedowski (2006) it is one of the species with a discontinuous distribution that establish a floristic relationship with the east of North America (the United States of America and Canada) and it is part of the deciduous forest in the United States of America (Taxus brevifolia Nutt.) and of the montane cloud forest of Mexico and Central America (Taxus globosa) (Zavala, 2001) in the process of its migration toward the south, as has been suggested for other taxa and vegetal associations (Pearson and Dawson, 2003).

There are studies that have expanded the knowledge of the geographic distribution and the potential of the species, through the estimation of the ecological niche based on the use of algorithms such as Maxent and Bioclim (Contreras-Medina et al., 2010, 2011; García-Aranda et al., 2012a, 2012b; López and García, 2015). On this particular, Contreras-Medina et al. (2010) generated potential distribution maps using three distribution scenarios per change in land use, at different times and with Maxent-generated models of the remaining potential distribution of the species in federal natural protected areas (NPA) and Prioritary Terrestrial Regions (PTR) for conservation. In relation to this work, Contreras-Medina et al. (2011) indicate that the species has been registered in only seven NPAs of all Mesoamerica, four of which belong to Mexico, with a 19.67 % cover (Table 1). In addition, six points of occurrence of T. globosa were located at less than 5 km of distance from the boundaries of a NPA, although reportedly the species hardly occurs in two of them due to the tropical and dry climate prevalent in both: Valley of Tehuacán-Cuicatlán and the Metztitlán Ravine (Table 2). López and García (2015) located 75 towns distributed in nine states (Table 3).

Table 1 Natural Protected Areas in Mexico where Taxus globosa Schltdl. has been registered. 

Natural Protected Area Num. of registers Occupied % of the NPA
Monterrey Peaks National Park 3 0.16
“La Tierra del Faisán” Communally Managed Land 1 1.03
El Chico National Park 7 18.25
Sierra Gorda Biosphere Reserve 9 0.23
Total 20 19.67

Modified by Contreras-Medina et al. (2011).

Table 2 Natural Protected Areas in Mexico near whose boundaries Taxus globosa Schltdl. has been registered (within 5 km). 

Natural Protected Area Distance (km)
Mexican Wolf Ecological Recovery Area, El Saucillo, Nuevo León 3.74
Metztitlán Gully Biosphere Reserve, Hidalgo 4.88
Cofre de Perote National Park, Veracruz 1.88
Peak of Orizaba National Park, Veracruz-Puebla 2.14
Tehuacán-Cuicatlán Biosphere Reserve, Oaxaca-Puebla 0.77
Communal Conservation Area, Santo Domingo Cacalotepec, Oaxaca 2.08

Modified by Contreras-Medina et al. (2011).

Table 3 Taxus globosa Schltdl. populations located in Mexico. 

State Num. of populations Latitude (Extreme Lower) Longitude (Extreme Lower) Altitude (m)
Nuevo León 16 25°22´35” 23°53´25” 100°13´15” 99°47´29” 1 460 2 650
Tamaulipas 12 23°55´20” 23°02´48” 99°28´18” 99°14´50” 1 300 1 400
San Luis Potosí 1 21°55´40” 100°16´40” 2 000
Querétaro 8 21°27´26” 21°08´14” 99°07´48” 99°41´06” 1 980 2 620
Hidalgo 9 20°22´01” 20°05´23” 98°20´22” 98°32´04” 2 260 2 630
Puebla 1 20°15´00” 98°12´00” 2 000
Veracruz 9 20°36´00” 19°09´00” 98°26´20” 97°14´00” 1 720 2 500
Oaxaca 16 17°40´29” 17°11´00” 96°33´54” 96°24´00” 2 400 2 500
Chiapas 3 17°10´00” 16°50´00” 93°10´00” 92°30´00” 1 750 2 300

Modified by López and García (2015).

The potential distribution of T. globosa in Mexico suggests the existence of 35 259 km2, without considering the impact caused by the change of land use (Contreras-Medina et al., 2010). García-Aranda et al. (2012b) determined that the species has a very limited potential distribution area, of 9 650 km2 (Bioclim) to 10 385 km2 (Bioclim+Topography being the most significant model), which amount to 0.49-0.52 % of the national territory.

The potential distribution models show a major reduction of the area due to the change of land use (Contreras-Medina et al., 2010); furthermore, the variables slope and precipitation of the driest month are the ones that exert the greatest influence (García-Aranda et al., 2012a). According to Contreras-Medina et al. (2010), in 1976 T. globosa covered a surface area of 26 620 km2 (a 24.5 % reduction of the original vegetation without human intervention; for the year 1996 they estimated 6 847 km2 (i.e. an 80.58 % reduction, and for the year 2000 they estimated 6 297 km2 (an 82.14 % reduction).

For the year 2000, Contreras-Medina et al. (2010) estimated the potential distribution area of the species within the NPAs in 744 km2, which amounted to 11.8 % of the potential surface area distributed through 10 NPAs along the Eastern Sierra Madre and the Sierra Madre of Oaxaca (the Monterrey Peaks, Sierra Gorda of Guanajuato, Sierra Gorda, Los Mármoles, the Metztitlán Gully, the Necaxa River Hydrographic Basin, Cofre de Perote, Orizaba Peak, the White River Canyon (Cañón de Río Blanco), and the Valley of Tehuacán-Cuicatlán). Notably, the potential surface area located in Chiapas does not coincide with any federal NPA. The potential surface area of T. globosa located in one of the Priority Terrestrial Regions (PTR) was 3 052 km2, the equivalent of 48.46 % of the potential area for the year 2000, and it coincides with 15 PTR along its distribution area (Contreras-Medina et al., 2010).

A potential habitat with less probabilities of occurring, but which meets the environmental requirements of the species, has also been identified in the states of Querétaro, Oaxaca, Guanajuato, Chiapas, San Luis Potosí, Coahuila, State of Mexico, Tlaxcala, Morelos, Jalisco and Colima (Contreras-Medina et al., 2011). The presence of T. globosa in the State of Mexico was recorded by Standley (1926) and, although there are no herbarium specimens to support this information, the model of the ecological niche predicts its existence in this state (Contreras-Medina et al., 2010).

Vegetal associations and dendrometry

Taxus globosa grows in the middle and lower canopy, beneath the shade of other, taller trees, in environments with a high relative humidity, near intermittent or permanent water runoffs (Soto et al., 2011); in north-northeast exposures (García and Castillo, 2000; García-Aranda et al., 2012a), with varied slopes; for example, on the San Isidro plateaus, in Río Verde, San Luis Potosí (García and Castillo, 2000), the slope is 40 %, and at the El Chico National Park in Hidalgo, it ranges between 10 and 60 % (Zavala, 2001). The species exhibits a strong preference for growing at the bottom of humid, shaded ravines, due to rain precipitations or to frequent mists; it grows on acidic soils with a good drainage and rich in organic matter (Cortés et al., 2000; Charco, 2007).

In pine-oak forests, the species coexists with Pinus pseudostrobus Lindl., P. ayacahuite Ehrenb., P. patula Schltdl. et Cham., Arbutus xalapensis Kunth, Quercus crassifolia Bonpl., Q. germana Schltdl. et Cham., Q. rysophylla Weath., Q. laurina Bonpl., Tilia mexicana Schlecht., Meliosma dentata Urban., Abies religiosa (Kunth) Schltdl. et Cham., and A. vejarii subsp. mexicana (Martínez) Farjon (García and Castillo, 2000; López and García, 2015); in the montane cloud forest, it is associated with Ostrya virginiana (Mill.) K. Koch, Liquidambar styraciflua L., Cornus disciflora DC. (Luna et al., 1994), Fraxinus sp., Magnolia tamaulipana A. Vázquez, Ternstroemia sylvatica Schltdl. et Cham. (García-Aranda et al., 2012a), Persea americana Mill., and Quercus affinis Scheidw (García and Castillo, 2000) (Table 4).

Table 4 Distribution of Taxus globosa Schltdl. and associated genera. 

State Altitude (m) Associated genera
Hidalgo 2 500-2 600 Abies, Quercus
Querétaro 1 000-2 900 Abies, Garrya, Pinus
Nuevo León 2 600-2 700 Pinus, Pseudotsuga, Abies, Quercus
Oaxaca 2 000-3 000 Pinus, Quercus
San Luis Potosí 2 300-2 500 Pinus, Garrya
Tamaulipas 1 400-1 500 Quercus, Liquidambar, Podocarpus, Acer
Veracruz 1 900-2 500 Cupressus, Pinus, Quercus

Modified by Zavala (2001).

Few studies document the structure, composition, richness and diversity of the vegetation of the T. globosa stands, which in general are described as mere field observations, and, therefore, the age structure, growth, development, and regeneration mechanisms of the Mexican populations are unknown. The populations of the Southernmost sector of the Northeastern region of Mexico have a larger basal area, a greater height and a smaller herbaceous cover than the northern populations, which are located at more disturbed sites, and, likewise, the southern sites are located at higher altitudes, with a greater slope than that prevalent in the north. Thus, their structure is influenced by the environmental heterogeneity, the characteristics of the localities, and the degree of disturbance of the populations (García-Aranda et al., 2012a).

T. globosa stands usually have a limited density of individuals and surface area; its dasometric characteristics are very variable between populations (Table 5). In more isolated areas, far from human settlements and with lower degree of direct (furtive felling) or indirect (bovine and goat cattle management) anthropic impact, there is a higher density of individuals. Those areas that are fenced and protected from the cattle are not very densely populated but exhibit a higher ratio of juvenile to adult individuals (Zavala et al., 2001). On the other hand, areas with a steep relief, pronounced slopes and high stoniness have a great density of seedlings, indicating stability and durability of the population, as suggested by Iszculo et al. (2005), for the European yew.

Table 5 Mensuration variables in Taxus globosa Schltdl. populations of central Mexico. 

State Locality Density (individuals ha-1) Medium height (m) Maximum height (m) Basimetric area (m2 ha-1) Source
Veracruz El Mirador 670 2.8 7.0 8.40 Sánchez, 2012
El Saucal 310 1.1 1.9 0.24
Las minas 500 0.5 1.2 2.01
Nuevo León 5 a 39 2.0 6.8 23.03 García-Aranda et al., 2011
Tamaulipas 0.9 2.0 6.8 82.32
Hidalgo El Chico 6.6 4.5 - - Zavala, 2002
San Luis Potosí Río Verde - - 8.0 - García and Castillo, 2000

Conservation status and reproduction

The species is rare in many of the localities where its occurrence has been recorded (Contreras et al., 2001). Since little is known of the distribution, density, structure, composition and wealth of its populations, it has been classified as Subject to Special Protection (Pr) by the Mexican Official Norm NOM-059-SEMARNAT-2010 (Semarnat, 2010), which means that it may be threatened by factors that exert a negative influence on its viability; therefore, it has been determined that there is a need to favor its recovery and conservation, or the recovery and conservation of the populations of the species associated to it. At the international level, T. globosa is included in the red list of threatened species of the International Union for Conservation of Nature (IUCN) as an endangered species because its area of occupancy is less than 2 000 km2, probably due to past and current exploitation, as well as to the deforestation of the montane cloud forest and of other ecosystems where it grows; these factors led to the reduction of the population size, which may continue (González-Espinosa et al., 2011; Thomas, 2013).

According to López and García (2015), out of 29 assessed T. globosa populations, 15 had a good conservation status, based on their acceptable natural regeneration; two had an inadequate conservation status, due to the low density of specimens, and 12 exhibited totally unfavorable conditions and were at risk of disappearing, due to the change of land use, deforestation, and the fragmentation of their habitat.

The isolation between the populations leads to assume the existence of a limited gene flow; besides, the exploitation of this and other taxa of the upper tree canopy involves a high risk for the conservation of the species (Soto et al., 2011). Therefore, it is necessary to know the biology and forms of reproduction of the natural populations in order to ensure their conservation. According to Zavala (2001), very precise, local information has been generated about their reproductive characteristics of the populations of El Chico, Hidalgo, and about the forms of propagation, the number of male and female specimens, the proportion between juvenile and adult trees, and the aspects of their natural regeneration (Zavala, 2002).

Zavala et al. (2001) observed that regeneration seems to be based on seed production, although at certain sites there is a significant production of new shoots from the stem base up (López, 2008) ―a characteristic that may be exploited for its ex situ propagation and conservation. Nevertheless, the seeds are the most important structures for ensuring the permanence and genetic diversity of the populations; but, unfortunately, their production is limited, and their germination is very difficult (Ramírez-Sánchez et al., 2011).

Reproduction of T. globosa from seeds has been unsuccessful (Zavala-Chávez, 2001; Nicholson and Munn, 2003) due to underdevelopment of the embryo, which is indicative of morphological latency (Ramírez-Sánchez et al., 2011). According to Ramírez-Sánchez (2018), their latency has various causes (including physiological ones) which render germination even more difficult; for this reason, only vegetative methods have brought success (Muñoz et al., 2009).

Ramírez-Sánchez et al. (2011) determined that the morphological variables and the physical characteristics of the T. globosa seeds exhibit significant differences between geographical regions, as the seeds of northern Mexico are larger than those of central Mexico; such differences were ascribed to the fragmentation of the habitat, to the small size of the populations and to the genetic drift, as the populations of central Mexico consist of 10 to 200 individuals, while in the northern region, they are estimated to comprise 1 000 to 5 000 individuals.

A low production of seeds has also been observed, which suggests that the species follows an inter-annual regeneration pattern (López and García, 2015); for this purpose, the population is required to include a minimum number of adults, with an adequate proportion between the sexes, in order to achieve an effective pollination and minimum rates of seed formation. At the El Chico National Park, out of 251 individuals, 29.9 % were adults; of these, 44.0 % were female, and 56 % were male (Zavala, 2002). However, Soto et al. (2011) determined that the male/female ratio is close to 50:50 in all the populations. Only 6 to 15 seeds per ripe tree are produced, as a result of the proportion between mature and juvenile trees. For example, of 150 individuals observed, only 32 % female specimens were reproductively mature, while more than half (68 %) were juvenile, with a mean estimated age of 10.6 years (± 8.0), the oldest trees being 19 years old, and the youngest, 3 years (Zavala et al., 2001).

Apparently, few juvenile trees have been incorporated into the population in the last few years, which may indicate reduction of the population or of the seed production; but, the number of individuals that make up the whole population is unknown, as are their ages, their annual seed production, the number of seeds that eventually germinate, and the survival rate of the seedlings (Zavala et al., 2001).

Conclusions

Given the exploitation potential of Taxus globosa for pharmaceutical purposes, the following actions are required: a) to develop programs for the recovery and conservation of the natural populations of the species, and b) in the case of certain natural protected areas, field work must be carried out to verify its occurrence and propose its inclusion in the NPA management and conservation programs. Likewise, it is necessary to complement the studies on: a) its current and potential distribution in Mexico, as there is no inventory of the distribution of the remaining natural populations; b) the structure of its population, including size, number of individuals, male/female ratio, management status and degree of disturbance of the populations; c) demographic and ecological studies must be carried out, and knowledge of the complete reproductive cycle of the species needs to be generated; d) its breeding system must be identified in order to promote the production of seeds in programs for the domestication of the species; e) the seed dispersing fauna must be identified; f) vegetative propagation methods must be developed in order to undertake ex situ conservation actions in botanical gardens and in forest germplasm production units.

There is equally a need to expand the knowledge regarding the relationship to the physiology of the species as a way of establishing conservation and management actions aiming to promote its permanence in situ and its propagation ex situ, as well as to identify those factors that affect the natural populations, such as climate change or the degree of modification of the habitat due to changes in land use.

There are no programs for the protection, artificial repopulation or protection of this conifer. It is desirable to continue multiplying it by stake rooting ―especially of those individuals that are outstanding for their high taxol contents―, in order to assess the genetic control of this characteristic and explore the possibility of domesticating the species through the establishment of commercial plantations for the exploitation of this active principle, as well as to generate information about the genetic diversity within and between populations.

Referencias

Appendino, G., G. Cracotto, P. L. Gariboldi, B. Gabetta and E. Bombardelli. 1994. The chemistry and occurrence of taxane derivatives. The Photochemistry of Taxine B. Gazzetta Chimica Italiana 124:1-4. [ Links ]

Arbuck S., G. and B. A. Blaylock. 1995. Taxol: Clinical results and current issues in development. In: Suffness, M. (ed.). Taxol: Science and Applications. CRC Press. Boca Raton, Florida. USA. pp. 379-415. [ Links ]

Barrales-Cureño, H. J. y M. Soto-Hernández. 2012. Taxoides: metabolitos secundarios del árbol del tejo (Taxus spp.). Revista Chapingo Serie Ciencias Forestales y del Ambiente 18(2):207-218. Doi: 10.5154/r.rchscfa.2011.02.017. [ Links ]

Charco, J. 2007. El tejo en el norte de África. In: Serra, L. (ed.). El tejo en el Mediterráneo Occidental. Conselleria de Territori i Habitatge. Ministerio de Medio Ambiente. CAM. Madrilas, Ciudad Real, España. pp. 177-185. [ Links ]

Contreras M., R. y I. Luna V. 2001. Presencia de Taxus globosa Schltdl. (Taxaceae) en el estado de Chiapas, México. Polibotánica 12:51-56. [ Links ]

Contreras-Medina, R., I. Luna-Vega y C. A. Ríos-Munoz. 2010. Distribución de Taxus globosa (Taxaceae) en México: Modelos ecológicos de nicho, efectos del cambio de uso de suelo y conservación. Revista Chilena de Historia Natural 83:421-433. [ Links ]

Contreras-Medina, R., I. Luna-Vega y J. C. Ramírez-Martínez. 2011. Representatividad del tejo mexicano (Taxus globosa Schltdl., Taxaceae) en las áreas naturales protegidas de Mesoamérica. Spanish Journal of Rural Development 2(2):51-60. Doi: 10.5261/2011.ESP2.06. [ Links ]

Cope, E. A. 1998. Taxaceae: The genera and cultivated species. The Botanical Review 64(4):291-322. [ Links ]

Cortés S., F. Vasco y E. Blanco. 2000. El libro del Tejo (Taxus baccata L.). Un proyecto para su conservación. ARBA.A. Madrid, España. 336 p. [ Links ]

García-Aranda, M. A., A. E. Estrada-Castillón, E. Jurado-Ybarra y D. U. González-Uribe. 2011. Análisis de once poblaciones naturales de Taxus globosa en la Sierra Madre Oriental. Madera y Bosques 17(1):93-104. Doi: 10.21829/myb.2011.1711156. [ Links ]

García-Aranda, M. A., A. E. Estrada-Castillón, C. M. Cantú-Ayala y M. Pando-Moreno. 2012a. Clasificación de nueve sitios de bosque mixto de coníferas con presencia de Taxus globosa en la Sierra Madre Oriental, Nuevo León y Tamaulipas, México. Botanical Sciences 90(1):53-62. Doi: 10.17129/botsci.385. [ Links ]

García-Aranda, M. A., C. Cantú-Ayala, E. Estrada-Castillón, M. Pando-Moreno y A. Moreno-Talamantes. 2012b. Distribución actual y potencial de Taxus globosa (Taxaceae) en México. Journal of the Botanical Research Institute of Texas 6(2):587-598. [ Links ]

García S., F. y P. Castillo L. 2000. Aspectos ecológicos de Taxus globosa Schlecht. en las Mesas de San Isidro, municipio de Río Verde, San Luis Potosí. Biotam 11(3):11-18. [ Links ]

González-Espinosa, M., J. Meave, F. G. Lorea-Hernández, G. Ibarra-Manriquez and A. C. Newton. 2011. The red list of Mexican cloud forest trees. Fauna & Flora International. Cambridge, UK. 153 p. [ Links ]

Hansen R., C., K. D. Cochran, H. M. Keener and E. M. Croom. 1994. Taxus populations and clippings yields at commercial nurseries. HortTechnology 4(4):372-377. [ Links ]

Hils, M. H. 1993. Taxaceae Gray: yew family. In: Flora of North America Editorial Committee (eds.). Flora of North America north of Mexico, Vol. 2. Pteridophytes and gymnosperms. Oxford University Press. New York, NY, USA. pp. 423-427. [ Links ]

Iszcuło, G., A. Boratyńsky, Y. Didukh, K. Romaschenko and N. Pryazhko. 2005. Changes of population structure of Taxus baccata I. during 25 years in protected area (Carpathians, Western Ukraine). Polish Journal of Ecology 53(1):13-23. [ Links ]

López U., J. and X. García M. 2015. Taxus globosa Schltdl. (Taxaceae). Distribution and diagnosis of an endangered yew. Earth Sciences 4(3-1):80-88. Doi: 10.11648/j.earth.s.2015040301.13. [ Links ]

López, H. M. 2008. Taxus globosa Schltdl., una especie medicinal en el Parque Nacional El Chico, Hidalgo. In: Pulido F., G., A. L. López E. y M. T. Pulido S. (eds.). Estudios biológicos en las áreas naturales del Estado de Hidalgo. Universidad Autónoma del Estado de Hidalgo. Pachuca, Hgo., México. pp. 63-68. [ Links ]

Luna V., I., S. Ocegueda C. y O. Alcántara A. 1994. Florística y notas biogeográficas del bosque mesófilo de montaña del Municipio de Tlanchinol. Hidalgo. México. Anales del Instituto de Biología. Serie Botánica 65(1):31-62. [ Links ]

Mirov, N. T. 1967. The genus pinus. The Royal Press. New York, NY, USA. 602 p. [ Links ]

Moldenke, H. N. and A. I. Moldenke. 1984. An International census of the coniferae. In: Silba, J. (comp.). Phytologia Memoirs VII. Plainfield, NJ, USA. 79 p. [ Links ]

Muñoz G., L., J. J. Vargas H., J. López U. and M. Soto H. 2009. Effect of cutting age and substrate temperature on rooting of Taxus globosa. New Forests 38:187-196. Doi: 10.1007/s11056-009-9139-6. [ Links ]

Nicholson, R. and D. X. Munn. 2003. Observations on the propagation of Taxus globosa Schltdl. Boletín de la Sociedad Botánica de México 72:129-130. Doi: 10.17129/botsci.1673. [ Links ]

Parker, T. 2008. Trees of Guatemala. The tree press, Austin, TX, USA. 1033 p. [ Links ]

Pearson, R. G. and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology & Biogeography 12:361-371. Doi: 10.1046/j.1466-822X.2003.00042.x. [ Links ]

Ramírez-Sánchez, S. E., J. López-Upton, G. García de los S., J. J. Vargas-Hernández, A. Hernández-Livera y O. J. Ayala-Garay. 2011. Variación morfológica de semillas de Taxus globosa Schltdl. provenientes de dos regiones geográficas de México. Revista Fitotecnia Mexicana 34:93-99. [ Links ]

Ramírez-Sánchez, S. E., J. López-Upton, J. J. Vargas-Hernández, O. J. Ayala-Garay, G. García de los S. and M. R. Soto-Hernández. 2018. Pregermination treatments of Taxus globosa seeds: Growth and in vitro embryo culture. Journal of Tropical Forest Science 30(4):528-536. Doi: 10.26525/jtfs2018.30.4.528536. [ Links ]

Rzedowski, J. 2006. Vegetación de México. 1a Edición digital. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D.F., México. 504 p. [ Links ]

Sánchez P., L. A. 2012. Caracterización del hábitat de Taxus globosa Schltdl. (Taxaceae) en la Cuenca del Alto Pixquiac, Veracruz. Tesis de Maestría. Instituto de Ecología A.C. Xalapa, Ver., México. 55 p. [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación. 30 de diciembre de 2010. México, D.F., México. 77 p. [ Links ]

Shemluck, M. J., E. Estrada, R. Nicholson and S. W. Brobst. 2003. A preliminary study of the taxane chemistry and natural history of the Mexican yew, Taxus globosa Schltdl. Boletín de la Sociedad Botánica de México 72:119-127. Doi: 10.17129/botsci.1672. [ Links ]

Soto H., M., J. López U., J. J. Vargas H., L. Muñoz G. y R. San Miguel. 2011. Estado de conservación de Taxus globosa en México. Spanish Journal of Rural Development 2:61-68. Doi: 10.5261/2011.ESP2.07. [ Links ]

Soto H., M., M. Sanjurjo, M. T. González G., D. Cruz V. y F. Giral G. 2000. El tejo mexicano (Taxus globosa Sch.). Potencial de su aprovechamiento en taxol. Ciencia Ergo Sum 7(3):277-279. [ Links ]

Spjut, R. W. 2007a. Taxonomy and nomenclature of Taxus (Taxaceae). Journal of the Botanical Research Institute of Texas 1:203-289. [ Links ]

Spjut, R. W. 2007b. A phytogeographical analysis of Taxus (Taxaceae) based on leaf anatomical characters. Journal of the Botanical Research Institute of Texas 291-332. [ Links ]

Standley, P. C. and J. A. Steyermark. 1958. Flora of Guatemala. Fieldiana Botany 24:60-63. [ Links ]

Standley, P. C. 1926. Taxaceae. In: Trees and shrubs of Mexico. Contributions from the United States National Herbarium 23:50-51. [ Links ]

Thomas, P. 2013. Taxus globosa. The IUCN Red List of Threatened Species 2013. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T30724A2795235.en (7 de septiembre de 2018). [ Links ]

Wani, M. C., H. L. Taylor and M. E. Wall. 1971. Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society 93:2325-2327. [ Links ]

Zamudio R., S. 1992. Familia Taxaceae. In: Rzedowski, J. y G. Calderón (eds.). Flora del Bajío y de regiones adyacentes. Fascículo 9. Instituto de Ecología, Pátzcuaro, Michoacán, México. pp. 1-6. [ Links ]

Zavala C., F. 2001. Análisis demográfico preliminar de Taxus globosa Schlecht en el Parque Nacional El Chico, Hidalgo, México. I: Población de adultos y algunas características del hábitat. Ciencia Ergo Sum 8(2):169-174. [ Links ]

Zavala C., F. 2002. Análisis demográfico preliminar de Taxus globosa Schlecht en el Parque Nacional El Chico, Hidalgo, México. II. Población de juveniles y algunos datos de semillas. Ciencia Ergo Sum 9(2):177-183. [ Links ]

Zavala C., F., M. Soto H. y Ma. T. Rodríguez G. 2001. El romerillo (Taxus globosa Schlecht.): biología, dificultades y perspectivas de su uso. Revista Chapingo Serie Horticultura 7(1):77-94. Doi: 10.5154/r.rchsh.1999.02.016. [ Links ]

Received: December 16, 2018; Accepted: July 05, 2019

Conflict of interests

The authors declare no conflict of interests.

Contribution by author

Liliana Muñoz-Gutiérrez: literature review, drafting and editing of the manuscript; Susana E. Ramírez-Sánchez: contribution of bibliographic materials and editing of the manuscript; Mario Valerio Velasco-García drafting and editing of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons