SciELO - Scientific Electronic Library Online

vol.9 número50Distribución vertical de hongos en hojas de tres especies de pinos en Nuevo León, MéxicoEcuaciones de volumen para Prosopis articulata S. Watson y Lysiloma divaricata (Jacq.) J. F. Macbr. en el noroeste de México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Revista mexicana de ciencias forestales

versão impressa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.9 no.50 México Nov./Dez. 2018 


Analysis of the pertinence of forest plantations in Oaxaca

Prudencia Caballero Cruz1 

Eduardo Javier Treviño Garza1  * 

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.


The assessment of large-scale vegetation cover is a complicated and expensive task; however, remote sensing has facilitated the study of its dynamics and spatial distribution, based on the biomass estimator, Normalized Difference Vegetation Index (NDVI). The need to know the success of the forest plantations established in the tropical and temperate region of southern Oaxaca during the 2014-2016 period, as well as the complexity and high costs implicit in the traditional evaluation of large-scale vegetation cover, motivated the use of NDVI and other geomatic techniques to estimate biomass and determine the environmental factors that influence its development. For this, the biomass was obtained by processing three series of satellite images: two from the Landsat 8 OLI sensor and one from the Sentinel-2. Through a canonical correspondence analysis, the variables that affected its dynamics were defined. And, from an analysis with time series it was determined that the plantations of the tropical and temperate zones present good development, but of different behavior between both. The environmental variables that affect its dynamics are altitude, precipitation, temperature, evapotranspiration, humidity and pH. Therefore, it is important to consider the environmental factors and the ecological requirements of the species before their establishment.

Key words: Biomass; environmental factors; satellite images; vegetation index; remote sensing; GIS


La evaluación de la cubierta vegetal a gran escala es una tarea complicada y costosa; sin embargo, la percepción remota ha facilitado el estudio de su dinámica y distribución espacial, a partir del estimador de biomasa, Índice de Vegetación de Diferencia Normalizada (NDVI). La necesidad de conocer el éxito de las plantaciones forestales establecidas en la región tropical y templada del sur de Oaxaca durante el periodo 2014 -2016, así como la complejidad y los altos costos implícitos en la evaluación tradicional de la cubierta vegetal a gran escala, motivaron el uso del NDVI y otras técnicas geomáticas para estimar la biomasa y determinar los factores ambientales que influyen en su desarrollo. Para ello, se obtuvo la biomasa procesando tres series de imágenes de satélites: dos del sensor Landsat 8 OLI y una del Sentinel-2. Mediante un análisis de correspondencia canónica se definieron las variables que incidieron sobre su dinámica. Y, a partir de un análisis con series temporales se determinó que las plantaciones de la zona tropical y templada presentan buen desarrollo, pero de comportamiento distinto entre ambas. Las variables ambientales que afectan su dinámica son la altitud, precipitación, temperatura, evapotranspiración, humedad y pH. Por ello, es importante considerar los factores ambientales y los requerimientos ecológicos de las especies antes de su establecimiento.

Palabras clave: Biomasa; factores ambientales; imágenes de satélite; índice de vegetación; sensores remotos; SIG


The supply of wood for industry based on the use of forests has been complemented with forest plantations to lower pressure and reduce natural ecosystems. This has resulted in the forest area of 29 countries increasing 6 % during the 2000-2010 period (FAO, 2016). At the global level, forest plantations covered an area of 264 million hectares in 2010, equivalent to 7 % of the world's forest area, from which, 30 % was concentrated in Asia, from native species, and most have been established for industrial purposes, with a minimum area for non-commercial purposes (FAO, 2010).

Species that are rapidly growing (70 %), such as Pinus radiata D.Don, P. caribaea Morelet, P. taeda L., P. patula Schiede ex Schltdl. & Cham., P. elliottii, P. palustris Mill., P. oocarpa Schiede ex Schltdl., Eucalyptus grandis W.Hill, E. urophylla S.T.Blake and E. globulus Labill. are often used for plantation projects in Mexico; while Tectona grandis L.f. covers 15 %, 12 % for hardwoods such as Gmelina arborea Roxb., Acacia mangium Willd. and Albizia falcataria (L.) Fosberg and other conifers, 3 % (Musálem, 2006; Velázquez et al., 2013).

In the state of Oaxaca, several plantations have been established in the temperate and tropical zone, mostly with native species, however, the current situation of their development is unknown, which makes good management of these resources impossible. The evaluation of large-scale plant cover is a costly, laborious and a demanding task of specialized technical skills, which forest producers can hardly face. This justifies the use of indirect techniques such as geomatics, which allow the integration of georeferenced bases on forest resources (García et al., 2001; Olivas et al., 2007; Castillo et al., 2015). In addition, it facilitates the different activities of collection, capture, processing, analysis and interpretation of information. Its advantages include the ability to visually represent the data of electromagnetic radiation reflected by forest cover and other types of land surface cover, recorded with the help of remote sensors (Duarte et al., 2016).

With the development of remote sensing, studies on productivity and vegetation biomass have been stimulated by the use of spectral indexes, the most common being the Normalized Difference Vegetation Index (NDVI) that estimates the vegetation biomass of different ecosystems, is related to the growth of plants and helps characterize the structural aspects of forests (Torres et al., 2014; Palestina et al., 2015; Zhao et al., 2015).

The aim of this investigation was to evaluate the commercial forest plantations of the tropical and temperate regions of the south of Oaxaca State, based on satellite images and acquired data of the environmental variables incorporated into a Geographic Information System (GIS).

Materials and Methods

Study area

The study was developed in the southern zone of the state of Oaxaca (Figure 1); whose original vegetation cover in the Costa region (CR) corresponds to forest and in the Sierra region (SR) to temperate forest. Both types of cover currently include small areas for agriculture, livestock, deforested areas and forest plantations established on abandoned or degraded agricultural lands.

Simbología = Symbology; Plantaciones forestales -= Forest plantlations; Regiones = Regions.

Figure 1 Location points of the plantations where the study was carried out. 

The climate of CR is warm sub-humid and semi-warm sub-humid, with a maximum temperature of 32 to 36 °C, an average of 24 to 28 °C; the average annual precipitation varies from 800 to 1 500 mm (Fernández et al., 2012); and its soil units include regosoles, umbrisols, leptosols, luvisols and Phaeozem (Inegi, 2017). In the SR, the climate is temperate subhumid and semi-cold sub-humid, with an average temperature of 12 to 18 ° C, and a precipitation of 1 000 to 1 500 mm (Fernández et al., 2012); its main soil types are Cambisol, Leptosol, Luvisol and Umbrisol (Inegi, 2017).


In order to assess the commercial plantations, a selection was made among those established in 2000 to 2014 financed by Conafor. The vectorial data of its location and extension were provided by the management of Conafor in Oaxaca; farms with an area greater than or equal to 5 ha were considered, to facilitate the analysis using satellite images. In the RC the plantations correspond to broadleaved species: Cedrela odorata L., Swietenia humilis Zucc., Tabebuia rosea (Bertol.) Bertero ex A. DC. and Swietenia macrophylla King. In the RS, they are conifers: Pinus pseudostrobus Lindl., P. greggii Engelm., P. patula Schltdl. et Cham, P. ayacahuite Ehrenb. ex Schltdl., P. douglasiana Martínez, P. maximinoi H.E. Moore and P. leiophylla Schltdl. et Cham.

The plantations of the tropical region were developed under the following conditions: average evapotranspiration of 861 mm, average annual precipitation of 1 002 mm and at an altitude of 445 m above sea level; in the temperate region under the scenario described below: evapotranspiration of 636 mm, average precipitation of 1 340 mm and an altitude of 2 384 m.

Georeferenced environmental data were collected from the area of interest, corresponding to the average annual rainfall, average annual temperature, soil depth, soil pH, soil texture, altitude and slope of the land, on the websites of the Conabio, Inegi and of the Inventario Nacional Forestal y de Suelos (National Forestry and Soils Inventory) (Inegi, 2016; Inegi, 2017; Conabio, 2017; Conafor, 2017). Their projection systems were homogenized to UTM, in order to perform the analysis of the environmental conditions of the area where the plantations are located.

Scenes of satellite images of the year 2014, 2015 and 2016 were acquired, all from the same period (November-December). Th0se of 2014 and 2015 were from Landsat 8 OLI (Operational Land Imager) and the 2016 from Sentinel-2. All the images were obtained for free in the following links: 8) and (Sentinel-2).

Two types of corrections were carried out: the geometric one to adjust the location of the scenes of images among themselves, and the atmospheric one to correct anomalies of the images; in addition to converting the digital numbers of each of them to radiance values and then to reflectance by using the QGIS software.

In the analysis of the vegetation biomass, with the indirect technique based on the NDVI, a total of 78 forest plantations were included, 28 in the tropical zone and 50 in the temperate zone. Coniferous and hardwoods were analyzed separately, because both groups of species have different spectral responses.

The NDVI was used to monitor the establishment of the plantations for 2014, 2015 and 2016. This index described the dynamics of soil-vegetation mix, as well as the quantity, quality, development and vigor of the plantations (Torres et al., 2014; Escribano et al., 2015; Muñoz et al., 2016). The NDVI was calculated using the spectral values corresponding to the region of red visible light (R) (0.6-0.7 μm) and near infrared light (IRC) (0.7-1.3 μm):


Prior to the evaluation of the NDVI time series, the extraction of the area corresponding to the plantations was carried out, for which the limits of each area were used. The product was a portion per image, for which the statisticians were estimated considering the values of the pixels (mean, standard deviation, minimum and maximum value). After obtaining a significant deviation (p <0.05) of the data towards a non-normal distribution, a comparison of means with the Friedman test was applied to determine if there are significant changes in the three planting dates.

In the classification of the NDVI values, those between 0 and 0.4 were assigned for low or sparse vegetation; from 0.5, 0.6 to 0.8, for developing vegetation; and from 0.8 to 1, for healthy, vigorous and dense vegetation (Merg et al., 2011; Meneses, 2012; López et al., 2015) (Table 1).

Table 1 Classification of the NDVI values. 

Classification Value
Clouds and water <0.01
Soil without vegetation 0.01-0.1
Light vegetation 0.1-0.2
Medium vegetation 0.2-0.4
High vegetation >0.4

Finally, a multivariate analysis of canonical correspondence (CCA) was done with the R Studio program 1.1.4 version (RStudio Team, 2016) to determine the environmental variables (annual average precipitation, annual average temperature, altitude, slope, pH and soil depth) that affect the dynamics of plantations. The CCA consisted of determining the degree of association of all environmental variables with respect to the NDVI of 2014, 2015 and 2016.

Results and Discussion

Plantations dynamics from NDVI

All the plantations of the tropical zone in their three assessments corresponded to a medium to high and vigorous vegetation, according to the classification of the NDVI by Merg et al. (2011), López et al. (2015) and Meneses (2012). The NDVI trend was similar in the three annual periods analyzed; however, their values were lower for 2016, due to a better resolution of the images used (Figure 2). The results of the Friedman test indicate that there are important differences in the three time series of NDVI for the tropical zone (ANOVA Chi square = 33.429 p <0.000), which show an increase with the passage of years.

Figure 2 NDVI values for the biomass of the plantations in the tropical zone 2014 - 2016. 

In the temperate zone it was determined that all areas correspond to tall and developing vegetation. The biomass figures represented by the NDVI showed an increasing trend between 2014 and 2015 (Figure 3); this is consistent with that described by Vicente et al. (2004) for forests and well-developed vegetation. The values recorded for the plantations established in recent years were the only ones low for the amount of biomass, which is probably due to the short time elapsed between establishment and evaluation (Figure 3). When using the Friedman test, it was found that there are significant differences between plantations (ANOVA Chi square = 50.520 p <0.000).

Figure 3 NDVI values for the biomass of the plantations in the temperate zone 2014 - 2016. 

Environmental factors associated with the NDVI

Based on the multivariate analysis of canonical correspondence (CCA), with time series of biomass and environmental variables, it was determined that for the tropical region, evapotranspiration, precipitation and altitude are factors that influence the biomass dynamics of the plantations (Figure 4). While, in the temperate region: altitude, pH, temperature, evapotranspiration and precipitation were the determining variables (Figure 5). Therefore, it is important to consider the environmental variables and the characteristics of the site (biotic and abiotic factors), to have a greater productivity of future plantings and fewer failures.

Figure 4 CCA: NDVI series of tropical species vs environmental variables. 

Figure 5 CCA: conifer NDVI series vs environmental variables. 

The interaction of climatic, soil and topographic variables determine the place where forest species can grow, how quickly, and how well they do it; however, internal factors such as the quality of the plants should be considered when they are established in the field (Schlatter and Gerding, 2014). It is necessary to make a good selection of the sites before establishing the forest species, in order to obtain good timber productivity (Jofré et al., 2013).


Plantations in the tropical and temperate regions of southern Oaxaca show a favorable development. The vegetation of each date in both regions is present in the first evaluation and shows an increase over the years. The plantations established two years before the evaluation lack an increase in their biomass; so it is clear that a reasonable amount of time is required to use this indirect method of evaluation.

The development of the biomass of the plantations in both types of ecosystems depends on environmental factors, which should be considered when modeling ideal areas to execute projects related to the plantations in tropical and temperate zones.


The authors thank the Consejo Nacional de Ciencia y Tecnología (Conacyt) for the scholarship awarded to the first author to carry out the present investigation. To the Comisión Nacional Forestal. To the Geóg. Carlos A. Guerrero Elemen, General Director of Geografía y Medio Ambiente of Inegi, and to Lic. Alejandra Cervantes Martínez, State Coordinator of Inegi at Nuevo León for the attentions received to obtain some of the satellite images. To Ing. Carlos René Estrella Canto, State Chairman of Conafor in Oaxaca for his kindness to share the information of the location of the analyzed plantations.


Castillo R., J. J., L. Gama y C. Zequeira L. 2015. Análisis de regresión lineal en un sistema de información geográfico para determinar la tasa de deforestación en el estado de Tabasco. kuxulkab' 15(27): 15-18. [ Links ]

Comisión Nacional Forestal (Conafor). 2017. Inventario Nacional Forestal y de Suelos. (23 de marzo de 2018). [ Links ]

Duarte C., E., P. Emanuelli A., F. Milla A., O. Orellana, S. López y A. Quiroz H. 2016. Análisis de cambios de la cobertura forestal y uso de la tierra mediante imágenes satelitales de alta resolución espacial: años 2009-2012-2015 de República de Costa Rica. La Libertad, El Salvador. 48 p. [ Links ]

Escribano R., J. A., C. G. Hernández D. A. y A. M. Tarquis A. 2015. Selección de índices de vegetación para la estimación de la producción herbácea en Dehesas. Revista pastos 44(2): 6-18. [ Links ]

Fernández E., A., R. Romero C. y J. Zavala H. 2012. Atlas Climático de México y Áreas Adyacentes. Unidad de Informática para las Ciencias Atmosféricas y Ambientales. Centro de Ciencias de la Atmósfera, UNAM, Servicio Meteorológico Nacional, CONAGUA. México, D.F., México. 204 p. [ Links ]

García N., H., R. R. García D., R. Moreno S., J. López B. y M. de L. Villers R. 2001. Enfoques Fuzzy y Booleano convencional para clasificar la aptitud agrícola de las tierras. Agricultura Técnica en México 27(2): 107-118. [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). 2016. Datos de Relieve. (23 de marzo de 2018). [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). 2017. Recursos Naturales. (23 de marzo de 2018). [ Links ]

Jofré, P., C. Büchner, R. Ipinza, C. Bahamondez, S. Barros, P. García y J. Cabrera. 2013. Estado del arte las plantaciones forestales y el agua. Fundación para la Innovación Agraria (FIA) e Instituto Forestal (INFOR) de Chile. Gobierno de Chile. Ministerio de Agricultura. Valdivia, Chile. 118 p. [ Links ]

López P., A., M. R. Martínez M. y D. S. Fernández R. 2015. Priorización de áreas de intervención mediante análisis morfométrico e índice de vegetación. Tecnología y ciencias del agua 6(1): 121-137. [ Links ]

Meneses T., C. M. 2012. El índice normalizado diferencial de la vegetación como indicador de la degradación del bosque. Revista internacional de silvicultura e industrias forestales Unasylva 62(238): 39-46. [ Links ]

Merg, C., D. Petri, F. Bodoira, M. Nini, M. Fernández, F. Schmidt, R. Montalva, L. Guzmán, K. Rodríguez, F. Blanco y F. Selzer. 2011. Mapas digitales regionales de lluvias, índice estandarizado de precipitación e índice verde. Revista Pilquen, Sección Agronomía 13(11): 1-11. [ Links ]

Muñoz M., J. L., E. Cuasquer F., O. Moncayo C. y D. Delgado C. 2016. Aplicación de percepción remota para la detección de cambios en la cobertura boscosa de la reserva ecológica Mache-Chindul. Revista La Técnica 16(1): 76-93. [ Links ]

Musálem, M. A. 2006. Silvicultura de plantaciones forestales comerciales (No. 634.950972 S587). Universidad Autónoma de Chapingo. Chapingo, Edo. de Méx., México. pp. 2-16. [ Links ]

Olivas G., U. E., J. R. Valdez L., A. Aldrete, M. D. J. González G. y G. Vera C. 2007. Áreas con aptitud para establecer plantaciones de maguey cenizo: Definición mediante análisis multicriterio y SIG. Revista Fitotecnia Mexicana 30 (4): 411-419. [ Links ]

Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2010. Evaluación de los recursos forestales mundiales 2010: Informe principal (Informe general). FRA2010/041. Roma, Italia. 346 p. [ Links ]

Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2016. El Estado de los bosques del mundo 2016. Los bosques y la agricultura: desafíos y oportunidades en relación con el uso de la tierra. Roma, Italia. 137 p. [ Links ]

Palestina, R. A., M. Equihua, y O. M. Pérez M. 2015. Influencia de la complejidad estructural del dosel en la reflectancia de datos Landsat TM. Madera y bosques 21(1): 63-75. [ Links ]

RStudio Team. 2016. RStudio: Integrated Development for R. RStudio, Inc., Boston. Version 1.1.447. (18 de junio de 2018). [ Links ]

Schlatter, J. E. y V. Gerding. 2014. Capítulo 10: Sitio forestal. In: González C., M. E. y A. Lara (eds.). Ecología forestal. Bases para el manejo sustentable y conservación de los bosques nativos de Chile. Ed. UACh. Valdivia, Chile. pp. 309-319. [ Links ]

Sistema Nacional de Información sobre Biodiversidad (Conabio). 2017. Portal de geoinformación. (23 de marzo de 2018). [ Links ]

Torres E., G. Linares, G. Tenorio M., R. Peña, R. Castelán y A. Rodríguez. 2014. Índices de vegetación y uso de suelo en la región terrestre prioritaria 105: Cuetzalan, México. Revista Iberoamericana de Ciencias 1(3):101-112. [ Links ]

Velázquez M., A., A. M. Fierros G., A. Aldrete, A. Gómez G., S. Fernández C., H. De los Santos P., T. Llanderal O., M. de J. González, J. López U. y C. Ramírez H. 2013. Situación actual y perspectivas de las plantaciones forestales comerciales en México. Comisión Nacional Forestal-Colegio de Postgraduados. México, D.F., México. 472 p. [ Links ]

Vicente S., S.M., T. Lasanta and A. Romo. 2004. Analysis of the spatial and temporal evolution of vegetation cover in the Spanish central Pyrenees: the role of human management. Environmental Management 34(6):802-818. [ Links ]

Zhao, Z., J. Gao, Y. Wang, J. Liu and S. Li. 2015. Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression. Theoretical and Applied Climatology 120: 507-519. [ Links ]

Received: March 19, 2018; Accepted: October 30, 2018

Conflict of interests

The authors declare no conflict of interests.

Contribution by author

Prudencia Caballero Cruz: planning of the study, data collecting and analysis, writing of the manuscript; Eduardo J. Treviño Garza: planning of the study, data analysis, writing and review of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons