SciELO - Scientific Electronic Library Online

 
vol.13 número1El huevo de traspatio: ventana de oportunidad de ingresos en comunidades del Municipio de Texcoco, Estado de MéxicoIncubación, pre-lisis y post-purificación en el rendimiento y pureza de ácidos nucleicos extraídos de sangre de cabras domésticas contenida en tarjetas FTA índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias pecuarias

versão On-line ISSN 2448-6698versão impressa ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.13 no.1 Mérida Jan./Mar. 2022  Epub 06-Jun-2022

https://doi.org/10.22319/rmcp.v13i1.5265 

Technical notes

Forage yield and digestibility of Urochloa spp. cultivars at three regrowth ages in the rainy and dry seasons in Ecuador

Jonathan Raúl Garay Martíneza 

Benigno Estrada Drouailletb 

Juan Carlos Martínez Gonzálezb 

Santiago Joaquín Cancinob 

Hernán Patricio Guevara Costlesc 

Marco Vinicio Acosta Jácomed 

Eugenia Guadalupe Cienfuegos Rivasb 

a Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Las Huastecas. Tamaulipas, México.

b Universidad Autónoma de Tamaulipas. Facultad de Ingeniería y Ciencias. Tamaulipas, México.

c Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador.

d Universidad Tecnológica Equinoccial, Campus Santo Domingo-Escuela de Ingeniería Agropecuaria, Vía Chone Km. 4 ½ y Av. Italia. 230101. Santo Domingo, Ecuador.


Abstract

The humid tropics of Ecuador is a potential livestock production area. Urochloa spp. cultivars are a forage option in this region. Environmental and management conditions determine forage yield and nutritional value and should be researched prior to establishing new forage species. An evaluation was done of total dry matter yield (TDM; t ha-1), morphological components proportions (%; leaf, stem, dead material and inflorescence) and in situ dry matter digestibility (DMD; g kg-1)) in five Urochloa cultivars (Mulato II, Marandú, Xaraés, Piatá and Señal [control]) and at three regrowth ages (4, 6 and 8 wk) during the rainy and dry seasons. A completely randomized block design in a split plot arrangement was used to analyze the data by season. During the rainy season, TDM did not differ (P>0.05) between cultivars. In the dry season, Marandú had a lower yield than Xaraés (0.92 vs 1.21 t ha-1). Morphological component proportions differed between cultivars (P<0.05), although the leaves contributed the most overall to yield. From four to eight weeks, DMD decreased from 64 to 56 % in the rainy season and from 60 to 56 % in the dry season. The evaluated cultivars exhibited acceptable TDM yields (2.6 t ha-1 in rainy season, 1.0 t ha-1 in dry season) and DMD (602 g kg-1 in rainy season, 574 g kg-1 in dry season). They are adequate forage alternatives for livestock in the humid tropics of Ecuador.

Key words Hybrid Brachiaria; Brachiaria brizantha; Brachiaria decumbens; Rainy season; Dry season; Morphological composition; Nutritional value

Resumen

El trópico húmedo ecuatoriano tiene potencial para la producción ganadera y los cultivares de Urochloa pueden ser una opción para la producción de alimento, pero se deben considerar las condiciones ambientales y de manejo, ya que estas determinarán el rendimiento y valor nutritivo del forraje. Se evaluó el rendimiento de materia seca total (MST; t ha-1), componentes morfológicos (%; hoja, tallo, material muerto e inflorescencia) y la digestibilidad in situ de la MS (DISMS; g kg-1) en cinco cultivares de Urochloa: Mulato II, Marandú, Xaraés, Piatá y Señal (testigo), a tres edades de rebrote (4, 6 y 8 semanas), durante las épocas de lluvias (ELL) y seca (ESE). Los datos se analizaron dentro de cada época con un diseño de bloques completos al azar en arreglo de parcelas divididas. Durante la ELL no hubo diferencia (P>0.05) en MST, entre cultivares evaluados. Durante la ESE Marandú presentó menor rendimiento que Xaraés (0.92 vs 1.21 t ha-1). La proporción de componentes morfológicos fue diferente entre cultivares (P<0.05) y las hojas fueron el componente que más contribuyó al rendimiento. La DISMS se redujo de 64 a 56 % y de 60 a 56 %, cuando el forraje se cosechó a 4 y 8 semanas durante la ELL y ESE, respectivamente. Los cultivares evaluados mostraron rendimientos aceptables de MST, 2.6 y 1.0 t ha-1 y DISMS, 602 y 574 g kg-1, durante la ELL y ESE, respectivamente; por lo que pueden ser una alternativa forrajera para la ganadería del trópico húmedo de Ecuador.

Palabras clave Brachiaria híbrido; Brachiaria brizantha; Brachiaria decumbens; Época de lluvias; Época seca; Composición morfológica; Valor nutritivo

Ruminant livestock systems are based on forage as a low-cost feed source in extensive production systems and as a complement in intensive systems1. Livestock productivity in the tropical zones of Ecuador is limited by low grassland forage yield. Two Urochloa (Syn. Brachiaria) species U. humidicola and U. decumbens dominate grasslands in Ecuador, but have low forage yield and nutritional value. They are also susceptible to the damaging effects of Aeneolamia spp. insects and foliar fungi such as Rhizoctonia solani, which significantly reduce forage yield2.

To improve forage quality and increase livestock production, Urochloa cultivars have been selected for their adaptation to soils with poor fertility and toxic aluminum levels, resistance to pests and diseases, and higher forage yield and nutritional value3. Different Urochloa cultivars have been introduced to overcome the problems observed in U. humidicola and U. decumbens4. For example, annual dry matter (DM) production in U. hybrid cv. Mulato II and U. brizantha cv. Xaraés ranges from 25 to 30 t ha-1(5,6,7, while in U. decumbens the range is from 11 to 19 t ha-1(8. In studies of U. decumbens, U. hybrid cv. Mulato I and U. humidicola9,10,11, as well as U. brizantha cv. Marandú and U. hybrid cv. Mulato II12, total DM production was similar, although differences were observed in morphological composition. In some genotypes (Mulato I and II), higher leaf production correlated with higher crude protein content13. The Mulato II hybrid significantly outperforms other commonly used brachiariae (U. brizantha and U. humidicola) in terms of forage quality due to its 67 % DM digestibility14; this is notably higher than the 58% DM digestibility of Xaraés and the 43 % of U. decumbens15.

Genetic composition largely determines a forage species’ productive capacity2, but environmental factors (climatic conditions) and pasture management modify the expression of foraging behavior and forage nutritional value16,17. Before introducing a new forage species it is vital to evaluate its agronomic performance under controlled conditions to confirm that it is a viable option for livestock in the region11. The present study objective was to evaluate forage yield, morphological composition and in situ digestibility of five Urochloa spp. forage cultivars at three regrowth ages, during the rainy and dry seasons in the humid tropics of Ecuador.

The study was carried out under seasonal conditions from December 2011 to November 2012. The experimental site is located in the El Oasis Farm of the School of Agricultural Engineering, Santo Domingo Campus, Equinoctial Technological University (Universidad Tecnológica Equinoccial), Ecuador (00° 13’ 19.70” S; 79° 15’ 39.00” W; 406 m asl). Local soils are classified as Andisol, with a 5.9 pH and 2.2 % organic matter content. The soil mineral profile consists of NH4 (41.0 mg kg-1), P (6.5 mg kg-1), S (6.3 mg kg-1), Fe (42.0 mg kg-1), K (0.3 cmol kg-1), Ca (8.3 cmol kg-1) and Mg (2.9 cmol kg-1). In the Köppen classification system, regional climate is tropical monsoon (Am), characterized by two well-defined periods or seasons: rainy (January to June) and dry (July to December). This is clearly reflected in the average monthly rainfall and temperatures (maximum and minimum) recorded during the experimental period, and average monthly rainfall from 2000 to 2012 (Figure 1).

Figure 1 Rainfall and temperature during experimental period, and average rainfall from 2000-2012 

Two factors were studied: 1) cultivars, U. brizantha (Marandú, Piatá and Xaraés), the Mulato II hybrid (U. ruziziensis X U. brizantha) and U. decumbens as a control; and 2) regrowth age, 4, 6 and 8 wk. Harvest of each of the three genotypes was done at each regrowth age during both the rainy (13 March to 12 May, Tmin=20.8 °C, Tmax=28.6 °C; accumulated rainfall = 1,733 mm) and dry seasons (7 September to 3 November, Tmin=19.2 °C, Tmax=28.1 °C; accumulated rainfall = 39 mm).

Commercial seed was sown on 17 December 2011. Emergence of at least one plant was guaranteed by planting three seeds each in black polyethylene bags (approximate 2 kg) containing soil from the experimental site. Seven weeks after planting (4 February 2012), the plants were transplanted to 5×5 m plots (25 m2) with 0.5 m between plants and rows (total = 40,000 plants ha-1). Within each plot the effective area was 9 m2, which encompassed 7, three-meter-long rows containing 7 plants each. Three of the plants in each row were randomly selected for harvest at each regrowth age. At the time of transplanting, all plots were fertilized: 120 kg ha-1 N (Urea, FERTISA S.A., Ecuador); 60 kg ha-1 P2O5 (DAPHOS, Tecnifertpac S.A., Ecuador); 70 kg ha-1 K2O (potassium muriate, FERTISA S.A., Ecuador); 60 kg ha-1 Mg (magnesium oxide, Interfilk S.A., Ecuador); and 50 kg ha-1 SO4 (ammonium sulfate, FERTISA S.A., Ecuador).

The rainy season evaluation was begun on 17 March 2012, six weeks after transplanting, by making a uniform cut 15 cm above ground level. At the end of the rainy season, the plots were allowed to recover to avoid overlap between seasons and prevent confounding effects. The dry season evaluation was begun on 7 September 2012, by making a uniform cut 15 cm above ground level. For each sampling (4, 6 and 8 wk in both seasons), all the forage present in the 3 m effective area (i.e. seven plants) was harvested at 15 cm above ground level and weighed on a precision scale (Model PB3002-S, Mettler Toledo®, Switzerland) at the time of cutting (green matter). Samples were dried in a forced-air oven (Model 100-800, Memmert, Germany) at 65 °C for 48 h to estimate dry matter (DM) content. Two subsamples of approximately 0.2 and 1.0 kg were taken. The first was separated into morphological components (leaf, stem, dead material and inflorescence) and the second used for chemical and in situ digestibility analysis.

The variables evaluated included total dry matter yield (TDM; t ha-1) and the DM proportion (%) of each morphological component: leaf (DMl), stem (DMs), dead material (DMd) and inflorescence (DMi). Total dry matter (TDM), the neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin (Lig) contents (g kg-1) of the TDM were measured with an ANKOM fiber analyzer (ANKOM 200/220®) following ANKOM Technology protocols18. In situ DM digestibility (DMD; g kg-1) was quantified using the technique of Vanzant et al19. For the DMD analysis, samples were ground to a 2 mm particle size and 4 g sample (DM) placed in a 15×7 cm nylon bag (50 ± 10 µm pore size) tied to a metal chain. By means of a ruminal cannula, the samples were incubated for 48 h in three Holstein cows (560 ± 23 kg) feeding in Lolium perenne pastures and with free access to water. The samples were removed and washed with running tap water until the effluent became clear. They were dried in a forced-air oven at 65 °C for 48 h and weighed on an analytical scale.

The data were analyzed by season in a completely randomized design with four replicates and a divided plot arrangement; the large plot was cultivar and the small plot was regrowth age. Treatment means were compared with a Tukey test (α=0.05). The statistical analyses were run with the GLM procedure in the SAS program20.

During the rainy season, regrowth age positively influenced forage yield (P<0.05), increasing from 1.14 (4 wk) to 4.23 (8 wk) t DM ha-1 per cut. At 4 weeks’ regrowth, the Marandú cultivar had the lowest TDM yield (0.79 t ha-1)(P<0.05), but at wk 6 and 8 TDM did not differ (P>0.05) between cultivars. As a result, average regrowth age TDM yield (2.64 t ha-1) did not differ (P˃0.05) between the evaluated cultivars. During the dry season, the Marandú cultivar had lower (P<0.05) TDM values than the Xaraés cultivar (0.92 vs 1.21 t ha-1; Table 1). Overall forage yield decreased 60 % from the rainy season (2.64 t ha-1) to the dry season (1.05 t ha-1).

Table 1 Total dry matter yield (t ha-1) of five Urochloa cultivars at three regrowth ages in the rainy (March-May) and dry (September-November) seasons 

Cultivar Rainy season Dry season
Regrowth age (weeks) Average Regrowth age (weeks) Average
4 6 8 4 6 8
Señal 0.88 bc 2.71 a 4.22 a 2.60 a 0.41 a 0.77 ab 1.98 ab 1.05 ab
Marandú 0.79 c 2.55 a 3.90 a 2.41 a 0.43 a 0.71 b 1.62 b 0.92 b
Mulato II 1.28 a 2.32 a 4.17 a 2.59 a 0.28 b 0.64 b 1.92 ab 0.95 ab
Piatá 1.16 ab 2.31 a 4.39 a 2.62 a 0.40 ab 0.94 a 1.97 ab 1.10 ab
Xaraés 1.58 a 2.80 a 4.47 a 2.95 a 0.41 a 0.83 ab 2.39 a 1.21 a
Average 1.14 C 2.54 B 4.23 A 0.38 C 0.78 B 1.98 A

Within each season, different letters in the same column (a, b, c) or the same row (A, B, C) indicate statistical difference (Tukey; P=0.05).

The observed TDM accumulation was similar to that reported in a study of different U. humidicola (Rendle) Schweick cultivars during the dry season (average rainfall = 50 mm) in which no differences were found in TDM yield between cultivars10. Climate factors such as rainfall and temperature significantly influence forage biomass production21,22, and yield can drop as much as 50 % during the dry season23. This is clearly the case in the present study, in which an approximately1700 mm fluctuation in rainfall resulted in an almost 60 % drop in forage TDM.

Morphological composition varied between genotypes within each season (P<0.05). During the rainy season, Señal grass had the highest DMs proportions among the evaluated regrowth ages. Dead matter (DMd) appeared at eight weeks’ regrowth in Señal (9 %), Mulato II (6 %) and Marandú (3 %), but not in the Piatá and Xaraés cultivars. Inflorescence DM (DMi) was only observed in Señal (0.6 % at 4 wk, 1.2 % at 6 wk, 3.5 % at 8 wk) and Piatá (3 % at 8 wk) in this season (Figure 2A).

Mul: Mulato II, Mar: Marandú, Xar: Xaraés, Pia: Piatá, Señ: Señal. Within each regrowth age, the bars represent statistical difference (Tukey, P=0.05).

Figure 2 Proportion of morphological components in five Urochloa cultivars at three regrowth ages in the rainy (A) and dry (B) seasons 

Differentiation in morphological components between cultivars and regrowth periods was less pronounced during the dry season. At 4 wk the proportion of DMl was lowest in Señal (90 %) since it was the only cultivar to exhibit DMs (10 %) at this age. None of the cultivars had DMd at any time and DMi was only observed in Señal at 8 wk (2%; Figure 2B). In both seasons, DMl made the highest contribution to TDM yield, followed by DMs, DMd and DMi.

Season and regrowth age influenced cultivar DM production and morphological composition. The changes observed during the rainy season are the result of a higher tissue turnover rate and active growth, mainly due to moisture availability24. During the dry season growth decreased9, stem growth was minimal and therefore DMl constituted the greatest contribution to forage yield and caused leaves to be the component that most contributed to TDM yield (Figure 2).

In all the cultivars, DMD during the rainy season only differed (P<0.05) between four and six weeks’ regrowth (Table 2). In the dry season, by contrast, differences (P<0.05) in DMD were observed between six and eight weeks’ regrowth. The overall decrease in DMD from four to eight weeks was 15.9 % (86 g kg-1) in the rainy season and 5.7 % (34 g kg-1) in the dry season. Similar behavior has been reported in U. decumbens, Marandú and Xaraés, in which average DMD was higher during the rainy season (650 vs 620 g kg-1)21. This discrepancy between seasons might be due to higher production of secondary metabolites (phenylpropanoid conjugates with amines) during the dry season when plants are under stress; these are incorporated into the plant cell wall to increase its rigidity25,26, consequently decreasing DMD.

Table 2 In situ dry matter digestibility (g kg-1) of five Urochloa cultivars at three regrowth ages during the rainy and dry seasons 

Cultivar Rainy season Dry season
Regrowth age (weeks) Average Regrowth age (weeks) Average
4 6 8 4 6 8
Señal 638 ab 581 b 533 a 584 b 598 a 549 b 553 ab 567 bc
Marandú 670 a 621 ab 576 a 622 a 609 a 598 a 609 a 605 a
Mulato II 649 ab 646 a 580 a 625 a 590 a 571 ab 563 a 574 b
Piatá 647 ab 586 b 565 a 599 ab 595 a 557 b 584 a 579 b
Xaraés 615 b 589 b 533 a 579 b 588 a 541 b 500 b 543 c
Promedio 644 A 604 B 558 C 596 A 563 B 562 B

Within each season, different letters in the same column (a, b, c) or same row (A, B, C) indicate statistical significance (Tukey; α=0.05).

In situ dry matter digestibility (DMD) was >540 g kg-1 in all genotypes, regardless of season. It was highest in Mulato II and Marandú and lowest in Señal (U. decumbens). These results coincide with an another study in which U. decumbens was found to have lower digestibility than U. brizantha (430 vs. 580 g kg-1)15. This discrepancy may arise from the fact that U. brizantha develops fibers with lower lignin content and thinner cell walls than U. decumbens27. The observed progressive decrease in DMD with regrowth period is mainly due to plant maturation and the consequent increase in lignin bound to hemicellulose and cellulose28, which lowers rumen microorganism effectiveness and may reduce forage digestibility29.

Neutral detergent fiber (NDF), ADF and Lig differed by season (P<0.05) between cultivars and regrowth ages (Table 3). During the rainy season, Xaraés had the highest NDF, ADF and Lig contents (P<0.05). During the dry season, Señal had 25% more Lig (P<0.05) than Mulato II (79 vs. 63 g kg-1). In both seasons, fiber content (NDF and ADF) increased in response to regrowth age from four to eight weeks. In the rainy season, NDF increased (P<0.05) by 3.7 % (25 g kg-1), ADF by 6.1 % (24 g kg-1) and Lig by 30.7 % (17 g kg-1), while in the dry season NDF increased (P<0.05) by 4.8 % (32 g kg-1), ADF by 12.3 % (44 g kg-1) and Lig by 26.9 % (17 g kg-1). This increase in cell wall components and consequent reduction in DMD was probably due to plant maturity16 and the intrinsic characteristics of each genotype2,30.

Table 3 Neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin (Lig) contents in five Urochloa cultivars, at three regrowth ages during the rainy and dry seasons 

Cultivar Rainy season Dry season
Regrowth age (weeks) Average Regrowth age (weeks) Average
4 6 8 4 6 8
NDF (g kg-1)
Señal 659 ab 681 a 691 b 677 c 646 ab 670 a 696 a 671 a
Marandú 669 ab 683 a 692 b 682 bc 656 ab 678 a 691 ab 675 a
Mulato II 649 b 660 a 660 c 656 d 619 b 661 a 669 b 650 b
Piatá 678 ab 683 a 712 a 691 ab 682 a 686 a 696 a 688 a
Xaraés 694 a 693 a 718 a 702 a 685 a 680 a 696 a 687 a
Average 670 B 680 B 695 A 658 C 675 B 690 A
ADF (g kg-1)
Señal 387 b 381 b 409 bc 392 b 352 b 394 a 414 a 387 bc
Marandú 399 b 397 ab 410 b 402 b 346 bc 391 a 402 ab 380 c
Mulato II 360 c 375 b 388 c 375 c 331 c 374 b 380 b 361 d
Piatá 395 b 388 ab 427 ab 403 b 379 a 393 a 399 ab 390 ab
Xaraés 417 a 422 a 445 a 428 a 377 a 403 a 411 a 397 a
Average 392 B 393 B 416 A 357 C 391 B 401 A
Lig (g kg-1)
Señal 70 a 77 b 92 b 80 b 68 a 77 a 91 a 79 a
Marandú 64 a 69 cd 78 c 70 cd 62 a 67 a 84 ab 71 ab
Mulato II 61 a 62 d 71 c 64 d 57 a 63 a 69 c 63 b
Piatá 63 a 70 bc 83 b 72 bc 63 a 68 a 79 bc 70 ab
Xaraés 70 a 91 a 103 a 88 a 64 a 68 a 78 bc 70 ab
Average 65 C 74 B 85 A 63 C 69 B 80 A

Within each season, different letters in the same column (a, b, c, d) or the same row (A, B, C) indicate significant difference (Tukey; α=0.05).

The NDF and ADF contents observed here at six weeks in both seasons (rainy and dry) are similar to those reported previously at 40 days’ regrowth for three cultivars: Marandú (680 and 396 g kg-1), Xaraés (700 and 400 g kg-1) and Piatá (670 and 370 g kg-1)31. However, the present Lig values are higher than those reported in the same previous study at 40 days’ regrowth for Marandú (45 g kg-1) and Piatá (43 g kg-1)31. Both season and regrowth age affect cell wall components; for example, at 24 days’ regrowth NDF was lower during the rainy season than in the dry season in U. decumbens (610 vs 690 g kg-1) and U. brizantha cv. Xaraés (690 vs 710 g kg-1), as was ADF (U. decumbens, 230 vs 340 g kg-1; and U. brizantha cv. Xaraés, 430 vs 510 g kg-1)21. Cultivar can also affect these variables; in the present results, during the rainy season the Xaraés cultivar had the highest NDF, ADF and lignin contents, and lowest DMD, while the Mulato II cultivar had the lowest values for these cell wall components and the highest DMD. Lignin interferes with the use of digestible energy and is considered an antinutritional component29. This is because in grasses, unlike in legumes, a greater proportion of lignin is bound to hemicellulose and cellulose32, which prevents microbial action, lowering forage digestibility28. Lignin content can also increase when plants experience stress due to high temperatures. They protect themselves through the structural mechanism of increasing cell walls (which are mainly lignin), thus reducing forage digestibility25.

Lack of precipitation during the dry season negatively affected all the evaluated variables. Regrowth age significantly affected yield, morphological composition, fiber content and in situ dry matter digestibility. All the cultivars exhibited acceptable dry matter production per cut in both seasons even though the grasslands were recently established. The in situ digestibility values in the Mulato II and Marandú cultivars remained constant over time. Forage availability is critical in the humid tropics of Ecuador, especially at the end of the dry season. The present results suggest the Mulato II, Marandú and Xaraés cultivars are promising forage alternatives due to their dry matter content and digestibility.

Acknowledgements

The Consejo Nacional de Ciencia y Tecnología (CONACYT) awarded research and visit grants (266100, 290618) to JRGM in Ecuador. The authors thank the Escuela Superior Politécnica de Chimborazo (Ecuador), the Escuela de Ingeniería Agropecuaria de la Universidad Tecnológica Equinoccial, Campus Santo Domingo (Ecuador) and the Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas (México) for access to the facilities that made this research possible.

REFERENCES

1. Martínez-González JC, Castillo-Rodríguez S, Villalobos-Cortés A, Hernández-Meléndez J. Sistemas de producción con rumiantes en México. Ciencia Agropecuaria 2017;(26):132-152. [ Links ]

2. Miles JW. Mejoramiento genético en Brachiaria: objetivos, estrategias, logros y proyecciones. Pasturas Trop 2006;28(1):26-30. [ Links ]

3. Lascano C, Pérez R, Plazas C, Medrano J, Pérez O, Argel PJ. Cultivar Toledo-Brachiaria brizantha (Accesión CIAT 26110); gramínea de crecimiento vigoroso para intensificar la ganadería colombiana. 1ra ed. Cali, Colombia: Centro Internacional de Agricultura Tropical; 2002. [ Links ]

4. Pizarro EA, Hare MD, Mutimura M, Changjun B. Brachiaria hybrids: potential, forage use and seed yield. Trop Grassl-Forrajes Trop 2013;1(1):31-35. [ Links ]

5. Guiot JD, Meléndez F. Producción anual de forraje de cuatro especies de Brachiaria en Tabasco. En: Universidad Veracruzana editor. XVI Reunión Científica Tecnológica Forestal y Agropecuaria. Veracruz. 2003:126-128. [ Links ]

6. Peters M, Franco LH, Schmidt A, Hincapié B. Especies forrajeras multipropósito: opciones para productores de Centroamérica. 1ra ed. Cali, Colombia: Centro de Investigación Agrícola Tropical; 2003. [ Links ]

7. Argel PJ. Cultivar mulato II (Brachiaria híbrido CIAT 36087). Gramínea de alta calidad y producción forrajera, resistente a salivazo y adaptada a suelos tropicales ácidos bien drenados. En: González C, Madrid N, Soto E, editores. Desarrollo sostenible de la ganadería doble propósito. 1ra ed. Maracaibo, Venezuela: Ediciones Astro Data SA.; 2008:347-362. [ Links ]

8. Enríquez JF, Meléndez N, Bolaños ED, Esqueda VA. Producción y manejo de forrajes tropicales. 1ra ed. D.F., México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; 2011. [ Links ]

9. Cruz PI, Hernández A, Enríquez JF, Mendoza SI, Quero AR, Joaquín BM. Desempeño agronómico de genotipos de Brachiaria humidicola (Rendle) Schweickt en el trópico húmedo de México. Rev Fitotec Mex 2011;34(2):123-131. [ Links ]

10. Reyes-Purata A, Bolaños-Aguilar ED, Hernández-Sánchez D, Aranda-Ibañez EM, Izquierdo-Reyes F. Producción de materia seca y concentración de proteína en 21 genotipos del pasto Humidícola Brachiaria humidícola (Rendle) Schweick. Universidad y Ciencia 2009;25(3):213-224. [ Links ]

11. Rojas-Hernández S, Olivares-Pérez J, Jiménez-Guillén R, Gutiérrez-Segura I, Avilés-Nova F. Producción de materia seca y componentes morfológicos de cuatro cultivares de Brachiaria en el trópico. Rev Avan Inv Agrop 2011;15(1):3-8. [ Links ]

12. Maia GA, Costa KAP, Severiano EC, Epifanio PS, Neto JF, Ribeiro MG, et al. Yield and chemical composition of Brachiaria forage grasses in the offseason after corn harvest. Am J Plant Sci 2014;(5):933-941 [ Links ]

13. Pérez JA, García E, Enríquez JF, Quero AR, Pérez J, Hernández A. Análisis de crecimiento, área foliar específica y concentración de nitrógeno en hojas de pasto “mulato” (Brachiaria híbrido, cv.). Téc Pecu Méx 2004;42(3):447-458. [ Links ]

14. Betancourth M, Avila P, Ramirez G, Lascano C. Milk yield of cows grazing Brachiaria pastures managed with high grazing pressure. In: Lascano CE editor. Annual report 2005. Tropical grasses and legumes: optimizing genetic diversity for multipurpose use (Project IP5). 1rst ed. Cali, Colombia: Centro Internacional de Agricultura Tropical ; 2006:3-5. [ Links ]

15. Avellaneda-Cevallos J, González-Muñoz S, Pinos-Rodríguez J, Hernández-Garay A, Montañez-Valdez O, Ayala-Oseguera J. Enzimas fibrolíticas exógenas en la digestibilidad in vitro de cinco ecotipos de Brachiaria. Agron Mesoam 2007;18(1):11-17. [ Links ]

16. Lara C, Oviedo LE, Betancur CA. Efecto de la época de corte sobre la composición química y degradabilidad ruminal del pasto Dichanthium aristatum (Angleton). Zootecnia Trop 2010;28(2):275-281. [ Links ]

17. Fagundes JL, da Fonseca DM, Gomide JA, Junior DN, Vitor CMT, de Morais RV, et al. Acúmulo de forragem em pastos de Brachiaria decumbens adubados com nitrogênio. Pesq Agropec Bras 2005;40(4):397-403. [ Links ]

18. ANKOM Technology. Operator´s manual. ANKOM Technology. 1rst ed. New York, USA: ANKOM Technology; 2006. [ Links ]

19. Vanzant E, Cochran R, Titgemeyer E. Standardization of in situ techniques for ruminant feedstuff evaluation. J Anim Sci 1998;76(10):2717-2729. [ Links ]

20. SAS. SAS/STAT® 9.2 User’s Guide. 1rst ed. Cary, North Carolina, USA: SAS Institute, Inc.; 2008. [ Links ]

21. Cuadrado C, Torregroza HL, Jiménez N. Comparación bajo pastoreo con bovinos machos de ceba de cuatro especies de gramíneas del género Brachiaria. Rev MVZ Córdoba 2004;9(2):438-443. [ Links ]

22. Thornton PK, van de Steeg J, Notenbaert A, Herrero M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agr Syst 2009;101(3):113-127. [ Links ]

23. Benítez D, Fernández JL, Ray J, Ramírez A, Torres V, Tandrón I, et al. Factores determinantes en la producción de biomasa en tres especies de pastos en sistemas racionales de pastoreo en el Valle del Cauto, Cuba. Rev Cubana Cienc Agríc 2007;41(3):231-235. [ Links ]

24. Castro R, Hernández A, Ramírez O, Aguilar G, Enríquez JF, Mendoza SI. Crecimiento en longitud foliar y dinámica de población de tallos de cinco asociaciones de gramíneas y leguminosa bajo pastoreo. Rev Mex Cienc Pecu 2013;4(2):201-215. [ Links ]

25. Del Pozo PP. Bases ecofisiológicas para el manejo de pastos tropicales. Pastos 2002;32(2):109-137. [ Links ]

26. Sepúlveda-Jiménez G, Porta-Ducoing H, Rocha-Sosa M. La participación de los metabolitos secundarios en la defensa de las plantas. Rev Mex Fitopatol 2003;21(3):355-363. [ Links ]

27. Mauri J, Techio VH, Davide LC, Pereira DL, Sobrinho FS, Pereira FJ. Forage quality in cultivars of Brachiaria spp.: association of lignin and fibers with anatomical characteristics. Aust J Crop Sci 2015;9(12):1148-1153. [ Links ]

28. Lazzarini I, Detmann E, Sampaio CB, Paulino MF, Filho SCV, Souza MA, et al. Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Rev Bras Zoot 2009;38(10):2021-2030. [ Links ]

29. Church DC, Pond WG, Pond KR. Fundamentos de nutrición y alimentación de animales. 2da ed. D.F., México: Limusa; 2007. [ Links ]

30. Valles B, Castillo E, Bernal H. Rendimiento y degradabilidad ruminal de materia seca y energía de diez pastos tropicales cosechados a cuatro edades. Rev Mex Cienc Pecu 2016;7(2):141-158. [ Links ]

31. Costa KAP, Assis RL, Guimarães KC, Severiano EC, Assis JM, Crunivel WS, et al. Silage quality of Brachiaria brizantha cultivars ensiled with different levels of millet meal. Arq Bras Med Vet Zoo 2011;63(1):188-195. [ Links ]

32. Cornu A, Besle JM, Mosoni P, Brene E. Lignin-carbohidrate complexes in forages: structure and consequenses in the ruminal degradation of cell-wall carbohydrates. Reprod Nutr Dev 1994;34(5):385-398. [ Links ]

Received: February 25, 2020; Accepted: December 22, 2020

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons