SciELO - Scientific Electronic Library Online

 
vol.13 número2Frecuencia y puntaje de jadeo en bovinos productores de carne en finalización intensiva durante el verano índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias pecuarias

versão On-line ISSN 2448-6698versão impressa ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.13 no.2 Mérida Abr./Jun. 2022  Epub 20-Jun-2022

https://doi.org/10.22319/rmcp.v13i2.5007 

Technical notes

Silvopastoral arrangements with Alnus acuminata and their effect on productive and nutritional parameters of the forage component

José Américo Saucedo-Uriartea 

Segundo Manuel Oliva-Cruza  * 

Jorge Luis Maicelo-Quintanaa 

Jegnes Benjamín Meléndez-Moria 

Roicer Collazos-Silvaa 

aUniversidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Campus Universitario: Calle Universitaria N° 304, Chachapoyas, Perú.


Abstract

Silvopastoral systems (SPS) are an alternative for sustainable livestock production. For this reason, the present study was developed with the aim of evaluating productive and nutritional parameters of the forage component (FC) in different silvopastoral arrangements with Alnus acuminata and their comparison with open field systems. A randomized complete block design was established, for which 16 plots with characteristics of homogeneity in age and type of FC were selected. The floristic composition, functional classification of herbaceous species, biomass, dry matter and nutritional composition were evaluated. The results obtained recorded the presence of 22 species, with the family Poaceae (8 species) predominating, it was also found that silvopastoral arrangements have the highest percentage of desirable species, a situation contrary to what happened in open field systems. On the other hand, the productive and nutritional parameters showed significant differences (P<0.05) between the production systems, being the arrangement with trees in alleys the one that registered better yields of biomass (16.60 t /ha), dry matter (3.65 t/ha), crude fiber (27.23 %), total protein (17.39 %) and gross energy (4,864 kcal/kg).

Key words Floristic composition; Nutritional composition; Species desirability; Forage yield; Silvopastoral system

Resumen

Los sistemas silvopastoriles (SSP) son una alternativa para la producción ganadera sostenible. Por este motivo, el presente estudio se desarrolló con el objetivo de evaluar parámetros productivos y nutricionales del componente forrajero (CF) en distintos arreglos silvopastoriles con Alnus acuminata y su comparación con sistemas a campo abierto. Se estableció un diseño de bloques completos al azar, para lo cual, fueron seleccionadas 16 parcelas con características de homogeneidad en edad y tipo de CF. Se evaluó la composición florística, clasificación funcional de las especies herbáceas, biomasa, materia seca y composición nutricional. Los resultados obtenidos registraron la presencia de 22 especies, predominando la familia Poaceae (8 especies), asimismo se encontró que los arreglos silvopastoriles presentan el mayor porcentaje de especies deseables, situación contraria a lo ocurrido en los sistemas a campo abierto. Por otro lado, los parámetros productivos y nutricionales, mostraron diferencias significativas (P<0.05) entre los sistemas de producción, siendo el arreglo con árboles en callejones el que registró mejores rendimientos de biomasa (16.60 t/ha), materia seca (3.65 t/ha), fibra cruda (27.23 %), proteína total (17.39 %) y energía bruta (4,864 kcal/kg).

Palabras clave Composición florística; Composición nutricional; Deseabilidad de especies; Rendimiento forrajero; Sistema silvopastoril

In Peru, the rate of deforestation increased by 2,672,554 ha1,2 during the years 1975 to 2000, with the increase in the agricultural sector (extensive production)3 being the main cause of this discouraging panorama, followed by mining activity, fires and illegal logging of forests2,4; this situation is further aggravated by limited land use and tenure policies, as well as by a lack of knowledge of new sustainable production systems5.

In 2012, the Peruvian agricultural area amounted to 38,742,000 ha, of which 46.5 % represent natural pastures6, characterized by being an open field productive system, that is, without the presence of tree cover. The lack of trees and tree cover in general cause several ecological problems, such as extreme weather events, soil erosion, water pollution, decrease in biodiversity7, and consequently economic problems8, due to low productivity because of the limited soil fertility9.

However, the negative impacts associated with extensive livestock production can be reduced if livestock farming is focused on systems that increase productivity, improve sustainability and provide ecological services to the ecosystem8,10. In this sense, studies demonstrate the importance of pastures associated with trees for the conservation of biodiversity11,12. Thus, silvopastoral systems are an option for the exploitation of ruminants, since they diversify the products (milk, meat, wood, poles and firewood), provide shade, improve the diet of animals and reduce the use of external inputs13,14. Therefore, the objective of this study was to evaluate the floristic composition and functional classification of herbaceous species, as well as the productive and nutritional parameters of the forage component established under silvopastoral arrangements.

The study was conducted in the district of Molinopampa, specifically in the localities of Molinopampa, Santa Cruz del Tingo, Pumahermana and Ocol; located at an altitude above 2,421 masl, between the coordinates 06°12’20” south latitude and 77°40’06” west longitude. They have a slightly humid and warm temperate climate, with an average annual temperature of 14.5 °C and an average annual rainfall of 1,200 mm15.

Four silvopastoral arrangements (SPAs) [living fences (LFs), trees scattered in the paddock (TSP), trees in alleys (TIAs) and open field system (OFS)] were studied, which were selected due to the homogeneity in the forage component, age of the trees and area between 1 to 2 ha. In each SPA, the floristic composition was evaluated through the transect method16, which consisted of stretching a 50-m rope with marks between (01) meters (contact point) for sampling with a census ring (four transects per each SPA). The functional classification was determined according to the degree of preference of herbaceous species [desirable species (DS), less desirable species (LDS) and undesirable species (US)]17,18. The biomass of the forage component (BFC) was determined by the square meter method19, for which 40 samples per each SPA (10 per each locality or repetition) were weighed. For the dry matter (DM) content, the 40 samples obtained from the biomass evaluation were mixed, then 100 g of forage from each SPA was weighed and placed at 65 °C in a BINDER FD 115 forced-air circulation oven (BINDER GmbH, Germany). The nutritional composition of FC: total protein (TP), ethereal extract (EE), crude fiber (CF), ash (A) and crude energy (GE), was quantified in 1 kg of forage (obtained from the mixture of the 40 samples collected per each SPA) using the guidelines established by the AOAC20. It should be noted that the analysis was conducted over a period of 12 months, considering two periods for sample collection: rainy season (November 2016 to April 2017) and dry season (May to October 2017).

For the statistical analysis, a randomized complete block design consisting of four treatments (OFS, LFs, TSP and TIAs) was used, in four localities (Molinopampa, Santa Cruz del Tingo, Pumahermana and Ocol) or replicates considered as blocks. The results were processed using the statistical software SPSS 15.0, in which they were subjected to the analysis of normality and homogeneity of variances with the Shapiro-Wilk and Levene tests. Nutritional composition data were processed using an analysis of variance with a confidence level of 95 % (P<0.05) and the Tukey test for multiple comparisons. The BFC was analyzed with the Mann-Whitney U test21.

The results of the joint study of the productive systems (OFS, TIAs, TSP and LFs) recorded the presence of 22 species, grouped into 11 families. The greatest richness was found in the family Poaceae (8 species), with Lolium multiflorum being the most representative species, with a presence between 15 and 32 % within each production system. On the other hand, species such as Equisetum giganteum, Ageratina azangaroensis and Verbena litoralis were the least abundant, being found only in the OFSs (Table 1).

Table 1 Herbaceous species recorded in different grass production systems (%) 

Floristic composition OFS TSP TIAs LFs
Poaceae
Brachiaria brizantha 9.09 2.29 2.30 6.17
Lolium multiflorum 15.78 19.08 31.12 21.08
Paspalum penicillatum 1.87 - - -
Dactylis glomerata 3.74 6.36 7.65 6.17
Sporobolus indicus 3.74 - - -
Pennisetum clandestinum 0.80 16.03 11.48 16.45
Paspalum bonplandianum - 8.14 1.28 8.23
Setaria sphacelata - 3.05 1.28 4.88
Asteraceae        
Taraxacum officinale 6.95 1.02 0.51 -
Ageratina azangaroensis 0.80 - - -
Philoglossa mimuloides 8.82 6.62 4.59 7.20
Fabaceae        
Trifolium repens 7.49 12.72 11.73 8.48
Trifolium pratense - 3.31 2.55 1.54
Cyperaceae        
Cyperus sp. 4.01 2.80 2.81 2.06
Eleocharis geniculata 7.22 2.29 2.30 2.06
Polygonaceae        
Rumex obtusifolius 12.03 5.85 5.87 5.91
Plantagnaceae        
Plantago lanceolata 4.01 2.29 7.40 3.60
Equisetaceae        
Equisetum giganteum 4.01 - - -
Primulaceae        
Anagallis arvensis 0.80 3.56 3.57 0.51
Araliaceae        
Hydrocotyle vulgaris 3.48 2.04 2.04 0.51
Verbenaceae        
Verbena litoralis 0.80 - - -
Thelypteridaceae        
Thelypteris sp. 4.55 2.54 1.53 5.14

OFS= open field system; TSP= trees scattered in paddock; TIAs= trees in alleys; LFs = living fences.

The functional classification indicates that SPAs report a higher abundance of DS (Trifolium repens, Taraxacum officinale, Lolium multiflorum, Dactylis glomerata, Pennisetum clandestinum, Setaria sphacelata and Trifolium pratense), with a percentage that ranges from 58.0 % to 67.0 %; on the other hand, the highest percentage of LDS (Brachiaria brizantha, Rumex obtusifolius, Paspalum penicillatum, Sporobolus indicus, Philoglossa mimuloides and Paspalum bonplandianum), as well as that of US (Cyperus sp., Plantago lanceolata, Equisetum giganteum, Anagallis arvensis, Hydrocotyle vulgaris, Ageratina azangaroensis, Verbena litoralis, Eleocharis geniculata, and Thelypteris sp.) were reported in OFSs with 33.0 % and 28.0 %, respectively (Figure 1). Among the 22 species recorded, the most prominent within the DS group belong to the family Poaceae, with L. multiflorum and P. clandestinum being the most representative of the group.

ED= desirable species (DS); EDP= less desirable species (LDS); EI= undesirable species (US); SCA= open field system (OFS); ADP= trees scattered in paddock (TSP); AEC= trees in alleys (TIAs); CV = living fences (LFs).

Figure 1 Functional classification of species 

Regarding BFC production, evaluations during the rainy and dry seasons showed significant differences (P<0.05) between SPAs and OFS. In this sense, the SPA that reached the highest yield during the rainy and dry seasons was TIAs, and the OFS was the one that registered the lowest level of this parameter. Regarding the analysis of DM, the productive systems (SPA and OFS) showed significant differences (P<0.05) both in the rainy and dry season, evidencing that the SPA with TIAs registered better levels in both evaluation periods (Figure 2).

A) Evaluation in rainy season. B) Evaluation in dry season.

BCF= biomass of the forage component (BFC); MS= dry matter (DM); AEC= trees in alleys (TIAs); ADP= trees scattered in paddock (TSP); CV= living fences (LFs); SCA= open field system (OFS).

Figure 2 Yield of the forage component 

The nutritional components (A, EE, CF, TP and GE) recorded in the rainy and dry seasons were significantly different (P<0.05) between the production systems (SPA and OFS), except for the CF content recorded during the dry season since it showed no statistical difference. The results of both seasons show that the content of A and TP was higher in the arrangement with TIAs, and that the levels of CF ranged from 24 to 30 %. The highest level of GE during the rainy season was recorded in the system with TIAs, on the contrary, during the dry season, the highest value was reached in the OFS (Figure 3).

A) Evaluation in rainy season. B) Evaluation in dry season.

C= ash (A), EE= ethereal extract, FC= crude fiber (CF), PT= total protein (TP), EB= gross energy (GE); AEC= trees in alleys (TIAs); ADP= trees scattered in paddock (TSP); CV= living fences (LFs); SCA= open field system (OFS).

Figure 3 Nutritional composition of the forage component 

The species with the greatest dominance in the FC of the productive systems belong to the following families: Poaceae, Fabaceae and Asteraceae; among them, the latter is more present in the OFSs and may be related to the modification of seeds typical of this family, thus allowing their easy dissemination favored by the free circulation of air flow. The results are similar to those reported in the basin of the Ilo River (Moquegua), where it was found that the greatest species richness belongs to Asteraceae and Poaceae16, which indicates the wide distribution of these families in Peru.

The SPAs had the highest abundance of DS, but an opposite case occurs in the OFSs, where low soil fertility and the high presence of weeds are limiting to pasture development7. In general, the results of the present study agree with the report for grasslands of the high Andean areas of Cusco (Peru), where the percentage of DS was higher (approximately 70.0 %) compared to species of another functional classification22. On the contrary, they differ from the reports for grasslands of the high Andean areas of Pasco (Peru), where the presence of LDS (34.0 %) and US (54.7 %) exceeded that of DS (11.3 %)17.

The yields recorded in the different production systems (in rainy and dry seasons) allow demonstrating the positive impact of SPAs on grass production, as confirmed by the results of a study, in which an SPA reached a yield of 12.78 t GF/ha, while the OFS only reached 6.79 t GF/ha23. The presence of trees can increase the productivity of FC because it influences soil fertility by increasing the content of organic matter, as a result of the decomposition of the tree, shrub and herbaceous strata24,25. In addition, trees take advantage of nutrients from the deepest layers, and these in turn can be used in grasslands due to recycling effects26,27. The influence of trees can be even more pronounced when using species that can increase the availability of nitrogen in the soil, such as A. acuminata. Regarding the content of DM, the highest yields of this study were obtained in the SPAs, however they are below what was reported for an SPA of A. acuminata associated with P. clandestinum, where the percentage of DM reached was 29.5 % for the SPA and 28 % for the OFS28, demonstrating that the yield is also influenced by the forage species that makes up the silvopastoral system.

The EE levels recorded in this study (between 2.48 % and 5.52 %) were higher than the report made in an SPA of Leucaena leucocephala with Cynodon nlemfuensis (1.28 %) and an OFS of C. nlemfuensis (1.13 %)29. On the other hand, an SPA of L. leucocephala with improved pastures and an OFS with grasses reported 2.74 % and 1.72 % of EE, respectively30. The variation in the results of these studies suggests that the energy values represented by the EE are influenced by the cultivated forage species, but not by the production system.

In this study, the ash level recorded in the arrangement with TIAs (during the rainy season) exceeded the reports for an SPA of L. leucocephala with C. nlemfuensis (9.35 %) and an OFS of C. nlemfuensis (9.02 %)29. The ash content is related to the availability of minerals that fulfill an electrolytic function, which are involved in osmotic pressure, balance and permeability of membranes and tissues, as well as catalytic functions31, so it is important that grasses show an adequate level for the diet of cattle.

Compared to the OFS, the level of CF recorded in the SPAs was slightly lower. A similar behavior was reported for the stem and leaf fractions of C. nlemfuensis grown under OFS and in association with L. leucocephala29. These results may be related to the shade effect produced by treetops, which can reduce evaporation and improve nutrient dynamics32. In addition, silvopastoral systems provide better quality and easy-to-digest fiber, reducing methane emissions by 30 % to 40 % compared to the OFS33.

On the other hand, the high levels of TP reported for SPAs suggest that A. acuminata trees perform symbiosis with nitrogen-fixing microorganisms, allowing improving the protein and nutritional content of FC34. These results are similar to the report for an SPA of P. clandestinum with Sambucus nigra (16.6 %), since it was higher than the record of OFS (13.9 %)28. On the other hand, another study did not show a marked difference between the systems, reporting 15.61 % crude protein in the SPAs (A. acuminata with P. clandestinum) and 15.51 % in the OFS35.

The level of GE reported in the rainy season shows that the SPAs (except in TSP) reached values higher than that of OFS (4,555 kcal/kg). Results with a similar trend were described in an SPA with Buddleja incana, Buddleja coriaceae and Polylepis racemosa, where grasses reached GE of 4,182.78, 4,179.11 and 4,182 kcal/kg, respectively, being higher than the value reported in the OFS (3,838.56 kcal/kg)36. Finally, it is worth mentioning that, in the dry season, the level of GE in the OFS (4,462 kcal/kg) was higher than the GE in the SPA.

In conclusion, the open field system had the largest number of botanical families, but most desirable species for grazing animals were found in silvopastoral arrangements with trees in alleys. The families with the greatest importance for the forage component of the productive systems were: Poaceae, Fabaceae and Asteraceae. Levels of productivity, dry matter and nutritional composition (total protein and gross energy) were higher in all silvopastoral arrangements, especially in the area of trees in alleys, this being important for dairy cattle production.

Literatura citada

1. Malleux J. Mapa forestal del Perú. Memoria explicativa. Universidad Nacional Agraria; 1975. [ Links ]

2. MINAM. Mapa de deforestación de la Amazonía Peruana: Causas de la deforestación. Ministerio del Ambiente. Lima, Perú; 2000. [ Links ]

3. Dancé J. Tendencias de la deforestación con fines agropecuarios en la Amazonía Peruana. Rev For Perú 1981;10(1-2):1-8. [ Links ]

4. Martino D. Deforestación en la Amazonía: principales factores de presión y perspectivas. Rev sur 2007;(169):3-20. [ Links ]

5. Aldy JE, Hrubovcak J, Vasavada U. The role of technology in sustaining agriculture and the environment. Ecol Econ 1998;26(1):81-96. [ Links ]

6. INEI. IV Censo Nacional Agropecuario: Resultados definitivos. Instituto Nacional de Estadística e Informática. Lima, Perú; 2012. http://censos.inei.gob.pe/cenagro/tabulados/ Consultado 20 Feb, 2018. [ Links ]

7. Mahecha L. Importancia de los sistemas silvopastoriles y principales limitantes para su implementación en la ganadería colombiana. Rev Colomb Cienc Pecu 2003;16(1):11-18. [ Links ]

8. Betancourt H, Pezo D, Cruz J, Beer J. Impacto bioeconómico de la degradación de pasturas en fincas de doble propósito en El Chal, Petén, Guatemala. [Memoria]. IV Congreso Latinoamericano de Agroforestería para la Producción Pecuaria Sostenible y III Simposio sobre Sistemas Silvopastoriles para la Producción Ganadera Sostenible. Cuba; 2006. [ Links ]

9. Tejos R. Alternativas de mejoramiento de pasturas degradadas. X Seminario de Pastos y Forrajes. 2006:25-33. [ Links ]

10. Ibrahim M, Villanueva C, Casasola F, Rojas J. Sistemas silvopastoriles como una herramienta para el mejoramiento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Past y Forr 2006;29(4):383-419. [ Links ]

11. Lang I, Gormley L, Harvey C, Sinclair F. Composición de la comunidad de aves en cercas vivas de Río Frío, Costa Rica. Agrofor Am 2003;10(39-40):86-92. [ Links ]

12. Harvey C, Medina A, Sánchez D, Vílchez S, Hernandez B, Saenz J, et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 2006;16(5):1986-1999. [ Links ]

13. Harvey CA, Haber WA. Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agrofor Syst 1998;44(1):37-68. [ Links ]

14. Zamora S, García J, Bonilla G, Aguilar H, Harvey C, Ibrahim M. Uso de frutos y follaje arbóreo en la alimentación de vacunos en la época seca en Boaco, Nicaragua. Agrofor Am 2001;8(31):31-38. [ Links ]

15. IIAP. Zonificación ecológica y económica del Departamento de Amazonas. Instituto de Investigaciones de la Amazonia Peruana. Amazonas, Perú. 2007. [ Links ]

16. Arakaki M, Cano A. Composición florística de la cuenca del río Ilo-Moquegua y Lomas de Ilo, Moquegua, Perú. Rev Peru Biol 2003;10(1):5-19. [ Links ]

17. Alegría F. Inventario y uso sostenible de pastizales en la zona colindante a los depósitos de relavera de Ocroyoc-Comunidad de San Antonio de Rancas-Pasco [tesis maestría]. Lima, Perú: Pontificia Universidad Católica del Perú. 2013. [ Links ]

18. Flórez A. Manual Pasto y Forrajes Altoandinos. Lima ITDG AL, OIKOS. ISBN Nº 9972-47-115-2. 2005:53. [ Links ]

19. Ainalis AB, Tsiouvaras CN, Nastis AS. Effect of summer grazing on forage quality of woody and herbaceous species in a silvopastoral system in northern Greece. J Arid Environ 2006;67(1):90-99. [ Links ]

20. AOAC. Official methods of analysis. 15th ed. Arlington, VA, USA: Association of Official Analytical Chemists. 1990. [ Links ]

21. McKnight PE, Najab J. Mann-Whitney U Test . The Corsini encyclopedia of psychology. Weiner IB, Craighead WE, editors. Hoboken, NJ: John Wiley & Sons, Inc; 2010. [ Links ]

22. Puma EM. Comparativo de dos métodos de determinación de la condición de un pastizal tipo pajonal de Pampa en el Cicas la Raya-FAZ-UNSAAC [tesis licenciatura]. Perú: Universidad Nacional de San Antonio Abad del Cusco; 2014. [ Links ]

23. Oliva SM. Influencia de factores socioeconómicos y ambientales sobre la adopción de tecnologías silvopastoriles por productores ganaderos, distrito de Molinopampa, Amazonas, Perú [tesis maestría]. Lima, Perú: Universidad Nacional Agraria la Molina; 2016. [ Links ]

24. Crespo G. Importancia de los sistemas silvopastoriles para mantener y restaurar la fertilidad del suelo en las regiones tropicales. Rev Cubana Cienc Agríc 2008;42(4):329-335. [ Links ]

25. Nair PKR, Kumar BM, Nair VD. Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 2009;172(1):10-23. [ Links ]

26. McAdam JH, Burgess PJ, Graves AR, Rigueiro-Rodríguez A, Mosquera-Losada MR. Classifications and functions of agroforestry systems in Europe. In: Rigueiro-Rodríguez A. et al. editors. Agroforestry in Europe: current status and future prospects. 2009:21-41. [ Links ]

27. Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam JH, Mosquera-Losada MR. Agroforestry systems in Europe: productive, ecological and social perspectives. In: Rigueiro-Rodríguez A. et al. editors. Agroforestry in Europe: current status and future prospects. 2009:43-65. [ Links ]

28. Cárdenas CA, Rocha C, Mora JR. Productividad y preferencia de forraje de vacas lecheras pastoreando un sistema silvopastoril intensivo de la zona alto Andina de Roncesvalles, Tolima. Rev Colombiana Cienc Anim 2011;4(1):29-35. [ Links ]

29. Maya GE, Durán CV, Ararat JE. Valor nutritivo del pasto estrella solo y en asociación con leucaena a diferentes edades de corte durante el año. Acta Agron 2005;54(4):41-46. [ Links ]

30. Gaviria X, Rivera JE, Barahona R. Calidad nutricional y fraccionamiento de carbohidratos y proteína en los componentes forrajeros de un sistema silvopastoril intensivo. Past y Forr 2015;38(2):194-201. [ Links ]

31. Proaño F, Stuart JR, Chongo B, Flores L, Herrera M, Medina Y, et al. Evaluación de tres métodos de saponificación en dos tipos de grasas como protección ante la degradación ruminal bovina. Rev Cubana Cienc Agríc 2015;49(1):35-39. [ Links ]

32. Pezo D, Romero F, Ibrahim M. Producción manejo y utilización de los pastos tropicales para la producción de leche y carne. En: Fernández S. editor. Avances en la producción de leche y carne en el trópico americano. FAO, Oficina regional para América Latina y el Caribe. Santiago, Chile. 1992:47-98. [ Links ]

33. Sánchez B. Sistemas silvopastoriles en Honduras: Una alternativa para mejorar la ganadería. Tegucigalpa, Honduras. FAO. 2014:36. [ Links ]

34. Yamamoto W, Ap Dewi I, Ibrahim M. Effects of silvopastoral areas on milk production at dual-purpose cattle farms at the semi-humid old agricultural frontier in central Nicaragua. Agric Syst 2007;94(2):368-375. [ Links ]

35. Gualdrón EG, Padilla CE. Producción y calidad de leche en vacas Holstein en dos arreglos silvopastoriles de acacia y aliso asociadas con pasto kikuyo. Rev Cienc Anim 2008;(1):7. [ Links ]

36. Gonzalez J. Evaluación de tres sistemas silvopastoriles para la gestión sostenible de los recursos naturales de la microcuenca del río Chimborazo. [tesis pregrado]. Riobamba, Ecuador: Escuela Superior Politécnica de Chimborazo. 2009. [ Links ]

Received: August 02, 2018; Accepted: August 30, 2021

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons