SciELO - Scientific Electronic Library Online

 
vol.8 número43Variación genética de Pinus pinceana Gordon evidencia de conectividad en poblaciones fragmentadasPredicción del diámetro normal, altura y volumen a partir del diámetro del tocón en especies tropicales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.8 no.43 México sep./oct. 2017

 

Article

Productivity and vertical structure of a temperate forest with incidence of forest fire

Juan Carlos Ramos Reyes1 

Eduardo Javier Treviño Garza1  * 

Enrique Buendía Rodríguez2 

Oscar Alberto Aguirre Calderón1 

José Israel López Martínez1 

1Facultad de Ciencias Forestales. Universidad Autónoma de Nuevo León. México.

2Campo Experimental Valle de México, CIR-Centro, INIFAP. México.


Abstract:

The effects caused by a forest fire, the vertical structure and the association of tree species and their relation to productivity were evaluated through mensuration variables. Field work was performed in two areas, burned and non-burned, in which 36 circular sites of 11.28 m radius and 400 m2 were established. A classification in three strata was made based upon the Pretzsch index: stratum I (80-100%), stratum II (50-80%) and stratum III (0-50%). Productivity was determined using mensuration data as individual density (ha-1), basal area (m2 ha-1), crown area (m2 ha-1) and volume (m3 ha-1). Productivity for statistical analysis was performed by the r-Studio® program (Ver. 3.1.1), through a comparison of means between independent groups of parameters. Analysis of the vertical structure using the A Pretzsch index showed that the burned area was higher with 2.71 against 2.20 A max in the non-burned area. Stratum II concentrated more individuals per hectare in the two areas (50% and 33%), with a maximum height of 23.9 and 26 m, respectively. Productivity increased in the burned area, which is explained from the Pinus pseudostrobus abundance, while the non-burned area recorded less individuals per hectare, deferred from lower proportionality in volume (m3 ha-1). It is concluded that there are structural and productivity benefits in a forest with fire incidence.

Key words Maximum height; burned area; vertical stratification; A Pretzsch index; mensuration parameters; forest productivity

Resumen

Se evaluaron las afectaciones ocasionadas por un incendio forestal, la estructura vertical y la asociación de las especies arbóreas y su relación con la productividad a través de variables dasométricas. Se trabajó en dos áreas, una incendiada y otra no incendiada, en las que se establecieron 36 sitios circulares de 11.28 m de radio y de 400 m2. Mediante el índice de Pretzsch, se hizo una clasificación de tres estratos: estrato I (80-100%), estrato II (50-80%) y estrato III (0-50%). Se determinó la productividad utilizando datos dasométricos como densidad individual (ha-1), área basal (m2 ha-1), área de copa (m2 ha-1) y volumen (m3 ha-1). Se hizo un análisis estadístico en el programa r-Studio® (Ver. 3.1.1), mediante una comparación de medias entre grupos independientes de los parámetros dasométricos. El análisis de la estructura vertical se realizó mediante el índice A de Pretzsch, reveló que el área incendiada fue mayor con A max de 2.71 contra 2.20 de la no incendiada. El estrato II fue el que concentró mayor número de individuos por hectárea, en las dos áreas (50% y 33%), con una altura máxima de 23.9 y 26 m, respectivamente. La productividad fue superior en el área incendiada, lo que se atribuye a la abundancia de Pinus pseudostrobus; mientras que la no incendiada registró menos individuos por hectárea, diferido a menor proporcionalidad en volumen (m3 ha-1). Se concluye que existen beneficios en la estructural y productividad en un bosque sometido a incendio.

Palabras clave: Altura máxima; área incendiada; estratificación vertical; índice A de Pretzsch; parámetros dasométricos; productividad forestal

Introduction

Pine forests in Mexico are the most widely distributed among different types of coniferous forests; they cover about 75% of their potential distribution, estimated at just over 10 million hectares, although well-preserved forests cover only 5.2 million hectares (Inegi, 2003; Inegi, 2009).

Orographic processes and climatic fluctuations of the past have led to the diversification and speciation of vegetation in Mexico, which is considered the most important center of global pine diversity with 50% of known species and 33% of oaks (Nixon, 1993; Styles, 1993; Challenger, 2003; Koleff et al., 2004).

The natural productivity of forest ecosystems results in goods and services for society, and it is estimated that the global timber harvest for 2009 in the country was 42.98 million m3 (Caballero, 2010). Pinus patula Schiede ex Schltdl. & Cham and Pinus pseudostrobus Lindl. are two of the forest species preferred from their high increases in commercial plantations in several countries (Caballero, 2000).

There is little quantitative research on the relationship between structural complexity and tree diversity with the productivity of temperate forest ecosystems; however, some studies have shown that diversity indexes are reduced with the increase in basal area removed and average productivity tends to increase with increasing removal (Návar and González, 2009).

Agricultural activities are the main cause of the loss of forests and tropical forests, followed by illegal clearing and forest fires (FAO, 2006). The deterioration of forest ecosystems is accentuated by several factors, of which fires are one of the most serious disturbances (González and Rodríguez, 2004). The number of fires has increased over the last thirty years, a trend that seems to be related to the presence and severity of climatic events such as El Niño, and to the dead vegetation that accumulates after the hurricanes (Semarnat-Conafor, 2005). These events are discrete over time and modify the structure of an ecosystem, community or population and change the physical environment, substrate or availability of resources (Corral et al., 2002; Caribello, 2003; Fried et al., 2004).

The structure of an ecosystem is basically defined by the type, number, spatial ordering and temporal ordering of the constituent elements (Aguirre et al., 2003). In this context, the species structure and the dimensional structure of ecosystems stand out (Thomasius and Schmidt, 1996).

Biological diversity is defined by the complexity of topography, the variety of climates, and the connection of two biogeographic zones (neartic and neotropical) in the Mexican territory, which together form a varied mosaic of environmental conditions (Conabio, 2010).

The vertical structure of the forest is determined by the distribution of different tree species that compose an ecosystem and occupy sites defined in response to microclimatic factors, environmental gradients or to natural or man-made disturbance (Remmert, 1991). Each ecosystem has a unique stratification and spatial heterogeneity, given by the vertical and horizontal structure of the species that comprise it (Dajoz, 2002).

Some synecological studies have detected the environmental factors responsible for the change in the composition and structure of vegetation (Sánchez and López, 2003), and are especially useful for simplifying and ordering large and complex datasets (Rocha et al., 2006). The vertical order is characterized by the differentiation of height categories (Zarco-Espinosa et al., 2010). Therefore, the objective of this study was to evaluate the effects of a forest fire and the complexity of the vertical structure, as well as the association of the species, relating productivity through mensuration indicators (abundance, dominance, frequency and the Importance Value Index).

Materials and Methods

The study area is located in the Cerro Potosí, between 24°49'08"-24°55'29" N and 100°13'25"-100 °14'05" W, at 3 719 masl in Galeana municipality, Nuevo León State; it is part of the Sierra Madre Oriental and extends over an area of 7 194 ha (Figure 1). The predominant vegetation is represented by coniferous forests, oak forests and mixed forests located at 2 000 masl (García et al., 1999). They have also identified submontane scrub communities, chaparral, oak, in addition to Quercus spp., Pinus pseudostrobus, Pinus ayacahuite Ehrenberg ex Schltdl., Pseudotsuga menziesii (Mirb.) Franco, Pinus hartwegii Lindl., Pinus strobiformis Engelm. and Pinus culminicola Andresen & Beaman (Contreras et al., 2012). The predominant soil is Litosol combined with Rendzina (García, 1996). It has a C (E) (W1) x’ climate type, subhumid semicold; rains are scarce throughout the year and the total annual rainfall is between 400 and 600 mm, while the average temperature fluctuates between 12 and 18 °C (Arreola et al., 2010).

According to national statistics, in the 1998 fire season, about 9 000 fires affected approximately 220 000 ha of temperate, tropical and other vegetation types. For the 2003 season, about 100 000 ha of wooded areas had been burned, and by October 2006 there were 8 657 forest fires impacting around 240 000 ha (Conafor, 2006); in September 2013, about 415 000 ha had been affected and more than 100 000 fires were recorded throughout the country (Conafor, 2013). The phenomenon is associated with global climate change; the frequency and severity of fires increased, causing changes in the structure of the Sierra Madre Oriental forests, as occurred in 1998.

Figure 1 Location of the study area. 

Sampling site

Nine sampling clusters were established in Cerro El Potosí, which were distributed in the area burned in 1998 and in adjacent areas not burned, in an altitudinal range between 2 800 and 3 600 m, with a slope not greater than 20°.

Each cluster consists of four sampling sites of 400 m2, which is based on the national forest inventory methodology (Conafor, 2010); in each of them, the genus, species, normal diameter, total height, and two crown diameters (north-south, east-west) were recorded in trees whose normal diameter (DAP) was equal to or greater than 7.5 cm.

For the analysis of the vertical structure of forest species, Pretzsch index A, which is a modification of the Shannon index, was used to divide the vertical structure into three strata. This is represented in stratum I (high) corresponding to the interval of 80-100%, where the tree with greater height represents 100%; the following strata are classified as follows: II (medium), refers to the range of 50-80% and III (low), ranges from 0-50% (Aguirre, 2002; Pretzsch, 2009).

The A index comes from the maximum A value (A max ) provided by the number of species and the height strata; and the relative standardization (A rel ) in percentage. This index (A) is useful to determine the structural diversity of the vertical structure and is defined as follows:

(1)

(2)

(3)

Where:

S = Number of species at the sample area

Z = Number of strata from tree height

P ij = Percentage of species in each zone, which is estimated as follows:

Where:

n i , j = Number of individuals of the same species (i) in the zone (j).

N = Total number of individuals

The variables to assess the productivity of the areas such as density (N ha-1), basal area (m2 ha-1), crown cover (m2 ha-1) and volume (m3 ha-1), were estimated according to the following equations:

Density was calculated as the following equation describes:

(4)

Where:

D = Number of individuals per hectare

N i = Number of individuals per site

Sh = Surface area of each hectare (m2)

Se = Assessed surface area (m2)

The basal area was calculated for each area, by the following equation:

(5)

Where:

G = Basal area per hectare

G i = Individual basal area per site

Sh = Surface area of a hectare (m2)

Se = Assessed surface area (m2)

The crown area was determined for each area by the following equation:

(6)

Where:

Cc = Cover per hectare

Cc i = Individual cover per site

Sh = Surface area of a hectare (m2)

Se = Assessed surface area (m2)

Volume for each area was the result of the following equation:

(7)

Where:

V = Volume per hectare

V i = Individual volume per site (m3) (height * diameter *morphic coefficient of the species)

Sh = Surface area of a hectare (m2)

Se = Assessed surface area (m2)

For the of Importance Value Index (IVI), the relative values of abundance (Ar), dominance (Dr) and frequency (Fr) were used. Ar was calculated by dividing the number of individuals of each species (n) by the total number of individuals (N). For Dr the crown area was taken, dividing the surface of each species between the surface occupied by all species. Fr was estimated by dividing the frequency of each species (f) between the sum of frequencies of all species (F). Each indicator was multiplied by 100 to obtain relative values. To determine the IVI of each species, the three relative indicators (Müeller-Dombois and Ellemberg, 1974) were added.

To determine the productivity of the areas, the individual volume was calculated with the height and diameter variables, multiplied by the morphic coefficient, which is expressed in the following equation:

(8)

Where:

V i = Individual volume per site (m3)

F = Morphic coefficient

Dn = Normal diameter (cm)

H= Total height (m)

Also a production table for Pinus pseudotrobus made by Aguirre (1989) was used.

Data were analyzed using a nonparametric test (Shapiro-Wilcoxon) for the density, basal area, crown cover and volume variables, which were analyzed in R© v. 3.1.1 software; the generated routines were created under the software R-Studio© v. 0.99 (Alea et al., 2014).

Results

The tree species found in the study areas corresponded to the Pinaceae family; the most representative species based on their density were Pinus pseudostrobus, Pinus strobiformis and Pinus hartwegii; the Pseudotsuga menziesii and Abies vejarii Martínez were recorded only in the burned area (A1) (Table 1).

Table 1 List of tree species in the study area. 

Family Genus Species Area Density
Pinaceae Pinus pseudostrobus Lindl. A1 141
Pinaceae Pinus strobiformis Engelm. A1 12
Pinaceae Pinus hartwegii Lindl. A1 108
Pinaceae Pseudotsuga menziesii (Mirb.) Franco A1 2
Pinaceae Abies vejarii Martínez. A1 4
Pinaceae Pinus pseudostrobus Lindl. A2 155
Pinaceae Pinus strobiformis Engelm. A2 5
Pinaceae Pinus hartwegii Lindl. A2 3

A1 = Burned area; A2 = Non-burned area

Pretzsch Index (A)

Five species of conifers were recorded in the burned area (A1) with a Pretzsch index of 2.26, an A max of 2.71, characteristic of 83.5% of diversity, suggesting that the distribution of species in the strata is 16.5% of its maximum dimensional differentiation, i. e, that the stand is uniform.

The diversity of heights in the three strata of A1 presented Pinus pseudostrobus as the dominant species (72% in stratum I), with a minimum difference in the trend of its dominance with respect to stratum II (71%) and stratum III (28%); Pinus hartwegii and Abies vejarii increased their importance in strata II and III, with values of 25% and 2% of IVI in stratum II, while in III Pinus hartwegii and Pinus strobiformis recorded 64% and 7% of IVI, respectively (Figure 2).

Pi Ps = Pinus pseudostrobus; Pi St = Pinus strobiformis; Pi Ha = Pinus hartwegii; Ps Me = Pseudotsuga menziesii; Ab Ve = Abies vejarii.

Figure 2 Behavior of the vertical structure of a burned area in Cerro El Potosí

The dendrometric variables in A1, showed average values in diameter for Pinus hartwegii of stratum I of 49.5 cm; of layer II of 48.7 cm and of layer III of 27.4 cm. The average diameter of Pinus pseudostrobus in stratum I was 46.6 cm; Pinus strobiformis in stratum II was 47.5 cm and lastly, Pinus pseudostrobus was 25.3 cm in stratum III.

Regarding the heights, in A1 an average of 23.7 m was calculated for Pinus hartwegii in stratum I. In II, the dominant species was Abies vejarii with 17.3 m of average height, and the co-dominant Pinus strobiformis with 16.2 m. In III it was 7.9 m for Pinus pseudostrobus, followed by Pinus hartwegii and Pinus strobiformis, with 7.3 and 5.9 m, respectively (Table 2). The maximum height was 23.9 m and the minimum of 3.3 m, corresponding to Pinus hartwegii, in the whole burned area.

Table 2 Importance Value Index (IVI) and mensuration variables (diameter and height) of the burned area (A1). 

Pi Ps = Pinus pseudostrobus; Pi St = Pinus strobiformis; Pi Ha = Pinus hartwegii; Ps Me = Pseudotsuga menziesii; Ab Ve = Abies vejarii; SubA = Sub area (400 m2); IVI = Importance Value Index; d1.30 = Diameter at 1.30 m; TH = Total Height.

The non-burned area (A2) is characterized by the presence of three species, with a Pretzsch index of 0.58, A max = 2.20, representing 26.4% of the species diversity in all strata, of 73.6%, that is, that the site has variability in the classes of heights for each of the strata.

In this area, Pinus pseudostrobus is the dominant species with 63% in stratum I; for stratum II 100%; while for stratum III, it was 65%, followed by Pinus strobiformis with 34%, while the associated species, Pinus hartwegii, corresponds to 1% in stratum III (Figure 3).

In regard to the mensuration variables in A2, the average diameter of Pinus hartwegii was 57 cm in stratum I, and in stratum II, Pinus pseudostrobus, with 51 cm, while for stratum III it was 42.8 cm for the latter species (Figure 3).

Pi Ps = Pinus pseudostrobus; Pi St = Pinus strobiformis; Pi Ha = Pinus hartwegii; Ps Me = Pseudotsuga menziesii; Ab Ve = Abies vejarii.

Figure 3 Behavior of the vertical structure of a control area adjacent to the fire in Cerro El Potosí

Pinus pseudostrobus was the representative species for heights in A2; for strata I and II, it measured 23.4 and 16.7 m, respectively. In III, the average height was 11.5 m for Pinus hartwegii, followed by Pinus strobiformis (8.7 m) and Pinus pseudostrobus (8.3 m) (Table 3). The maximum height was 26 and the minimum, 3.8 m, corresponding to Pinus pseudostrobus in the whole non- burned area.

Table 3 Importance Value Index (IVI) and mensuration variables (diameter and height) of the non-burned area (A2). 

Pi Ps = Pinus pseudostrobus; Pi St = Pinus strobiformis; Pi Ha = Pinus hartwegii; Ps Me = Pseudotsuga menziesii; Ab Ve = Abies vejarii; SubA = Sub area (400 m2); IVI = Importance Value Index; d1.30 = Diameter at 1.30 m; HT = Total Height.

Productivity

The density in A1 was represented by 267 individuals per hectare and A2 by 163; the basal area of A1 was 24.83 m2 ha-1, greater than that of A2, 13.83 m2 ha-1, which can be explained by a higher number of individuals found with larger diameters and heights. On the other hand, the crown area of the first zone was 7.35 m2 ha-1, similarly higher than the second area, of 5 103 m2 ha-1, which is related to the basal area. The volume calculated in A1 was 238.89 m3 ha-1 also higher than that of A2 (144.24 m3 ha-1), which is associated with its coverage and basal area (Figure 4).

Figure 4 Forest productivity of a burned area (A1) and non- burned area (A2) in Cerro El Potosí. 

Discussion

The largest species is Pinus pseudostrobus with 95.1% (155 N ha-1) for the burned area and 53.8% (141 N ha-1) for the non- burned area, lower than those reported by Domínguez et al. (2012), with 78 N ha-1, representing 22.1% of the total trees. Pinus hartwegii represents 41.2% (108 N ha-1) of individuals for the burned area and 1.8% (3 N ha-1) for the non-burned area, which are also below those recorded by Ávila et al. (2012) that were 185 N ha-1 for the burned forests. This species is classified as resistant to fire (Rodríguez et al., 2004), which is reflected in the previous figures.

The evaluation of the vertical structure of the coniferous forest studied revealed that Pinus pseudostrobus was the most representative in the two compared sites (A1 and A2). The Importance Value Index (IVI) for this species in the burned area (A1) was 72% in stratum I, 71% in II and 28% in III, which are higher than in the fire-free area (A2), which recorded 63% in stratum I, 100% in II and 65% in III. Torres (2006) found similar results, since the main species in all strata was Pinus pseudostrobus, 100% in the upper stratum (I), 85.8% in the middle (II) and 37% in the lower stratum (stratum III). As a dominant species, it is in association with Quercus canbyi Trel. and Juniperus flaccida Schlecht, in a minimal amount in stratum II and in a greater proportion in stratum III.

Vertical stratification, using the Pretzsch index, indicated that the burned area (A1) was better than the non-burned area (A2) by the calculated values: in A1, it was 2.26, A max 2.71 and Arel 83.5%; These results are similar to those of Rubio et al. (2015), who in an area burned calculated an index of 1.86, Amax of 3.30 and A rel of 56%, indicating that the stand has medium uniformity, in terms of diversity in heights. The A2, recorded a Pretzsch A of 0.58, A max 2.20 and A rel 26.4%; Rubio et al. (2015) in an unburned area calculated an A index of 2.01, with an A max of 3.74 and an A rel of 54%; which means that the dimensional differentiation of height constitutes 46%.

The average height and diameter recorded in the upper layer of the burned area (A1) was 20.95 m and 46.6 cm in Pinus pseudostrobus. The non-burned area (A2) had an interval of 23.5 m and 48 cm in diameter. Jiménez et al. (2001) calculated these dimensions for a pine-oak forest, 12.9 m and 26.1 cm (A1) and 23.5 cm and 13.9 m (A2), respectively.

The productivity of the burned area (A1) was better than that of the non-burned area (A2); there are significant differences in density, basal area, crown area and volume. The latter calculated in A1, for Pinus hartwegii and Pinus pseudostrobus, was 53.08 and 93.87 m3 ha-1; while for the fire-free area (A2), it was 3.78 and 111.10 m3 ha-1; therefore, this ecosystem is of great ecological and economic importance for the region. This agrees with the information of Rodríguez (2001), which describes that the forests of Pinus hartwegii increase their width in rings, which is reflected in increase in diameters, and up to 15% in width of crowns. The basal area is 9.30 m2 ha-1 for pine and 10.67 m2 ha-1 for oak, with 1.38 m2 ha-1. The total volume for pine was 54.60 m3 ha-1 and for oak 29.04 m3 ha-1. In comparison with mixed ecosystems, where succession changes diversity, Caspersen and Pacala (2001) and Vilá et al. (2007) noted that higher productivity is verified in forests in early successional stages.

Conclusions

Based on the results of this study, the hypothesis was rejected, as it was found that the species of conifers studied were benefited by the fire, since dimensional diversity showed improvements in the burned area, which were manifested in a number of species (83%) in all strata of A1, compared to 26% in the non-burned area (A2).

In the vertical structure of the coniferous forest of the Cerro El Potosí is present a population composed of dominant, codominant and suppressed forest specimens.

The productivity in the burned area was higher than in the non - burned area, according to the significant differences of density, basal area, crown area, volume and the greater abundance of Pinus pseudostrobus in strata II and III. The fire-free area recorded a smaller number of individuals (N ha-1) as a result of lower volume proportionality (m3 ha-1) and stratum I alone confirmed an abundance of 100% for Pinus pseudostrobus.

Acknowledgements

The authors would like to express their appreciation to the Consejo Nacional de Ciencia y Tecnología (National Science and Technology Council) (Conacyt) for granting of the scholarship for the studies that support this contribution and to the Universidad Autónoma de Nuevo León (UANL) for financing fieldwork through the Project :"Evaluación multitemporal de los procesos de recuperación de ecosistemas forestales sometidos a incendios" (Multitemporal evaluation of the processes of recovery of forest ecosystems subjected to fires) of the Programa de Apoyo a la Investigación Científica y Tecnológica PAICYT 2011 -CT 310-10 (Support Program for Scientific and Technological Research PAICYT 2011 -CT 310-10).

REFERENCES

Alea R., V., E. Jiménez G., C. Muñoz V., C. M., E. Torrelles P. y N. Viladomiu C. 2014. Guía para el análisis estadístico con R Commander. Textos Docents 391. Edicions Universitat de Barcelona. Barcelona, España. 180 p. [ Links ]

Aguirre C., O. A. 1989. Aufstellung von Ertragstafeln auf der Basis einmaliger Waldaufnahmen am Beispiel von Pinus pseudostrobus Lindl. im Nordosten Mexikos. Dissertation. Universität Göttingen. Göttingen, Deutschland. 107 p. [ Links ]

Aguirre C., O. A. 2002. Índices para la caracterización de la estructura del estrato arbóreo de ecosistemas forestales. Ciencia Forestal en México 27(92):5-27. [ Links ]

Aguirre C., O. A., J. Jiménez P., H. Kramer y A. Akca. 2003. Análisis estructural de ecosistemas forestales en el Cerro del Potosí, Nuevo León, México. Ciencia UANL 6 (2):219-225. [ Links ]

Arreola O., M. R., M. González E. y J. J. Návar Ch. 2010. Dendrocronología de Pseudotsuga menziesii (Mirb.) Franco de la Sierra Madre Oriental en Nuevo León, México. Madera y Bosques 16(1): 71-84. [ Links ]

Ávila F., D. Y., M. A. González T., J. Jiménez P., O. A. Aguirre C., E. J. Treviño G. y B. Vargas L. 2012. Estructura de rodales de Pinus hartwegii afectados por incendios utilizando parámetros de vecindad en la Sierra Madre Oriental, México. Tropical and Subtropical Agroecosystems 15: 377-387. [ Links ]

Caballero D., M. 2000. La actividad forestal en México. Tomo II. Universidad Autónoma de Chapingo. Texcoco, Edo. de Méx., México. 227 p. [ Links ]

Caballero D., M. 2010. La verdadera cosecha maderable en México. Revista Mexicana de Ciencias Forestales 1(1): 5-16. [ Links ]

Caribello, J. 2003. Restauración de ecosistemas a partir del manejo de la vegetación, guía metodológica. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, Colombia. 96 p. [ Links ]

Caspersen, J. P. and S. Pacala W. 2001. Successional diversity and forest ecosystem function. Ecological Research 16(5): 895-903. [ Links ]

Challenger, A. 2003. Conceptos generales acerca de los ecosistemas templados de montaña de México y su estado de conservación. In: Sánchez O., E. Vega., E. P. . Recagno y O. Monroy V. (eds.). Conservación de ecosistemas templados de montaña en México. Diplomado en conservación, manejo y aprovechamiento de vida silvestre. Instituto Nacional de Ecología y Cambio Climático, Semarnat. México, D. F., pp. 17-44. [ Links ]

Comisión Nacional Forestal (Conafor). 2006. Reporte semanal de resultados de incendios forestales 2006. Datos Acumulados del 1 de enero al 12 de octubre de 2006. Zapopan, Jal., México. http://www.cnf.gob.mx:8090/snif/portal/las-demas/reportes-de-incendios-forestales (17 de junio de 2017). [ Links ]

Comisión Nacional Forestal (Conafor). 2010. Inventario nacional forestal y suelos; procedimientos para el muestreo en campo (Conafor-Infys). Manual de re-muestreo 2011. Zapopan, Jal., México. 140 p. [ Links ]

Comisión Nacional Forestal (Conafor). 2013. Reporte semanal de resultados de incendios forestales del 01 de enero al 23 de septiembre de 2013. http://www.conafor.gob.mx:8080/documentos/docs/10/4215Reporte%20Semanal%202013%20-%20Incendios%20Forestales.pdf (10 de octubre de 2015). [ Links ]

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). 2010. El Bosque Mesófilo de Montaña en México: amenazas y oportunidades para su conservación y manejo sostenible. Conabio. México D. F., México. 197 p. [ Links ]

Contreras L., J. A., D. Lazcano and A. J. Contreras B. 2012. Herpetofauna of the Cerro El Potosí Natural Protected Area of Nuevo León, Mexico: status of the ecological and altitudinal distribution. Natural Areas Journal 32(4): 377-385. [ Links ]

Corral, J., O. Aguirre, J. Jiménez y J. Návar. 2002. Muestreo de diversidad y observaciones ecológicas del estrato arbóreo del bosque mesófilo de montaña “El cielo”, Tamaulipas, México. Revista Chapingo. Serie ciencias forestales y del ambiente 8(2): 125-131. [ Links ]

Dajoz, R. 2002. Tratado de Ecología. Mundi- Prensa. 2ª edición. Madrid, España. 600 p. [ Links ]

Domínguez H., F., F. Huerta O., B. Barrios D. y M. A Posadas G. 2012. Análisis dasométrico y propuesta de ordenamiento agroforestal del bosque en Tetela de Ocampo, Puebla. Avances en Investigación Agropecuaria 16(3): 75-82. [ Links ]

Fried, J. S., M. S. Torn and E. Mills. 2004. The impact of climate change on wildfire severity: a regional forecast for Northern California. Climatic Change 64: 169-191. [ Links ]

García, M. 1996. Análisis de la cubierta vegetal y propuesta para la zonificación ecológica del cerro “El Potosí”, Galeana, NL, México”. Tesis de Maestría. Facultad de Ciencias Forestales. Universidad Autónoma de Nuevo León. Linares, NL., México. 109 p. [ Links ]

García, M., E. Treviño, C. Cantú y F. González. 1999. Zonificación ecológica del Cerro “El Potosí”, Galeana, Nuevo León, México. Investigaciones Geográficas (38): 31-40. [ Links ]

González, R. y D. A. Rodríguez T. 2004. Efecto del chamuscado de copa en el crecimiento en diámetro de Pinus hartwegii Lindl. en el Distrito Federal, México. Agrociencia 38: 537-544. [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (Inegi). 2003. Conjunto de datos vectoriales de la carta de vegetación primaria 1: 1 000 000. Aguascalientes, México. s/p. [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (Inegi). 2009. Guía para la interpretación de cartografía uso del suelo y vegetación: escala 1: 250 000. Serie III. Aguascalientes, Ags., México. 74 p. [ Links ]

Jiménez, J., O. Aguirre y H. Kramer. 2001. Análisis de la estructura horizontal y vertical en un ecosistema multicohortal de pino-encino en el norte de México. Investigación Agraria. Sistemas y Recursos Forestales 10 (2) 355-366. [ Links ]

Koleff, P., J. Soberón and A. Smith. 2004. Madrean pine-oak woodlands. In: Mittermeier, R. A. et al. (eds.). Hotspots revisited: earth's biologically richest and most threatened terrestrial ecoregions. CEMEX - Agrupación Sierra Madre. Mexico City, Mexico. pp. 205-217. [ Links ]

Müeller D., D. and H. Ellenberg. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, Inc. New York, NY USA. 547 p. [ Links ]

Návar Ch., J. J. y S. González E. 2009. Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica 27: 71-87. [ Links ]

Nixon, K. C. 1993. The genus Quercus in Mexico, In: Ramamoorthy, T. P., R. Bye, A. Lot and J. Fa (eds.). Biological diversity of Mexico: origins and distribution. Oxford University Press. New York, NY USA. pp. 447-458. [ Links ]

Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2006. Evaluación de los recursos forestales mundiales 2005. Roma, Italia. 351 p. [ Links ]

Pretzsch, H. 2009. Forest dynamics, growth and yield. From measurement to model. Springer Verlag. Berlin, Germany. 664 p. [ Links ]

Remmert, H. 1991. The mosaic-cycle concept of ecosystems. Springer Verlag. Berlin, Germany 21 p. [ Links ]

Rocha R., L. Chávez., R. Ramírez y O. Chazaro. 2006. Comunidades: Métodos de estudio. Facultad de Estudios Superiores Iztacala. Universidad Autónoma de México. Tlalnepantla, Edo. de Méx., México. 256 p. [ Links ]

Rodríguez, T. D. A. 2001. La ecología del fuego en el ecosistema de Pinus hartwegii. Revista Chapingo Serie Ciencias Forestales y del Ambiente 7(2): 145-151. [ Links ]

Rodríguez T., D. A., C. Martínez H. y V. Ortega B. 2004. Ecología del fuego en bosques de Pinus hartwegii. In: L. Villers R. y J. López B. (eds.). Incendios forestales en México: métodos de evaluación. Universidad Nacional Autónoma de México. México, D. F., México. pp. 103-120. [ Links ]

Rubio C., E. A. et al. 2015. Análisis de la estructura y distribución de diámetros en bosques templados bajo la perspectiva del potencial régimen de fuego. Revista Chapingo Serie Ciencias Forestales y del Ambiente 21(3): 281-294. [ Links ]

Sánchez G., A. y L. López M. 2003. Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología, Serie Botánica 74 (1): 47-71. [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales-Comisión Nacional Forestal (Semarnat-Conafor). 2005. Vegetación y uso del suelo. Segundo informe del cambio y uso del suelo II. Secretaria del medio ambiente y recursos naturales; coordinación general de conservación y restauración. Semarnat. Conafor. Zapopan, Jal., México. 13 p. [ Links ]

Styles, B. 1993. The genus Pinus: a Mexican preview. In: Ramamoorthy, T. P., R. Bye, A. Lot and J. Fa (eds.). Biological diversity of Mexico: origins and distribution. Oxford University Press. New York, NY, USA. pp. 397-420. [ Links ]

Thomasius, H. und P. Schmidt A. 1996. Wald, Forstwirtschaft und Umwelt. Economica Verlag. Bonn, Germany. 435 p. [ Links ]

Torres E., L. M., J. A. Sánchez S. y J. Jiménez P. 2006. Análisis estructural de un ecosistema forestal de Pinus-Quercus en la Sierra Madre Oriental. Revista Ciencia Forestal en México 31(100): 7-30. [ Links ]

Vilá, M., J. Vayreda., L. Comas, J. Ibáñez J., T. Mata and B. Obón. 2007. Species richness and wood production: a positive association in Mediterranean forests. Ecology Letters 10(3): 241-250. [ Links ]

Zarco-Espinosa, V. M., J. I., Valdez-Hernández, G. Ángeles-Pérez y O. Castillo-Acosta. 2010. Estructura y diversidad de la vegetación arbórea del parque estatal Agua Blanca, Macuspana, Tabasco. Universidad y Ciencia Trópico Húmedo 26(1): 1-17. [ Links ]

Received: June 19, 2017; Accepted: August 31, 2017

Conflict of interests The authors declare no conflict of interests.

Contribution by author Juan Carlos Ramos Reyes: field work, writing of the manuscript; Eduardo Javier Treviño Garza: review and correction of the manuscript; Enrique Buendía Rodríguez: help in field work, review and correction of the manuscript; Oscar Alberto Aguirre Calderón: review and correction of the manuscript; José Israel López Martínez: support in field work and writing of the manuscript and map design

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons