SciELO - Scientific Electronic Library Online

 
vol.14 número3Suplementación de quitosano en la dieta de pollitas Rhode Island Red y su efecto en el comportamiento productivo y variables hematológicas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias pecuarias

versão On-line ISSN 2448-6698versão impressa ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.14 no.3 Mérida Jul./Set. 2023  Epub 08-Set-2023

https://doi.org/10.22319/rmcp.v14i3.6285 

Technical notes

Analyzing honey producton in Aguascalientes, Mexico, using the Cobb-Douglas Function

Marco Andrés López Santiagoa  * 

José Inés Zavala Beltránb 

Ramón Valdivia Alcaláb 

Blanca Margarita Montiel Batallab 

a Universidad Autónoma Chapingo (UACH). Unidad Regional Universitaria de Zonas Áridas. Carretera Gómez Palacio-Chihuahua Km 40, Bermejillo, Durango. México.

b UACH. División de Ciencias Económico-Administrativas. Estado de México, México.


Abstract

In beekeeping, honey yield and profits are affected by multiple variables, the influence of which can vary by region. A Cobb-Douglas function was applied to data from a direct survey of beekeepers in the state of Aguascalientes, Mexico, to estimate and analyze the economic optimum and input elasticity in honey production. The optimal economic combination for production of one kilogram of honey was 1.045 kg supplementary feed and 0.084 days labor, which generate a maximum profit of $45.38 pesos/kg honey. The production function also identified increasing economies of scale, while substitution elasticity between the inputs supplementary feed and labor was elastic. Application of a Cobb-Douglas type function effectively estimated beekeeping profitability and productivity in the study area.

Key words Production function; Beekeeping; Economic optimum

Resumen

La investigación tuvo como objetivo estimar y analizar tanto el óptimo económico como la elasticidad de los insumos para la producción de miel de abeja, a través de la función tipo Cobb-Douglas. La información se obtuvo por medio de una encuesta directa a productores apícolas del Estado de Aguascalientes. Los resultados muestran que la combinación óptima económica para un kilogramo de miel fue 1.045 kg de alimento y 0.084 jornales, para una ganancia máxima de 45.38 $/kg de miel. Además, la función de producción presentó economías crecientes a escala, mientras la elasticidad de sustitución entre los insumos, alimento y jornales, fue elástica. La función de tipo Cobb-Douglas permite medir la rentabilidad y productividad en la apicultura.

Palabras clave Función de producción; Apicultura; Óptimo económico

Beekeeping involves management of honey bees (Apis mellifera) with the goal of producing honey, and is important in the natural, human, material, social and above all economic spheres1. It is done throughout Mexico, though primarily in the southeast, and there are about 43,000 beekeepers nationwide. Honey production is also a major agricultural product, with 29,449 tons (worth US 90.9 million dollars) exported from 2016-20202. In 2021, Mexico was the ninth largest honey producer worldwide, and thirteenth largest exporter (US 69.7 million dollars)2. In response to honey’s importance, the Ministry of Agriculture and Rural Development (Secretaria de Agricultura y Desarrollo Rural - SADER) in Mexico developed the National Strategy for the Conservation and Sustainable Use of Pollinators (Estrategia Nacional para la Conservación y Uso Sustentable de Polinizadores - ENCUSP) to focus policy and the productive and environmental sectors on sustainable development and food security at a national level2.

However, beekeepers are abandoning the activity for various reasons3,4, including climate change, low wholesale honey prices, lack of training, low productivity, higher market standards, and high input costs5-9. Low production efficiency per beekeeping unit and total production costs are particularly problematic4,10. In Mexico, abandonment of honey production and high production costs have been reported in small and medium-sized producers in the states of Guerrero, Jalisco, Yucatan and Aguascalientes3,4,5,11.

The Cobb-Douglas function is widely applied to analyze the influence of production factors or inputs on production. In beekeeping, the production function technique has been used to study the variations that affect honey yield per productive unit12. It allows measurement of profitability and productivity in beekeeping13, as well as the elasticities and behavior of variables. The Cobb-Douglas can be used to make recommendations on relevant changes in the honey production process14,15.

The present study objective was to estimate the production function that maximizes productivity in beekeeping, and to analyze production input elasticities. The state of Aguascalientes was chosen as a study area due to the need to increase the state’s honey production and its competitiveness at the national level through better understanding of its beekeeping sector.

Aguascalientes (21°38'03", 22°27'06" N; 101°53'09", 103°00'51" W) has eleven municipalities. The state’s climate is semiarid BS16, and more than half the state is dominated by xerophilic vegetation17. Given the climate and vegetation, there are two major annual natural nectar flows: one in the spring (mainly from mesquite Prosopis laevigata), and another in the fall (based on weed plants such as black-jack Bidens odorata7, tree marigold Tithonia tubaeformis and bush sunflower Simsia amplexicaulis.

Beekeeping data were collected via a semi-structured questionnaire addressing technical management, inputs and production costs. It was applied during December 2019 and January 2020. The sampling universe constituted the 130 member beekeepers in the New Apiculture Committee (Nuevo Comité Apícola) of the state of Aguascalientes. Sample size (n= 24) was calculated with the formula proposed by Wayne18, using a 95% confidence level and 8% accuracy.

n=N*Z2*p*qd2N-1+Z2*p*q

Variable selection was done based on previous studies19: honey production, supplementary feeding, labor, queen replacement (Table 1).

Table 1 Beekeeping variables included in production function 

Variable Acronym Units
Honey yield Y Kilogram
Supplementary feed SF Kilogram
Labor LA Day
Queen replacement QR Percentage

The data collected with the questionnaire refer to the 2019 production cycle, and input prices are expressed in Mexican pesos, at current prices. Supplementary feed (SF) was sugar syrup or high fructose corn syrup supplied to hives at least 45 days prior to flowering periods and during the dry season. The production system is labor intensive during harvest, in March and April.

Queen replacement rate (QR) was calculated considering the number of colonies in which a queen was replaced during 2019 versus the total number of colonies in the same year. Most (90 %) beekeepers replace queens annually in an average of 40 % of their colonies; that is, for every 10 hives, 4 will experience queen replacement.

Using the database of variables generated from the surveys, statistical analysis was done of variable effects on honey production. The indirect method was used to formulate the production function, the variable data transformed to logarithms20, and a linear regression implemented (0.05 confidence level). This was done to identify the relationship between production yield and the inputs used in the process21. The Cobb-Douglas type function was applied to estimate maximum production when using all available inputs or the production gap22, which is the distance between actual and potential production23. One of the key features of a Cobb-Douglas production function is that it can derive the corresponding dual cost function by making use of first-order optimization24,25.

Model statistical evaluation was done considering the adjusted R2, an F-test was used to evaluate model statistical significance and a Students’ t-test to evaluate sample regression coefficients26. The stochastic form of the Cobb-Douglas function model is therefore27:

Yi=β0SFiβ1LA 2iβ2QR3iUi

The relationship between production and inputs is not linear, and therefore, for the estimation, the model was transformed into a logarithmic function27:

lnY=lnβo+β1*lnSF+β2*lnLA+β3*lnQR+ln(U)

Where: Y= honey yield; β0, β1,β2,β3 = regression coefficients. Consequently, β1 is the elasticity (partial) of production versus feeding, all other variables remaining constant; β2 is the elasticity of production versus the number of work days per hive, all other variables remaining constant; and β3 is the elasticity of production versus the queen replacement rate.

If the sum of β0+β1+β2+β3 is 1, there are constant yields at scale. If it is less than 1, yields decrease at scale, in other words, if inputs are doubled yield grows at a rate less than double. When the sum is greater than 1 yields grow at scale23,28. This growth is multiplicative rather than additive, meaning that a doubling in inputs more than doubles yield25.

A Lagrange method was used to solve the model29,30, because once it has been built a restricted mathematical function is added. In terms of maximization:

L=fSF,LA,QR-γ(PSF+PLA+PQR+M)

The first step is to partially derive L> in relation to the corresponding inputs and to γ. The function is then maximized by equaling the function of the quotient of the partial derivatives to the price relationship29,30, which generates the economic optimums31,32 according to the function built.

For the general model test, different tests or suppositions were applied to the variables (Table 2). Multicollinearity was evaluated with the variance inflation factor (VIF)33, which produced a value less than 0.10 for all variables. The supplementary feeding, labor and queen replacement rate variables were significant (P<0.05) (Table 3).

Table 2 Variables used in model 

Variables Unit Mínimum Máximum Mean SD CV
SF kg 1,050.0 8,700.0 4,550.0 2,135.3 46.9
QR % 10.0 80.0 39.4 17.5 44.6
LA Days 48.0 157.0 101.0 36.1 35.7

SF= Supplementary feeding; QR= Queen replacement rate; LA= labor; SD= Standard deviation; CV= coefficient of variation.

Table 3 Regression and model adjustment results 

Minimum 1Q Mean 3Q Maximum
-0.23736 0.08644 0.01199 0.05379 0.26626
Coefficients:
Variables Standard
estimation
Error t Value Pr(>|t|) (associated p)
(Intersect) 0.72204 0.44336 1.629 0.118312
SF 0.57877 0.12173 4.755 0.000107 ***
LA 0.55016 0.16544 3.325 0.003213 **
QR 0.13728 0.05987 2.293 0.032283 *

Residual standard error: 0.133 with 21 degrees of freedom (DF).

Multiple R2: 0.9484; Adjusted R2: 0.9411.

F statistic: 128.8 in 3 and 21 DF; P value: 1.113e-13.

‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the regression equation results (Table 3), the model adjustment indicates that the independent variables explain 94% of the variations in honey production; that is, the three regression coefficients have a direct relationship to honey production. The SF and LA inputs were of equal importance and represented more than four times that of the QR input.

After applying antilogarithms, the Cobb-Douglas empirical production function took this form:

Y=e0.72204SF0.57877LA0.55016QR0.13728

In economic terms, the honey production function shows that a 1 % increase in SF will increase honey production by 0.57 %, while a 1 % increase in LA will increase it by 0.55 %, all other inputs remaining constant. Since the sum of the coefficients is greater than 1, the production function exhibits increasing returns at scale.

In technical terms, increasing SF in the days prior to the beginning of the nectar season helps to increase hive population before flowering season, which improves honey yield. A greater amount of LA also implies additional costs. The sugar input marginal product shows that the addition of 1 kg sugar increases honey production by 0.57 kg, although this can vary in response to environmental conditions.

The economic optimum was established based on input prices of $17/kg for SF and $200 for LA. Queen replacement rate (QR) was kept constant, using the average for this variable (QR= 39.40). The function appears as follows:

Y=3.4088SF0.57877LA0.55016 (1); Subject to:

17SF+200LA=80 (2)

Thus, the objective restriction was imposed on the estimated function in the form of input prices and honey sale price ($80) (Lagrange multiplier).

The estimated values are: SF= 2.4140 and LA= 0.1948.

Substituting these values in the production functions generates the optimum amount of honey given the inputs used.

y=3.40882.41400.578770.19480.55016

y=2.3082

Production and profit are functions of multiple variables; however, the present study is an abstraction in that it estimates optimal combinations using only statistically significant variables. Based on model results, 2.4140 kg sugar and 0.1948 d LA would result in 2.3082 kg honey yield. Conversely, production of 1 kg honey would require 1.0458 kg SF and 0.08439 d LA. From these data it can be inferred that maximum profit from production of one kilogram of honey would result from an optimal investment of $17.78 pesos in SF and $16.84 pesos in LA. Expressed in another way, production of one kilogram of honey assuming a SF cost of 17 pesos and a LA cost of 200 pesos per unit would generate profit of approximately $45.38 pesos. Before the present analysis was done, a pilot study was carried out using variables such as colony size, vaccination, transportation costs, and equipment and tool depreciation; only the variables analyzed in this model were statistically significant. Studies done in other countries have also analyzed competitiveness in beekeeping with the Cobb-Douglas production function using variables such as supplementary feeding, colony size, labor, medicine use, and capital13.

The function also described the input elasticities34 of honey production in the study area. For instance, a 10 % increase in SF, QR or LA would raise production by 5.7 %, 5.5 % and 1.3 %, respectively. These increases apply only for the present study case because proportional input costs can vary widely between different regions. On a national level, sugar (supplementary feed) represents 12 % of total production costs and labor 31.2 %10. In the state of Aguascalientes, supplementary feed accounts for a much higher 47 % of costs while labor accounts for only 14 %4; unfortunately, supplementation contributes to higher survival rates and thus favors production, making it a vital input. The reverse occurs in states such as Yucatan, where labor constitutes a higher proportion of production costs than supplementary feed35,36. No matter the region in Mexico, both supplementary feed and labor are highly determinant inputs in honey production.

The estimated average cost of producing one kilogram of honey in the present study was 35 pesos, which is almost double that of the costs in the state of Yucatan: 19.7 pesos for small producers, 16.6 pesos for medium, and 14.4 pesos for large37. Production costs can differ widely between regions in response to the sale price of honey, required inputs and their costs. Factors such as temperature, precipitation, genetics, and labor, among others, can also generate variations in production costs12. This is reflected in the estimated profit of 45 pesos in the present study, compared to 23 pesos in previous studies in other regions37. Fundamental factors that may have influenced these discrepancies between studies are year and geographical space in which the they were done.

In the state of Aguascalientes in 2019 the inputs of supplementary feed (sugar) and labor (wages) best explained honey production in the surveyed producers. The estimated elasticities suggest that increases in these inputs raise honey production, all other inputs remaining constant. However, when taken separately, both supplementary feed and labor exhibit diminishing returns, highlighting the need to monitor the effects of inputs on production and profits to ensure they do not start trending negative and generating losses.

Literatura citada

1. Zorrilla A, Urbano B. Contribución de la apicultura ecológica a la diversificación sostenible de la agricultura familiar. En: Universidad Politécnica de Valencia editor. Territorios rurales, agriculturas locales y cadenas alimentarias. 1era ed. Palencia, España; 2014:15. [ Links ]

2. SADER. Secretaría de Desarrollo Rural. Crecen producción y exportaciones de miel en México al cierre de 2021: Agricultura. México. 2022. https://www.gob.mx/agricultura/prensa/crecen-produccion-y-exportaciones-de-miel-en-mexico-al-cierre-de-2021-agricultura-293944?idiom=es. [ Links ]

3. Contreras UL, Magaña MMA, Sanginés GJ. Características técnicas y socioeconómicas de la apicultura en comunidades mayas del Litoral Centro de Yucatán. Acta Universitaria 2018;28(1):44-86. [ Links ]

4. Zavala BJI, López SMA, Valdivia AR, Montiel BBM. Rentabilidad estratificada del sector apícola en Aguascalientes, México. Rev Mex Cienc Pecu 2021;12(2):1-16. [ Links ]

5. Becerril GJ, Hernández CFI. Apicultura: su contribución al ingreso de los hogares rurales del sur de Yucatán. Península 2020;15(2):9-29. [ Links ]

6. Contreras UL, Magaña MAA. Costos y rentabilidad de la apicultura a pequeña escala en comunidades mayas del Litoral Centro de Yucatán, México. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes 2017;25(71):52-58. [ Links ]

7. Martínez BHA, Hernández AEG. Análisis de brechas tecnológicas e identificación de oportunidades de vinculación con organizaciones y empresas del sector apícola en Aguascalientes. 1ra ed. Aguascalientes, Ags. México: Universidad Autónoma de Aguascalientes; 2017. [ Links ]

8. Magaña MMA, Leyva MCE. Costos y rentabilidad del proceso de producción apícola en México. Contaduría y Administración 2011;(235):99-119. [ Links ]

9. Castellanos-Potenciano BP, Gallardo-López F, Sol-Sánchez Á, Landeros-Sánchez C, Díaz-Padilla G, Sierra-Figueredo P et al. Impacto potencial del cambio climático en la apicultura. Rev Iberoam Bioecon Cambio Clim 2016;2(1):1-19. [ Links ]

10. Magaña MMA, Tavera CME, Salazar BLL, Sanginés GJR. Productividad de la apicultura en México y su impacto sobre la rentabilidad. Rev Mex Cienc Agric 2016;7(5):1103-1115. [ Links ]

11. Magaña MMA, Moguel OYB, Sanginés GJR, Leyva MCE. Estructura e importancia de la cadena productiva y comercial de la miel en México. Rev Mex Cienc Pecu 2012;3(1):49-64. [ Links ]

12. Medina-Cuéllar SE, Álvarez-Coque JMG, Portillo-Vázquez M, Terrazas-González GH. Influencia de los factores ambientales y de manejo en la segunda temporada de producción de miel de abeja en Aguascalientes, México. REEAP 2014;2014(238): 65-80. [ Links ]

13. Al-Ghamdi AA, Adgaba N, Herab AH, Ansari MJ. Comparative analysis of profitability of honey production using traditional and box hives. SJBS 2017;(24):1075-1080. [ Links ]

14. Kizilaslan H, Kizilaslan N. Factors affecting honey production in apiculture in Turkey. TJASR 2007;3(10):983-987. [ Links ]

15. Dogan Z, Karagoz M, Ozbakir, GO. Long years apiculture data model of Turkey: an econometric time series analysis. JAPS 2014;24(5):1573-1578. [ Links ]

16. García E. Modificaciones al sistema de clasificación climática de Koppen. 5ta ed. D.F., México: Instituto de Geografía UNAM; 2004. [ Links ]

17. Siqueiros DME, Rodríguez AJA, Martínez RJ, Sierra MJC. Situación actual de la vegetación del Estado de Aguascalientes. Botanical Sciences 2016;94(3):455-470. [ Links ]

18. Wayne D. Bioestadística base para el análisis de las ciencias de la salud. 4a ed. México: Limusa; 2017. [ Links ]

19. Medina CSE, Tirado GDN, Portillo VM, López SMA, Franco OVH. Environmental implications for the production of honey from mesquite (Prosopis laevigata) in semi-arid ecosystems. J Apic Res 2018;57(4):507-515. [ Links ]

20. Nicholson W. Teoría microeconómica. Principios básicos y ampliaciones. 9ªed. México: Cengage Learning; 2007. [ Links ]

21. Vargas BBE. La función de producción Cobb-Douglas. Fides Et Ratio 2014;8(8):67-74. [ Links ]

22. Mir P. Aspectos metodológicos y teóricos de la función de producción agraria. Agricultura y Sociedad 1991;61(1991):9-38. [ Links ]

23. Bellod RJF. La función de Producción Cobb-Douglas y la economía española. Rev Econom Crítica 2011;12(2011):9-38. [ Links ]

24. Felipe J, Gerard A. "A Theory of Production" The estimation of the Cobb-Douglas function: A retrospective view. EEJ 2005;31(3):427-445. [ Links ]

25. Debertin DL. Agricultural production economics. 2nd ed. Kentucky, USA: University of Kentucky; 2012. [ Links ]

26. Anderson RD, Sweeney JD, Williams TA. Estadística para administración y economía. 10ª ed. D.F. México: Cengage Learning Editores SA.; 2008. [ Links ]

27. Gujarati DN, Porter DC. Econometría. 5th ed. México D.F: Mc Graw Hill; 2013. [ Links ]

28. Aiyar SS, Dalgaard CJ. Accounting for productivity: Is it ok to assume that the world is Cobb-Douglas?. J Macroeconomics 2008;(31):290-303. [ Links ]

29. Castro JM. El teorema de Lagrange y el segundo método de Liapunov, como criterio de estabilidad. Boletín de Matemáticas 1973;7(4):205-218. [ Links ]

30. Frank HR. Microeconomía intermedia. Análisis y comportamiento económico. 7a ed. México: McGraw-Hill; 2009. [ Links ]

31. Castellanos-Pérez M, Martínez-Garza Á, Beatriz-Colmenares C, Martínez-Damián MÁ, Rendon-Sánchez G. Región confidencial para el óptimo económico de una función de producción Cobb-Douglas. Agrociencia 2006;40(1):117-124. [ Links ]

32. Feuradi GP. La función de producción Cobb Douglas y su aplicación en la economía boliviana. INNOVA Research J 2018;3(4):70-82. [ Links ]

33. Vall MJ, Guerra BC, Walikiria C. La multicolinealidad en modelos de regresión lineal múltiple. Rev Cienc Téc Agr 2012;21(4):80-83. [ Links ]

34. Rebollar RS, Callejas JN, Guzmán SE. La función Cobb-Douglas de la producción semintensiva de leche en el sur del Estado de México. Análisis Económico 2018;33(82):125-141. [ Links ]

35. Contreras, E, Pérez, AB, Echazarreta,, MC, Cavazos, AJ, Macias, MJO, Tapia, GJM. Características y situación actual de la apicultura en las regiones Sur y Sureste de Jalisco, México. Rev Mex Cienc Pecu 2013;4(3):387-398. [ Links ]

36. Contreras UL, Magaña MMA, Sangines GJR. Productividad de la apicultura en comunidades mayas del Litoral Centro de Yucatán, México. Rev Agroproductividad 2017;10(5):46-50. [ Links ]

37. Magaña MMA, Aguilar AA, Lara LP, Sanginés GR. Caracterización socioeconómica de la actividad apícola en el estado de Yucatán, México. Agronomía 2007;15(2):17-24. [ Links ]

Received: July 09, 2022; Accepted: April 05, 2023

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons