SciELO - Scientific Electronic Library Online

 
vol.9 issue47Contribution and decomposition of leaf litter in temperate forests of the El Salto region, DurangoPlant quality of Gmelina arborea Roxb. produced with different substrate mixtures at the nursery author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias forestales

Print version ISSN 2007-1132

Rev. mex. de cienc. forestales vol.9 n.47 México May./Jun. 2018

https://doi.org/10.29298/rmcf.v9i47.172 

Articles

Estimation of the above-ground biomass of Pinus cembroides Zucc. and Pinus halepensis Mill. in Saltillo, Coahuila

Pablo Marroquín Morales1  * 

Jorge Méndez González1 

Javier Jiménez Pérez2 

Oscar Alberto Aguirre Calderón2 

José Israel Yerena Yamallel2 

1Departamento Forestal, Universidad Autónoma Agraria Antonio Narro. México.

2Facultad de Ciencias Forestales. Universidad Autónoma de Nuevo León. México.


Abstract:

The Allometric models to estimate biomass, carbon and carbon dioxide, are of great importance in forest modeling, for these it is possible to quantify the mitigation of greenhouse gas emissions. The objective of present study was to adjust an allometric models for biomass aboveground estimation in a plantation of Pinus cembroides and P. halepensis. The aboveground was estimated with the indirect method (Adelaide Method) with a sample of 50 trees by species. The study was made in two areas: Cuauhtémoc and El Recreo, of Saltillo, Coahuila. For each biomass component of leaves-branches, stem and total six models were adjusted, using independent variables of diameter and height, selecting the best model according to the adjusted determination coefficient (adjR2), standard error (Syx) and the significance of the regression parameters. The results indicated that the diameter adequately estimates the biomass by component of P. cembroides (adjR2 average of 0.86), for P. halepensis the biomass is estimated with diameter and height (adjR2 of 0.79 on average). The indirect method is a good estimator of aboveground biomass in both species, the best adjustments of models can be used to quantify carbon storage and carbon dioxide in the region.

Key words: Adjustment; aboveground biomass; components; Adelaide method; allometric models; regression parameters

Resumen

Los modelos alométricos para estimar biomasa, carbono y dióxido de carbono son de gran importancia en la modelación forestal, mediante estos es posible cuantificar la mitigación de emisiones de gases de efecto invernadero. El objetivo del presente estudio fue ajustar modelos alométricos para estimar la biomasa aérea en una plantación de Pinus cembroides y P. halepensis. Se aplicó el método indirecto (método Adelaide) con una muestra de 50 árboles por especie. El estudio se realizó en dos áreas: Cuauhtémoc y El Recreo, de Saltillo, Coahuila. Para cada componente de biomasa de hojas-ramas, fuste y total se ajustaron seis modelos, se utilizaron variables independientes de diámetro normal y altura; se seleccionó el mejor modelo conforme al coeficiente de determinación ajustado (R2 adj), el error estándar (Syx) y la significancia de los parámetros de regresión. Los resultados indicaron que el diámetro normal estima, adecuadamente, la biomasa por componente de P. cembroides (R2 adj promedio de 0.86); para P. halepensis, la biomasa se calculó con el diámetro normal y la altura (R2 adj de 0.79 en promedio). El método indirecto es un buen estimador de biomasa aérea en ambas especies, los mejores ajustes de modelos pueden usarse para cuantificar almacenes de carbono y dióxido de carbono en la región.

Palabras clave: Ajuste; biomasa aérea; componentes; método de Adelaide; modelos alométricos; parámetros de regresión

Introduction

Today, there is recognition of the importance of forests as a means to mitigate greenhouse gas (GHG) emissions, particularly those of carbon dioxide (CO2), which are the cause of the climate change. For this purpose, natural areas are preserved and forest plantations that favor carbon storage for long periods are established (Návar et al., 2001; Aguirre-Calderón and Jiménez-Pérez, 2011).

The biomass of a forest is of great importance, because it makes it possible to determine the amount of carbon (C) that exists in a conservation area, or the potential amount that is likely to be released into the atmosphere by the combustion process (Brown et al., 1996). The forest biomass is defined as the weight of the organic matter that exists in a particular forest ecosystem above and below the ground, and it is normally is measured in tons per hectare of dry weight (Schlegel et al., 2000).

The estimation of the above-ground biomass of any component of a tree requires a direct or indirect analysis. The direct method consists in cutting down the tree and weighing the samples of each component and subsequently determining the dry weight (Díaz et al., 2007). The indirect method can be based on the stem volume and uses the basic density to estimate the dry weight and a factor of expansion to calculate the total dry weight (Schlegel, 2001; Segura and Andrade, 2008). Adelaide is an indirect method that involves taking a branch which is called hand unit or reference unit; this has to be representative as to the shape and leaf density of the species of interest and is used to calculate the number of branches present in each sampled tree (Foroughbakhch et al., 1996).

If the biomass and the carbon (C) concentration per compartment are known, the total carbon content of a taxon can be estimated with greater precision; although the carbon dioxide concentration in the plants is approximately 50 % of the dry biomass, this value varies depending on the form of growth (Becerril et al., 2014; Pompa and Yerena, 2014).

The biomass of a forest is determined by allometric models for each particular species (Brown, 1997), since the use of the equations developed in different regions has limitations due to the conditions that govern the growth of the trees, as well as their genetics, climate and soil (Álvarez, 2008). Some studies have shown that the normal diameter is the independent variable that efficiently predicts the total biomass in Pinus halepensis Mill., P. pseudostrobus Lindl., and P. devoniana Lindl., with a coefficient of determination of 0.73 (Mendez-González et al., 2011; López, 2012; Domingo et al., 2016). Xiao and Ceulemans (2004) obtained the total biomass of P. sylvestris L. using the variables normal diameter, height and crown diameter, with an adjR2 of 0.98. Because each species and region should have a model for estimating its biomass, the present study was carried out with the purpose of adjusting allometric models for calculating the above-ground biomass of P. cembroides and P. halepensis.

Materials and Methods

Study Area

The research was carried out in plantations aged 22 years, located in two ejidos of Saltillo, Coahuila. The first one, called Cuauhtémoc, is located at the coordinates 25°16'45.60" N and 100°59'20.49" W and an altitude of 2 162 m; and the second, named El Recreo, located at the coordinates of 25°14'43.94" N and 101°04'26.47" W and an altitude of 1 982 m. In the area there are pine forests, microphyllous and rosetophyllous desert shrubs; the climate is arid semi-warm (BSohw) and semi-arid temperate (BS1kw), with summer rains, a mean annual precipitation of 125 to 400 mm, a mean annual temperature of 14 to 18 °C, and Lithosol and Calcic Xerosol soils (García, 1998).

Indirect method for estimating the biomass

The Adelaide method (Foroughbakhch et al., 1996) was utilized. An average tree in terms of diameter and height was selected from the plantation and divided into three sections, and the (Adelaide) method was applied to each section. A representative branch was cut only once. Later, the number of times that the representative branch of each section could be contained in its respective section of the tree was calculated. 50 healthy trees that were considered representative of the categories of normal diameter and height were sampled for each species. In each individual, the normal diameter (cm) and the smallest and largest diameter of each section (cm) were measured with a Forestry Suppliers Metric Fabric Diameter Tape Model 283D/5M, and the heights of each section (m) were measured with a Truper FH-5ME measuring tape.

The representative branch was carried to the laboratory and placed in a Blue M. drying oven at a temperature of 105 °C until it reached its constant weight (Schlegel et al., 2000); after drying, the dry weight was obtained with a Torrey Pizza Controller PZC-5 scale, with a capacity for 5 kg and a 1 g accuracy. Once the value of the dry weight of each representative branch had been calculated, it was multiplied by the estimated number of branches of the corresponding section; the three sections were added to obtain the dry weight of the leaves-branches of each tree. The dry weight of the stem was obtained by multiplying the volume by the basic density. The stem volume was determined using the Smalian formula (1), and the basal area (g), using the second formula (2).

V= g1+g22 *L (1)

g =π4*D2 (2)

Where:

g = Basal area (m2)

g 1 = Smallest basal area of the section (m2)

g 2 = Largest basal area of the section (m2)

L = Log length of the section (m)

D = Diameter (m)

The basic density in P. cembroides is 450 kg m-3 (Ordoñez et al., 2015) and 494 kg m-3 in P. halepensis (Ruano et al., 2012). The total dry weight of the tree was calculated by adding the dry weight of leaves-branches and the dry weight of the stem (kg).

Allometric model adjustment and selection

The estimation of the biomass by component (leaves-stem, branches and total) was carried out using logarithmic regression models (Table 1), which were adjusted in accordance with the method of least squares, using the R Project statistical package (R Core Team, 2017). The logarithmic transformation is of great utility, since it corrects the heterogeneity of the variance of the independent variable with respect to the data of the dependent variable (Brown et al., 1989). It is necessary to make the transformation, because the variance is highly unstable in arithmetic units, and the logarithmic transformation rectifies the problem (Baskerville, 1972). Six models were evaluated using the following statistics: adjusted coefficient of determination (adjR2), standard error (Syx) and significance of the regression parameters (P < 0.05).

Table 1 Models for the estimation of aboveground biomass in Pinus cembroides Zucc., and Pinus halepensis Mill. 

Name Mathematical function
Natural logarithm
nlB = β0+ β1nl(ND) +ε
Combined Variable
nlB = β0+β1 nl(ND2H) + ε
2nd-degree polynomial
nlB = β0+β1nl(ND)+β2 nl(ND)2+ ε
3rd-degree polynomial
nlB =β0+β1nl(ND)+β2nl(ND)2+β3 nl(ND)3+ ε
4rd-degree polynomial
nlB = β0+β1nl(ND)+β2 nl(ND)2+β3 nl(ND)3+β3 nl(ND)4+ ε
Generalized variable
nlB = β0+β1nl(ND)+β2nl(H) + ε

nl = Natural logarithm; B = Biomass (kg); β0, ….. , β4 = Regression parameters; ND = Normal diameter (cm); H = Total height (m).

Results and Discussion

The P. halepensis trees had larger normal diameters and heights than P. cembroides; also, there were differences in the biomass of leaves and branches (BLB), the stem biomass (SB) and the total biomass (TB) of 21.8, 38.0 and 59.8 kg, respectively, in P. cembroides (Table 2).

Table 2 Dasometric characteristics of the sampled Pinus cembroides Zucc., and Pinus halepensis Mill. trees. 

Species n ND H BLB SB TB
Min. Max Min. Max Min. Max Min. Max Min. Max
P. cembroides 50 6.1 11.0 2.9 4.4 7.3 16.0 3.4 14.6 10.8 30.6
P. halepensis 50 6.9 22.8 3.1 6.7 7.8 37.8 7.9 52.6 16.7 90.4

n = Number of trees sampled; ND = Normal diameter (cm); H = Height (m); BLB = Biomass of leaves and branches (kg); SB = Stem biomass (kg); TB = Total biomass (kg); Min = Minimum; Max = Maximum.

Parameters of the adjusted models

Only models 4 and 6 showed no significance (P > 0.05) in the estimation parameters for BLB and TB; the estimation parameters for SB were also not significant in models 3, 5 and 6. Using the same independent variable -normal diameter-, but different models for the total biomass, Díaz et al. (2007) and Rodríguez-Ortiz et al. (2012) cite smaller parameters than the ones in this study (P. cembroides), of β0= 0.035 and 0.001 and β1 = 2.691 and 1.980, respectively, in P. patula Schiede ex Schltdl. & Cham. (Table 3).

Table 3 Estimated parameters of allometric models for estimating the biomass in Pinus cembroides Zucc. 

β0 EE β1 EE β2 EE β3 EE β4 EE
Bhr
1 -1.055 0.24 1.560 0.11 . . . . . .
2 -0.916 0.24 0.571 0.04 . . . . . .
3 14.005 1.81 -12.775 1.72 3.398 0.40 . . . .
4 46.381* 23.25 -59.239* 33.32 25.539* 15.86 -3.504* 2.50 . .
5 -1140.09 263.05 2215.13 503.63 1604.52 360.65 514.22 114.49 61.490 13.59
6 -1.058 0.26 1.571 0.31 -0.015* 0.42 . . . .
Bf
1 -1.685 0.30 1.799 0.14 . . . . . .
2 -1.566 0.28 0.666 0.05 . . . . . .
3 -8.103 3.38 7.908 3.21 -1.448* 0.76 . . . .
4 -95.506 42.35 133.347 60.68 -61.223 28.89 9.459 4.57 . .
5 -153.955* 577.76 245.389* 1106.17 -141.524* 792.12 34.964* 251.45 -3.029* 29.85
6 -1.555 0.31 1.297 0.38 0.712* 0.50 . . . .
Bt
1 -0.613 0.15 1.653 0.07 . . . . . .
2 -0.484 0.14 0.608 0.02 . . . . . .
3 5.078 1.59 -3.764 1.51 1.284 0.35 . . . .
4 -9.265* 20.72 16.821* 29.68 -8.525* 14.13 1.552* 2.23 . .
5 -655.440 265.67 1255.48 508.64 -896.290 364.23 283.510 115.63 -33.490 13.73
6 -0.558 0.16 1.439 0.19 0.303* 0.26 . . . .

N° = Model number; β0,…, β4= Estimated parameters; EE = Standard error of the parameters.; * = Non-significant parameters.

In Pinus halepensis, models 1 and 2 produced parameters with significant differences (P < 0.05), compared to the rest of the models, for BLB and TB; as for the SB, the parameters of models 1, 2 and 6 exhibited significant differences (P < 0.05), unlike models 3, 4 and 5. Model 2 presented some similarity in the parameters of (β1,) 0.444 for BLB, (β1,) 0.633 for SB, and (β1,) 0.540 for TB (Table 4).

Table 4 Regression parameters of allometric models for estimating the biomass in Pinus halepensis Mill. 

β0 SE β1 SE β2 SE β3 SE β4 SE
BLB
1 0.223 0.31 1.067 0.12 . . . . . .
2 -0.061 0.34 0.444 0.05 . . . . . .
3 2.598* 2.23 -0.867* 1.80 0.389* 0.36 . . . .
4 15.745* 17.31 -16.878* 20.98 6.821* 8.40 -0.852* 1.11 . .
5 154.474* 138.17 -243.361* 224.78 144.351* 136.16 -37.669* 36.39 3.666* 3.62
6 -0.013* 0.36 0.938 0.16 0.338* 0.26 . . . .
SB
1 -0.759 0.30 1.508 0.12 . . . . . .
2 -1.198 0.30 0.633 0.04 . . . . . .
3 0.076* 2.16 0.828* 1.75 0.137* 0.35 . . . .
4 -18.522* 16.64 23.478* 20.17 -8.962* 8.08 1.206* 1.07 . .
5 -197.831* 131.62 316.210* 214.12 -186.721* 129.70 48.792* 34.67 -4.739* 3.45
6 -1.193 0.33 1.272 0.14 0.622 0.23 . . . .
TB
1 0.425 0.25 1.292 0.10 . . . . . .
2 0.064 0.26 0.540 0.04 . . . . . .
3 2.154* 1.80 -0.116* 1.45 0.283* 0.29 . . . .
4 1.070* 14.03 1.205* 17.00 -0.247* 6.81 0.070* 0.90 . .
5 -8.289* 113.22 16.484* 184.20 -9.525* 111.57 2.554* 29.82 -0.247* 2.96
6 0.094* 0.28 1.112 0.12 0.473 0.20 . . .

N° = Model number; β0,,…,β4 = Estimated parameters; SE = Standard error of the parameters; * = Non-significant parameters.

Méndez-González et al. (2011) used the same independent variables (ND2 × H) to predict the TB; their parameters were different from β0= 4.660, β4= 0.006 for the biomass of leaves and branches, β0,= 6.183, β1,= 0.009 for stem biomass, and β0 = 10.843, β1= 0.014 for total biomass in P. devoniana. López (2012) pointed out the similarity of the negative values in the origins of ordinate, and positive values in the slopes of BLB and SB in the species that is also the object of the present study (P. halepensis); however, the opposite is true for the TB, as both the origin of ordinate and the slope proved to be positive in this study (P. halepensis).

Biomass by component in Pinus cembroides and P. halepensis

Of the six tested models, in the case of P. cembroides model 3 was selected because it presented the best statistics for BLB and TB, with an adjusted coefficient of determination (adjR2) above 0.90; on the other hand, the model selected for SB was No. 4 (adjR2 of 0.75), with a mean adjR2 of 0.86 for BLB, SB and TB. However, in the case of P. halepensis, model 2 was selected for BLB, SB and TB, with a mean adjR2 of 0.79 (Table 5).

Table 5 Statistical goodness-of-fit of the allometric models for estimating the above-ground biomass in Pinus cembroides Zucc. / Pinus halepensis Mill. 

Adjusted R2 Syx VC P > F
BLB
1 0.81 / 0.65 1.07 / 4.07 10.58 / 22.24 2.20E-16 / 6.80E-01
2 0.80 / 0.67 1.10 / 3.99 10.86 / 21.81 2.20E-16 / 3.14E-11
3 0.90 / 0.65 0.80 / 4.09 7.88 / 22.35 2.20E-16 / 4.11E-10
4 0.91 / 0.65 0.74 / 4.12 7.33 / 22.50 2.20E-16 / 2.11E-09
5 0.86 / 0.63 0.93 / 4.19 9.21 / 22.91 2.20E-16 / 6.93E-09
6 0.81 / 0.66 1.08 / 4.03 10.69 / 22.00 2.20E-16 / 3.15E-10
SB
1 0.74 / 0.81 1.10 / 4.56 12.23 / 21.66 2.20E-16 / 2.2E-16
2 0.75 / 0.85 1.09 / 4.04 12.12 / 19.17 2.20E-16 / 2.2E-16
3 0.74 / 0.81 1.12 / 4.57 12.39 / 21.67 2.20E-16 / 2.73E-15
4 0.75 / 0.79 1.08 / 4.82 11.94 / 22.88 2.20E-16 / 1.45E-14
5 0.75 / 0.81 1.09 / 4.58 12.05 / 21.72 1.79E-15 / 4.52E-14
6 0.74 / 0.85 1.11 / 4.09 12.25 / 19.39 3.21E-16 / 2.2E-16
TB
1 0.92 / 0.82 1.23 / 7.14 6.44 / 18.13 2.20E-16 / 2.20E-16
2 0.92 / 0.85 1.25 / 6.50 6.56 / 16.50 2.20E-16 / 2.20E-16
3 0.94 / 0.82 1.07 / 7.09 5.62 / 18.01 2.20E-16 / 8.48E-16
4 0.93 / 0.81 1.10 / 7.18 5.75 / 18.23 2.20E-16 / 8.60E-15
5 0.50 / 0.81 3.03 / 7.23 15.86 / 18.35 2.20E-16 / 6.78E-14
6 0.92 / 0.84 1.24 / 6.59 6.47 / 16.72 2.20E-16 / 2.20E-16

N° = Model number; Syx = Standard Error (kg); VC = Variation coefficient (%); P > F = Significance of the model.

Based on the same model (3) Álvarez (2008) estimated an adjR2 of less than 0.93, as well as an error of 0.67 kg in TB for Centrolobium tomentosum Guill. ex Benth. Other studies have cited the same adjR2 of 0.94 for TB, as well as a lower error of 0.33 kg (Schlegel, 2001; Aguirre-Calderón and Jiménez-Pérez, 2011). Using the normal diameter as the independent variable, Xiao and Ceulemans (2004) obtained a better fit and larger error for P. sylvestris L. (adjR2 of 0.97, with an error of 2.61 kg), compared to the P. cembroides of this study. Méndez-González et al. (2011) document a mean R2 of 0.87 in P. pseudostrobus, a value similar to that estimated in this study (for P. cembroides).

In the same species (P. halepensis) Domingo et al. (2016) and López (2012) cite better adjustments, with a higher R2, of 0.77, 0.94 and 0.89 in BLB, SB and TB, and errors of more than 12.59 kg. Conversely, Návar (2011) documents a lower adjustment of 0.60 and 0.81 for BLB and TB, and a higher adjustment for SB (R2 0.87), as well as errors of over 9.4 kg, in the species of this study, P. halepensis. However, Rodríguez-Ortiz et al. (2012) found an error of less than 5.0 kg and an adjustment of more than 0.87 in the TB of P. patula. Montero et al. (2005) registered a mean adjR2 of 0.85, which represents a higher adjustment than that obtained for P. halepensis, with an error of < 0.92 kg.

Figures 1A - 1F show the adjustment curves. Among the SB components there was a larger dispersion of estimated values with respect to those observed in P. cembroides, due to their variation coefficient (VC) of 11.94 %. While in P. halepensis the larger dispersion occurred in the component of BLB, with a VC of 21.81 %. In addition, both species had a lower dispersion in the values for TB.

Biomasa hojas-ramas = Biomass of leaves and branches; Biomasa fuste = Stem biomass; Biomasa total = Total biomass; Dn = DN; Observados = Observed; Esperados = Estimated

Figure 1 Observed and estimated biomass of leaves and branches, stem biomass and total biomass in trees from a Pinus cembroides Zucc. (A - C) and Pinus halepensis Mill (D - F) plantation. 

Model 3 registered a higher error in the 10 cm category for BLB (Figure 2A), unlike in the 5 cm category for TB (Figure 2C). As for the SB, (Figure 2B) Model 4 had the highest error in the 5 cm category. However, for P. halepensis, model 2 obtained a lower error in category 15 of the stem component (Figure 2E) than in the rest of categories. For BLB (Figure 2D) and TB (Figure 2F), the model had lower errors in the 10 cm categories.

Bhr = BLB; Bf = SB; Bt= TB; Biomasa hojas-ramas = Biomass of leaves and branches; Biomasa fuste = Stem biomass; Biomasa total = Total biomass; Categoría diamétrica = Diameter category; est = Estimated; obs = Observed P. cembroides: BLB and TB = Biomass estimated with Model 3; SB = Biomass estimated with Model 4; P. halepensis: BLB, SB and TB = Biomass estimated using model 2.

Figure 2 Percentage error of estimation of the biomass per component in each diameter category of Pinus cembroides Zucc. (A - C) and P. halepensis Mill (D - F).  

Conclusions

The indirect (Adelaide) method is a good estimator of above-ground biomass; with this method, the best adjustments of the models were found to be related to the total biomass. In Pinus cembroides, the normal diameter adequately predicts the biomass; conversely, in the case of P. halepensis it is necessary to have two independent variables: normal diameter and height. Data regarding the biomass of leaves and branches, stem biomass and total tree biomass, as well as of the biomass per stand, can be obtained using the adjusted models (combined variable, polynomial of 2nd and 3rd-degree), in order to estimate the stored carbon and carbon dioxide. The models with percentage errors in the diameter categories underestimate the biomass.

Acknowledgments

The authors wish to thank the Universidad Autónoma Agraria Antonio Narro (UAAAN) for the support it provided for the realization of this study.

REFERENCES

Aguirre-Calderón, O. A. y J. Jiménez-Pérez. 2011. Evaluación de contenido de carbono en bosques del sur de Nuevo León. Revista Mexicana de Ciencias Forestales 2(6): 74-84. [ Links ]

Álvarez, G. 2008. Modelos alométricos para la estimación aérea de dos especies nativas en plantaciones forestales del trópico de Cochabamba, Bolivia. Tesis de Maestría. Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba, Costa Rica. 89 p. [ Links ]

Baskerville, G. L. 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2 (1): 49-53. [ Links ]

Becerril, P. R., E. González S. y N. M. Ramos S. 2014. Contenido de carbono en un ecosistema semiárido del centro de México. Ecosistemas y Recursos Agropecuarios 1 (1): 9-18. [ Links ]

Brown, S., A. J. R. Gillespie and A. E. Lugo. 1989. Biomass estimation methods for tropical forest with applications to forest inventory data. Forest Science 35(4): 881-902. [ Links ]

Brown, S., J. Sathaye, M. Cannell and P. Kauppi . 1996. Mitigation of carbon emissions to the atmosphere management by forest. Commonwealth Forestry Review 75: 80-91. [ Links ]

Brown, S. 1997. Estimating biomass and biomass change of tropical. A. primer. Food and Agriculture Organization of the United Nations. Paper 134. Rome, Italy. 134 p. [ Links ]

Díaz, F. R., M. Acosta, M.,F. Carrillo , A., E. Buendía, R. E. Flores A., y J. D. Etchevers. 2007. Determinación de ecuaciones alométricas para estimar biomasa y carbono en Pinus patula schl. et Cham. Madera y Bosques 13:25-34. [ Links ]

Domingo, R. D., M. T. Lamelas, G., A. L. Montealegre, G., y J. de la Riva, F . 2016. Estimación de la pérdida de biomasa y de las emisiones de CO2 generadas por la combustión de masas forestales de Pinus halepensis Mill. en el incendio de Luna (Aragón), mediante datos LiDAR-PNOA. In: XVII Congreso Nacional de Tecnología Información Geográfica. 29 de junio a 1 de julio. Málaga, España. pp. 83-88. [ Links ]

Foroughbakhch, R., G. Reyes, D., L. Hauad. A. and M. Badii H.1996. Three Methods of Determining Leaf Biomass on Ten Woody Shrub Species in Northeastern Mexico. Agrociencia 30: 3-24. [ Links ]

García, E. 1998. Climas (clasificación de Köppen, modificado por García). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D.F., México. Escala 1:1000000. n/p. [ Links ]

López O., L. A. 2012. Ecuaciones alométricas y estimación de incrementos en biomasa aérea en una plantación de Pinus halepensis Mill. En Saltillo, Coahuila. Tesis de Maestría. Universidad Autónoma Agraria Antonio Narro. Saltillo, Coah., México. 34 p. [ Links ]

Méndez-González, J., S. L. Luckie-Navarrete, M. Á. Capó-Arteaga y J. A. Nájera-Luna. 2011. Ecuaciones alométricas y estimación de incrementos en biomasa aérea y carbono en una plantación mixta de Pinus devoniana Lindl., y Pinus pseudostrobus Lindl., en Guanajuato, México. Agrociencia 45(4): 479-491. [ Links ]

Montero, G., R. Ruiz. P. y M. Muñoz. 2005. Producción de biomasa y fijación de CO2 por los bosques españoles. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Madrid, España. 264 p. [ Links ]

Návar, J., N. González., y J. Graciano. 2001. Ecuaciones para estimar componentes de biomasa en plantaciones forestales de Durango, México. In: Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. 18 al 20 de octubre. Valdivia, Chile. pp. 1-12. [ Links ]

Návar, J. 2011. Componentes de la biomasa en el matorral espinoso tamaulipeco y los bosques templados secos de pino del noreste de México. Polibotánica 31:21-141. [ Links ]

Ordoñez D., J. A. B., A. Galicia N., N. J. Venegas M., T. Hernández T., M. de J. Ordoñez D. y R. Dávalos-Sotelo. 2015. Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y bosques. 21: 77-216. [ Links ]

Pompa, G. M. y J. I. Yerena, G. 2014. Concentración de carbono en Pinus cembroides Zucc. Fuente potencial de mitigación del calentamiento global. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17 (1): 133-143. [ Links ]

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL https://www.R-project.org/ (28 de febrero de 2017). [ Links ]

Rodríguez-Ortiz, G., H. M. De los Santos-Posadas, V. A. Gonzáles-Hernández, A. Aldrete., A. Gómez-Guerrero y A. M. Fierros-González. 2012. Modelos de biomasa aérea y foliar en una plantación de pino de rápido crecimiento en Oaxaca. Madera y Bosques 18 (1): 25-41. [ Links ]

Ruano B., I., E, Rodríguez-García y F. Bravo O. 2012. Respuesta de la regeneración post-fuego de Pinus halepensis Mill. a los tratamientos selvícolas en el sureste de España. Cuadernos de la Sociedad Española de Ciencias Forestales 34:213-219. [ Links ]

Schlegel, B. 2001. Estimación de la biomasa y carbono en bosques del tipo forestal siempreverde. In: Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. 18 al 20 de octubre. Valdivia, Chile. pp. 1-13. [ Links ]

Schlegel, B., J. Gayoso., y J. Guerra. 2000. Manual de procedimientos muestreos de biomasa forestal. Medición de la capacidad de captura de carbono en los bosques de Chile y promoción en el mercado mundial. Proyecto FONDEF. Universidad Austral de Chile. Valdivia, Chile. 20 p. [ Links ]

Segura, M. y H. Andrade. 2008. ¿Cómo hacerlo? ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes?. Agroforestería de las Américas 46: 89-96. [ Links ]

Xiao, C. W. and R. Ceulemans. 2004. Allometric relationships for below and aboveground biomass of young Scots pines. Forest Ecology and Management 203(1-3): 177-186. [ Links ]

Received: January 19, 2018; Accepted: April 16, 2018

Conflict of interest

The authors declare no conflict of interest.

Contribution by author

Paul Marroquín Morales: planning and development of the research; data collection, processing and capture; statistical analyses; drafting and structuring of the manuscript; Jorge Méndez González: statistical analyses and review of the structure of the manuscript; Javier Jiménez Pérez: review and structuring of the manuscript; Oscar Alberto Aguirre Calderón: structuring and review of the manuscript; José Israel Yerena Yamallel: review of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons