SciELO - Scientific Electronic Library Online

 
vol.7 número37Estimación de biomasa y carbono almacenado en bosques comunitarios de la región Frailesca de Chiapas, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.7 no.37 México sep./oct. 2016

 

Articles

Equations to predict the normal diameter based on the stump diameter of Abies religiosa (Kunth) Schltdl. et Cham.

Xavier García-Cuevas1 

Victorino Herrera-Ávila2 

Jonathan Hernández-Ramos1 

José de Jesús García-Magaña2 

Adrián Hernández Ramos3 

1INIFAP. Centro de Investigación Sureste. Campo Experimental Chetumal. México. Correo-e: xavier_garciacuevas@yahoo.com.mx

2Universidad Michoacana de San Nicolás de Hidalgo. México.

3Posgrado Forestal. Colegio de Postgraduados. México.


Abstract

In forest areas under exploitation, we require the normal diameter (DBH) to estimate the removed volume. The DBH is estimated based on the stump diameter (SD) by regression and a volume equation. With support from an equation that depends on the ND or the SD, the volume (V) is estimated. The aim was to develop predictive equations of the normal diameter depending on the diameter of the stump for Abies religiosa in Tancítaro, Michoacán. 1 083 pairs of data of SD-ND of different diameter categories were taken. For setting PROC MODEL was used and the selection of the best equation was based on the Mean Square Error (MSE), the Root Mean Square Error (RMSE), significance level of estimators (Pr>|t|) and the fitted coefficient of determination (R2adj) and the residual distribution. To verify compliance with the assumptions of regression, Shapiro Wilk test was used and for the prediction, accuracy was estimated bias (E¯). The equations obtained are d= 1.11149 + 0.92267 dt, d=0.173763 dt (1.3ht)1.048363, and d = 1.11149 + 0.92267 (0.92267 dt). Based on the SME = 2.216, 2.093 and 2.216, the R2adj = 0.9938, 0.9942 and 0.9938, the significance of the parameters Pr>|t| = <0.0001, normality test of Shapiro Wilk and its predictive capacity, it follows that the equations are valid for predicting the function of ND-SD. The fitted models indicate a linear trend between DBH and SD.

Key words: Abies religiosa (Kunth) Schltdl. et Cham.; allometry; management; regression; prediction; volume

Resumen

En las zonas forestales bajo aprovechamiento se requiere del diámetro normal (dn) para calcular los volúmenes removidos. El dn se estima en función del diámetro del tocón (dt), mediante una ecuación de regresión. A partir de una ecuación que dependa del dn o del dt y una tarifa de volúmenes se estima el volumen (v). El objetivo fue desarrollar ecuaciones predictivas del diámetro normal en función del diámetro del tocón para Abies religiosa, en Tancítaro, Michoacán. Se tomaron 1 083 pares de datos de dn-dt, de diferentes categorías diamétricas. Para el ajuste se usó PROC MODEL y la selección de la mejor ecuación se hizo con base en el Cuadrado Medio del Error (CME), la Raíz del Cuadrado Medio del Error (RCME), nivel de significancia de los estimadores (Pr>|t|) y el Coeficiente de determinación ajustado (R2adj), además y se analizó la distribución de residuales. El cumplimiento de los supuestos de la regresión, se verificó con la prueba de Shapiro Wilk y para la precisión de las predicciones se estimó el sesgo (E¯). Las ecuaciones obtenidas son: d = 1.11149 + 0.92267 dt, d=0.173763 dt (1.3ht)1.048363, y d = 1.11149 + 0.92267 (0.92267 dt). Los estadísticos CME=2.216, 2.093 y 2.216, la R2adj = 0.9938, 0.9942 y 0.9938, la significancia de los parámetros Pr>|t| = <0.0001, la prueba de normalidad de Shapiro Wilk, así como su capacidad predictiva, permite inferir que las ecuaciones son válidas para predecir el dn en función del dt. Las expresiones que se ajustaron indican una tendencia lineal entre las variables dn y dt.

Palabras clave: Abies religiosa (Kunth) Schltdl. et Cham.; alometría; manejo; predicción; regresión; volumen

Introduction

The normal diameter (DN) is essential for characterizing the structure of the original mass and, based on it, for estimating the extracted volumes (V) after prunings are performed in the forest masses (López et al., 2001; Pompa-García et al., 2011), and even the biomass (B) or the amount of sequestered carbon (C), (Hernández, 2016).

This is achieved through allometric models estimating the normal diameter (ND) in relation to the stump diameter (SD) and the volume rate based on the normal diameter (Diéguez et al., 2003) or on the stump diameter.

The estimation of the normal diameter (DN) with regard to the stump diameter (SD) can be carried out through regression processes and thus be used to calculate the volumes (Bava and López, 2006; Pompa-García et al., 2011).

Examples of these studies are the estimations of the normal diameter (ND) with regard to the volume (V), biomass (B), leaf area index (LAI) or carbon (C) (Martin et al., 1998), the ratio of the ND to the total height (H) (Zeide and Vanderschaaf, 2002), the functions of ND-H for growth studies (Delgado et al., 2005) or the functional relationship between the stump diameter (SD) and the ND, H and V (Bava and López, 2006; Martínez-López and Acosta-Ramos, 2014).

Knowledge of the ratio of the SD to the ND can be reference for predictions of such variables as H (Martínez-López and Acosta, 2014) on which volume estimations can subsequently be based (Aigbe et al., 2012).

Because the ND size is not always available to estimate the volume, for example, when illegal loggings or clearings occur, in the quantification of exploitations in large areas, in the evaluation of the silvicultural practices applied in the forest after harvesting, or simply due to loss of inventory information, knowledge of the ratio of the ND to the SD is very helpful for quantifying the removed volume (Benítez-Naranjo et al., 2004).

The allometric relationship between the stump diameter and the normal diameter is a useful tool for the managers of forest resources and the evaluators of the land-use practices applied in forests. This fact has led to proposing the development of predictive equations of the normal diameter based on the stump diameter of Abies religiosa (Kunth) Schltdl. et Cham. trees in Tancítaro, Michoacán, as an objective.

Materials and Methods

Study área

The research area is located within the Zona de Protección de Flora y Fauna Pico de Tancítaro (Tancítaro Peak Flora and Fauna Protection Area) (FFPA), in the state of Michoacán de Ocampo, specifically in Tancítaro, Peribán, Uruapan and Nuevo Parangaricutiro municipalities. It has an altitudinal range between 2 200 and 3 850 masl and a surface of 23405- 92-09.55 ha according to its creation decree. The extreme coordinates of the FFPA are 19°31’09.83’’ to 19°20’30.61’’ N and 102°13’14.34’’ to 102°24’07.42’’ W.

Specifically, the plot is located in Provincia Eje Neovolcánico (the Neovolcanic Axis Province), of the Subprovincia Neovolcánica Tarasca (Tarascan Subprovince) (X9) and the Estrato Volcán (Volcano Stratum) (S1) (Inegi, 1985).

The prevailing climate is temperate sub-humid C(m)(w), with a sub-humid warm summer with abundant rains, a mean annual precipitation of 1000-1200 mm and a mean annual temperature of 10-12 °C (García, 1983). The predominant soil unit is ochric andosol, with a coarse texture (To+1); this type of soils are found in areas where volcanic activity has recently occurred, and they hold primarily pine, spruce and holm oak forest vegetations (Inegi, 1985).

Data

A sample of 1 083 normal diameter-stump diameter data pairs was collected in a surface area of 10 ha (Figure 1), from complete, totally healthy trees with a single stem as straight as possible, that are neither isolated nor located at the edges of the stand, in which trees with a normal diameter (ND) of 2.5 to 80 cm were measured; the measure was taken at a height of 1.30 m as well as the total height with a Suunto clinometer in 107 sampling sites of circular shape (500 m2) distributed in a systematic way, at a distance of 100 m between sites and of 100 m between sampling lines, which were marked with a slope compensated rope.

Figure 1 Location of the study area in the Zona de Protección de Flora y Fauna Pico de Tancítaro (Tancítaro Peak Flora and Fauna Protection Area) in Michoacán. 

Variables

The following variables were recorded: species, tree number, normal diameter (D), total height (H), condition, damage and predominance. The age and the passage of time were measured in three trees per site. 1083 pairs of data of D measured at a height of 1.3 m and SD measured at 0.3 m were obtained for different diametric categories and growth conditions through the direct measurement.

Utilized models

The models utilized were those proposed by Quiñonez et al. (2012) and Pompa-García et al. (2011) for the estimation of the SD from the ND, given that this section has the shape of a truncated neiloid (Table 1).

Table 1 Models used to predict the normal diameter (ND) from the stump diameter (SD). 

Statistical Analysis

The information was graphed in order to detect atypical data in the scatter plot, and a preliminary run of the PROG REG models and of the R-INFLUENCE option was carried out to obtain the studentized residuals; when the value of the latter was above 2 (absolute), they were considered to be atypical, and therefore the observation was deleted. The PROC MODEL procedure was used for the final adjustment (SAS, 2003).

The selection of the best equation was based on the Mean Square Error (MSE), the Root of Square Means of Error (RMSE), the level of significance of the estimators (Pr>|t|) and the fitted coefficient of determination (R2adj); the distribution of the residuals was also verified. Compliance with the regression assumptions was verified using the Shapiro-Wilk test (SAS, 2003). On the other hand, the relative and accumulated frequencies of the residuals were graphed in order to determine any similarities with a straight line in relation to the probability of the normal distribution, as well as between their percentages and a Gauss bell curve (SAS, 2003).

The capacity of fit was analyzed based on the residuals and on three statistics, namely the Bias (E¯), the Root of the Mean Square Error (RMSE) and the R2adj the distribution of the percentage to which the response variable is explained and is taken into account in the total number of the estimated parameters (Barrio et al., 2004; Trincado and Leal, 2006).

Results and Discussion

Table 2 presents a summary of the variance analysis for each of the fitted equations and shows the statistical estimators for the five models analyzed, as well as the indicators of goodness of fit.

Table 2 Values of the parameters and statistics of goodness of fit for the models used. 

The models with the least MSE were M2 and M5; however, the latter includes a non-significant parameter. Models M1 and M3 yielded equal values (Table 2). This is one of the most important indicators for deciding on the best model; its value shows models M2, M1 and M3 to be the best.

The values of the fitted R2 coefficient explain the fit of the model to the data and take into account the number of coefficients used (Pompa-García et al., 2011). Models M2 and M5 yielded the closest values to the unit, followed by models M1 and M3, both with an equal value. These results are higher than those reported by Alder and Cailliez (1980), who state that the best features may have coefficients above 0.7 and 0.8, and by Gujarati (2004), according to whom a model is satisfactory when the value of this coefficient is approximately 0.8. This is an indication that the models yield satisfactory estimates. In this case, model M2 remains the best, since M5 includes the non-significant parameter β0. This model coincides with the one obtained by Pompa-García et al. (2011), who estimated values of 0.96 for Pinus durangensis Martínez.

Coefficients β0 and β1 of models M1, M2 and M3 are significant (p<0.0001), but not so the coefficient β0 of model M5 (p=0.1226), which shows the highest value for the standard error of the regression coefficient. The parameter β0 is the one that characterizes the form of the ratio of the stump diameter to the normal diameter; for this reason, it is important to maximize the accuracy of its estimation, and therefore model M5 should not be used.

The RMSE makes it possible to evaluate the accuracy of the estimations carried out (Benítez-Naranjo et al., 2004). Model M2 produced the lowest value of RMSE, and M1 and M3 both yielded the same index. In this case, the best model is M2.

These criteria lead to select the simplest models because they penalize the value according to the principle of parsimony (Gómez-Aparicio et al., 2013).

According to the Shapiro-Wilk test, the assumption of normality is not violated in any case, since values close to 1 are obtained and the level of significance (Pr < W) is high (< 0.0001) (Velazco et al., 2006). Given that the study sample was sufficiently large according to the central limit theorem, these samples tend to be closer to normality (Martínez-González, et al., 2006), and consequently it may be assumed that the distribution of the residuals is close enough to normal (Augusto et al., 2009).

Table 2 shows the deviation of models M1 and M3 with respect to the observed values versus the predicted values (E¯) as measures of accuracy of the estimations; such deviation is low, and therefore these models are followed in order by model M2.

These three models have good predictive capacity in accordance with the low values of the root of the mean square error and bias, and the higher value of R2adj (Table 2). A positive bias indicates by how many units the prediction is underestimated at the individual tree level. This is an improvement over the results obtained by Pompa-García et al. (2011), who obtained values above 5.7 for the RMSE, a bias of over 2.39, and an R2adj of 0.96 for Pinus durangensis.

Figure 2 shows the fidelity of the predicted data in relation to those obtained with models that had the best fits; no significant bias was observed in the predictions. It is possible to obtain a reliable prediction of the normal diameter with any of the three equations, depending on the dimensions of the stump.

Figure 2 Estimates of the ND based on the SD using the models M1, M2 and M3 best adjusted for Abies religiosa (Kunth) Schltdl. et Cham. in Tancítaro, Michoacán

In order to illustrate the use of the equations, we will assume that we have a stump with a 50 cm diameter cut at a height of 30 cm. The following diameters were obtained with the three equations:

  • M1: dn = 1.11149 + 0.922678(50) = 45.0224 cm

  • M2: dn=0.173763501.3ht1.048363=43.5864 cm

  • M3: dn = 1.11149 + 0.922678(0.922678*50) = 45.0227 cm

The estimated values of the normal diameter in cm are very similar in models M1 and M3-although, due to the parsimony or simplicity, model M1 is recommended by Martínez-López and Acosta-Ramos (2014)-and closely resemble the results reported by Corral-Rivas et al. (2007) for the Pinus species of northern Mexico. The estimation of the normal diameter based on the stump diameter makes it possible to quantify and assess clandestine loggings, natural disasters, the reconstruction of the structure of the forest and the exploitation practices applied.

Conclusions

The fit of the models indicates that there is a linear trend between the stump diameter and the normal diameter variables; therefore, a reliable estimate of the normal diameter can be obtained based on the stump diameter using a simple linear regression.

Models M1 and M3 presentstatisticswithgoodfitsandwith the least bias; for this reason, they can be used in the prediction of the normal diameter based on the stump diameter.

Because model M1 is the most simple and easy to use, it is recommended for estimating the normal diameter based on the stump diameter and, in combination with a cubication rate, for estimating the stem volume of Abies religiosa in the study region.

Conflict of interest

The authors declare no conflict of interests.

Contribution by author

Xavier García-Cuevas: data analysis, writing and correction of the manuscript; Jonathan Hernández-Ramos: data analysis and writing of the manuscript; José de Jesús García Magaña: coordination of data taking at the field and review of the manuscript; Victorino Herrera Ávila: data taking at the field and data collection; Adrián Hernández Ramos: data taking at the field and data collection.

Referencias

Aigbe, H. I., W. W. Modogu and B. A. Oyebade. 2012. Modeling volume from stump diameter of Terminalia ivorensis (A. Chev) in Sokponba Forest Reserve, Edo State, Nigeria. ARPN Journal of Agricultural and Biological Science 7(3):146-151. [ Links ]

Augusto C., T., J. O. Vargas M. y M. Escalier H., 2009. Ajuste y selección de modelos de regresión para estimar el volumen total de árboles. Escuela de Ciencia Forestales de la Universidad Mayor de San Simón. Documento Técnico Núm. 5. Cochabamba, Bolivia. 27 p. [ Links ]

Alder, D. y F. Cailliez. 1980. Estimación del volumen forestal y predicción del rendimiento, con referencia especial a los trópicos. Estudios FAO Montes 22/2. Vol. 2. Roma, Italia. 91 p. [ Links ]

Barrio A., M, J. G. Álvarez G., I. J. Díaz M. H. y C. A. López S. 2004. Relación altura diámetro generalizada para Quercus robur L. en Galicia. Cuadernos de la Sociedad Española de las Ciencias Forestales 18: 141-146. [ Links ]

Bava, J. O. y P. M. López B. 2006. Predicción del diámetro a la altura de pecho en función de las dimensiones del tocón de árboles de lenga (Nothofagus pumilio) en Tierra del Fuego, Argentina. Quebracho13:87-92. [ Links ]

Benítez-Naranjo, J. Y., M. Rivero-Vega, A. Vidal-Corona, J. Rodríguez-Rodríguez y R. C. Álvarez-Rivera. 2004. Estimación del diámetro normal a partir del diámetro del tocón en plantaciones de Casuarina equisetifolia Forst. en la provincia Camaqüey, Cuba. Revista Chapingo Serie de Ciencias Forestales y del Ambiente 10(1):25-30. [ Links ]

Corral-Rivas, J. J., M. Bario-Anta, O. A. Aguirre-Calderón and U. Diéguez-Aranda. 2007. Use of stump diameter to estimate diameter at breast height and tree volumen for major pine species in El Salto, Durango (México). Forestry 80 (1): 29-40. [ Links ]

Delgado, L. A., M. F. Acevedo, H. Castellanos, H. Ramírez y J. Serrano. 2005. Relaciones alométricas y patrones de crecimiento para especies de árboles de la Reserva Forestal Imataca, Venezuela. Interciencia 30(5):275-283. [ Links ]

Diéguez, A. U., M. Barrio A., M ., F. Castedo D. y M. Balboa M. 2003. Estimación del diámetro normal y del volumen del tronco a partir de las dimensiones del tocón para seis especies forestales comerciales de Galicia. Investigación Agraria Sistemas y Recursos Forestales 12(2): 131-139. [ Links ]

García, E. 1983. 1964. Modificaciones al sistema de clasificación climática de Koëpen (para adaptarlas a las condiciones de la República Mexicana). Universidad Autónoma de México. Instituto de Geografía. México, D. F., México. 252 p. [ Links ]

Gómez-Aparicio, L., J. M. Ávila y L. Cayuela. 2013. Métodos de máxima verosimilitud en ecología y su aplicación en modelos de vecindad. Ecosistemas 22(3):12-20. [ Links ]

Gujarati D., N. 2004. Econometría. 4a ed. McGraw-Hill Interamericana Editores. México, D.F., México. 972 p. [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (Inegi). 1985. Cartas topográficas y edafológicas. Inegi. SPP. México, D.F., México. s/p. [ Links ]

Hernández R., J. 2016. Estimación de biomasa aérea y volume en plantaciones forestales de Eucaliptus urophylla S. T. Blake en Huimanguillo, Tabasco. Tesis de Maestría en Ciencias. Colegio de Postgraduados. Montecillo, Edo. de Méx., México. 104 p. [ Links ]

López S. C. A, J Gorgoso V., F. Castedo D. , A. Rojo A., R. Rodríguez S., J. G. Álvarez G. y F. Sánchez R. 2003. A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science 60: 237-245. DOI: 10.1051/forest:2003015. [ Links ]

Martin, J. G., B. D. Kloeppel, T. L. Schaefer, D. L. Kimbler and S. G. Mcnulty. 1998. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Canadian Journal of Forest Research 28: 1648-1659. [ Links ]

Martínez-González, M. A., A. Sánchez-Villegas y J. Faulin-Fajardo. 2006. Bioestadística amigable. 2a. Ed. Ediciones Díaz Santo. Madrid, España. 919 p. [ Links ]

Martínez-López, L. y A. Acosta-Ramos. 2014. Estimación del diámetro, altura y volumen a partir del diámetro del tocón para Quercus laurina en Ixtlán, Oaxaca, México. Madera y Bosques 20 (1):59-70. [ Links ]

Pompa-García, M., H. M. De los Santos-Posadas, M. E. Zepeda-Bautista y J. J. Corral-Rivas. 2011. Un modelo dendrométrico para estimación del diámetro normal a partir de las dimensiones del tocón. Agrociencia 45(3): 379-387. [ Links ]

Quiñonez, B. G., F. Cruz C., B. Vargas L. y F. J. Hernández. 2012. Diámetro, altura y volumen a partir del tocón para especies forestales de Durango. Revista Mexicana de Ciencias Forestales 3(9): 23-39. [ Links ]

Statistical Analysis System Institute (SAS) 2003. SAS/STATTM User ́s guide. Release 9.1 Edition. Statistical Analysis System Institute. Cary, NC, USA. 409 p. [ Links ]

Trincado, G. y C. Leal D. 2006. Ecuaciones locales y generalizadas de altura- diámetro para pino radiata (Pinus radiata). Bosque 27(1): 23-34. [ Links ]

Velazco B., E., S. Madrigal H., I. Vázquez C., A. González H. y F. Moreno S. 2006. Manual para la elaboración de tablas de volumen fustal en pinos. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México, D. F., México. Libro técnico Núm. 1. 34 p. [ Links ]

Zeide, B. and C. Vanderschaaf. 2002. The effect of density on the height- diameter relationship. In: Outcalt, K. W. (ed.). Proceedings of the eleventh biennial southern silvicultural research conference. Gen. Tech. Rep. SRS-48. USDA. Ashville, NC, USA. pp. 463-466. [ Links ]

Received: November 23, 2015; Accepted: July 15, 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons