SciELO - Scientific Electronic Library Online

 
vol.12 número2Predicción de la calidad fermentativa de ensilados de girasol mediante espectroscopía de reflectancia en el infrarrojo cercano (NIRS) sobre muestras secasEficacia del timol en el control del hongo Nosema ceranae infectando abejas africanizadas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias pecuarias

versión On-line ISSN 2448-6698versión impresa ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.12 no.2 Mérida abr./jun. 2021  Epub 15-Nov-2021

https://doi.org/10.22319/rmcp.v12i2.4398 

Technical notes

Corbicular pollen spectrum (Apis mellifera) of samples from Huejotitan, Jalisco, Mexico

Roberto Quintero Domíngueza 

Lino de la Cruz Lariosa 

Diego Raymundo González Eguiartea 

José Arturo Solís Magallanesb 

José Francisco Santana Michelc 

José Luis Reyes Carrillod  * 

a Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Producción Agrícola, Camino Ramón Padilla Sánchez 2100 Nextipac, 45200 Zapopan, Jalisco, México.

b Universidad de Guadalajara. Centro Universitario de la Costa Sur, Departamento de Ecología y Recursos Naturales, Autlán, Jalisco, México.

c Universidad de Guadalajara. Centro Universitario de la Costa Sur, Departamento de Ecología y Recursos Naturales, Laboratorio de Botánica, Autlán, Jalisco, México.

d Universidad Autónoma Agraria Antonio Narro. Unidad Laguna, Departamento de Biología, Torreón, Coahuila, México.


Abstract

This study examines the different plants visited by the honeybee (Apis mellifera L.) during the honey harvest season (August to November) 2012. The work consisted in identifying the corbicular pollen pellets collected by the bees in one apiary in the village of Huejotitan, municipality of Jocotepec, state of Jalisco, Mexico. Three hives were selected and sampled monthly by means of Ontario modified pollen traps. The samples were tagged and frozen and later processed by acetolysis technique to remove the exine; permanent glycerine slides were made for the preservation and analysis. Identification and counting of pollen grains was performed using an Olympus BH-2® upright microscope equipped with a 100X ocular micrometer to measure each individual species pollen grain, using immersion oil. Wild plants in bloom were also collected monthly, tagged, pressed and taken to the herbarium for identification; the pollen was extracted, processed and identified for a reference collection that served as an ancillary means of identification and as a seasonal reference to the blooming species. In the corbicular pollen, 23 types of plants were identified: 13 at species level, five at genus level and five at family level belonging to 17 plant families. Myrtaceae resulted the most frequently represented family followed by Asteraceae, Fabaceae and Lamiaceae.

Key words Bee behavior; Bee foraging; Apipalynology; Apibotany

Resumen

Las abejas melíferas (Apis mellifera L.) dependen completamente de los recursos que las rodean. Estos afectan su supervivencia, producción de miel y la calidad de ésta. Muy poca información está disponible sobre los recursos que utilizan las abejas melíferas en México. Se hizo un estudio para identificar los recursos florales utilizados por las abejas melíferas por medio de un análisis del polen corbicular colectado de un colmenar en la población de Huejotitan, municipio de Jocotepec, estado de Jalisco, México. Se utilizaron trampas de polen tipo Ontario modificadas para colectar muestras de polen de manera mensual de tres colmenas a través de un periodo de cuatro meses (agosto - noviembre, 2012). Se etiquetaron y congelaron las muestras para luego procesarlas mediante la técnica de acetólisis para eliminar la exina. Se prepararon portaobjetos permanentes de glicerina para conservar y analizar las muestras. La identificación, el recuento de los granos de polen, así como la medición de cada grano se realizaron por medio de un microscopio vertical equipado con un micrómetro ocular de 100X y utilizando aceite de inmersión. Se hizo una colección de referencia como medio auxiliar de identificación y como referencia estacional de las especies florecientes en el área del colmenar muestreado. Una vez al mes se recolectaron, se marcaron, y se prensaron flores de todas las plantas en flor, y se llevaron al herbario para su identificación. El polen fue extraído de estas flores, procesado e identificado. En las muestras de polen corbicular se identificaron 23 tipos de plantas pertenecientes a 17 familias de plantas. Trece de ellas se identificaron a nivel de especie, cinco a nivel de género y cinco más a nivel familia. Myrtaceae fue la familia representada con mayor frecuencia en las muestras, seguida por Asteraceae, Fabaceae y Lamiaceae.

Palabras clave Comportamiento; Pecoreo; Apipalinología; Apibotánica

Despite their role as key pollinators among insects1, the biological fundamentals for pollen source selection by honey bees (Apis mellifera) in Mexico are still mostly unknown. Botanical studies with apicultural interests are not particularly abundant if is considered that Mexico is a large and mega diverse country, classified in the first places in apicultural production and exports in the world2. Since bees depend entirely on the vegetation for their survival, it is crucial to understand their feeding preferences as well as the specifics about pollen availability throughout the year. Pollen contains the nutrient protein3 needed for the brood and young workers survival and proper development. It also contains lipids, vitamins and minerals4 as incidental components.

Foragers collect pollen in a trend and proportion that vary greatly according to the availability of the resources, distance to the source, nutritional value5, needs of the hive, i.e. life cycle and physiology of workers, queen and drones and weather conditions6. This is of particular interest to beekeepers and researchers because the gathering behaviour of the bees does not seem to have fixed patterns. Each season bees will collect pollen in regards to different variables and even in arbitrary ways, i.e. without regard to its nutritional value or from resources that are not as close or highly available as others7. This type of information is fundamental to beekeeping and to assess the potential of any determined area, for the production of pollen and for all efforts related to the conservation of biodiversity8, particularly where the populations of bees are declining.

Analysis of the pollen collected provides information about its botanical origin, the preferred plant species and aids in understanding the foraging behaviour of the bees. The objective of this study was to find what pollen types were collected by honey bees during the honey production season.

With this in mind, a sampling project was designed to collect and analyze corbicular pollen to determine the spectrum of the pollen used by A. mellifera. The pollen grains were primarily identified by means of a special pollen reference collection made from plants in bloom in the locality. These plants were identified by botanical specialists from the University of Guadalajara, and the voucher specimens remain at the Botanical Institute Herbarium of the Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA). A site was selected within an area of importance for beekeeping, in one apiary in the village of Huejotitan, municipality of Jocotepec, state of Jalisco. The experimental site was located at 20°21’13.45’’N, 103°29’6.97’’W. The elevation at the site is 1,597 m asl. around the apiary, the land cover is dominated by seasonal cultivated crops, pastures and secondary vegetation interspersed with tropical deciduous forest.

Among 23 bee hives in the apiary, three were chosen for their strength to be sampled once a month for four months with modified Ontario pollen traps9. From August to November 2012, traps were installed and kept in place for 24 to 48 h and then removed. This period corresponds to the honey preharvest and harvest season. The corbicular pellets were gathered from the trays, cleared of debris, put in plastic containers, tagged and frozen. At the laboratory, 1.5 g of pollen were taken from each of the three samples corresponding to one given month and mixed together to form one single larger sample of the pollen collected from the three hives together. In the end there were four samples from the original 12, one for each month.

Before processing, the pellets were carefully and softly mashed in a mortar. The pollen grains were processed by acetolysis technique to remove the exine; permanent glycerine jelly slides were made for the preservation and analysis; the pollen grains were identified by their size and shape, with an Olympus BH-2® upright microscope equipped with a 100X ocular micrometer to measure each individual species pollen grain, using immersion oil; volume of the individual pollen grain was calculated with the formula: V=4/3πa2b where "V" is volume, "a" is the major axe of the pollen grain and "b" the minor axe10. Identification was made by comparison with the pollen reference collection of the Institute of Geology, Universidad Nacional Autónoma de México. In order to obtain the relative percentage, all the pollen grains were counted in each slide. A reference collection with the pollen grains of local plants in bloom was prepared as an ancillary means of identification.

Every month for 4 mo a circuit between 3 and 5 km long in the surroundings of the apiary was walked to sample all blooming plants. The pollen grains where obtained by extracting the anthers from the flowers and then processed for acetolysis according to the same technique11mentioned above. The information was used to determine whether a plant was a source of nectar, pollen or both, as well as their migratory status. Information was also taken from the available domestic bee flora publications11-15. From the pellet samples, 23 different pollen types belonging to 17 plant families were recorded (Table 1) and from these 13 were identified at species level, 5 at genus level and 5 at family level. In August there was no dominant pollen type, however there were three secondary types, Aster sp., Eucalyptus citriodora and Ricinus communis, one important minor, Cyperaceae, and traces of other ones. Thus the four types were significant, with percentages above ten. In September E. citriodora was the dominant type with Poaceae and Psidium guajava as secondary types and traces of others. In this month three types were significant, with percentages above ten. In October no dominant type was obtained but there were again three secondary types, E. citriodora, Hyptis albida and L. leucocephala, all significant, with percentages above ten, and traces of others. In November E. citriodora was considerably dominant over the two secondary types, Asteraceae and Pseudosmodingium sp., but the three were significant, with percentages above ten, and traces of others. E. citriodora was significant in the four samples and Asteraceae and L. leucocephala were found in three. R. communis, Sicyos angulatus, Citrus sp., Pseudosmodingium sp. and Poaceae appeared in two samples each.

Table 1 Pollen types from pollen pellet samples, represented by taxa in percentages in the Huejotitan, Jalisco region during August-November 2012 

Taxa Family Aug
(%)
Sep
(%)
Oct
(%)
Nov
(%)
Migratory status
Acacia farnesiana Fabaceae 2.4 native
Aster sp. Asteraceae 34.1 unknown
Asteraceae Asteraceae 5.3 5.8 14.5 unknown
Betula sp. Betulaceae 5.5 unknown
Citrus sp. Rutaceae 1.7 1.4 exotic
Cyperaceae Cyperaceae 14.0 unknown
Dodonaea viscosa Sapindaceae 1.0 1.2 native
Eucalyptus citriodora Myrtaceae 20.5 47.2 34.6 65.6 exotic
Fabaceae Fabaceae 2.1 unknown
Fragaria vesca Rosaceae 4.5 exotic
Fraxinus uhdei Oleaceae 3.0 native
Heliocarpus terebinthinaceus Malvaceae 2.1 native
Hyptis albida Lamiaceae 18.2 native
Leucaena leucocephala Fabaceae 2.9 16.1 2.0 native
Poaceae Poaceae 17.5 1.0 unknown
Pseudosmodingium sp. Anacardiaceae 8.2 11.9 unknown
Psidium guajava Myrtaceae 17.0 native
Psittacanthus calyculatus Loranthaceae 2.1 native
Ricinus communis Euphorbiaceae 17.1 1.9 exotic
Rubus idaeus Rosaceae 1.6 exotic
Salix sp. Salicaceae 3.9 native
Sapindaceae Sapindaceae unknown
Sicyos angulatus Cucurbitaceae 5.8 1.3 native
Others 1.7 1.6 1.7 unknown

Each month the represented families changed, however, there was a consistency in their overall presence and percentages of representation (Table 2).

Table 2 Pollen types from pollen pellet samples, represented by families and percentages in the Huejotitan, Jalisco region during August-November 2012 

August 2012 September 2012 October 2012 November 2012
Asteraceae 34.1 Myrtaceae 64.2 Myrtaceae 34.6 Myrtaceae 65.6
Myrtaceae 20.5 Poaceae 17.5 Fabaceae 18.5 Asteraceae 14.5
Euphorbiaceae 17.2 Betulaceae 5.5 Lamiaceae 18.2 Anacardiaceae 11.9
Cyperaceae 14.0 Asteraceae 5.3 Anacardiaceae 8.2 Oleaceae 3.0
Rosaceae 4.5 Fabaceae 2.9 Asteraceae 5.8 Fabaceae 2.0
Salicaceae 3.9 Euphorbiaceae 1.9 Cucurbitaceae 5.8 Cucurbitaceae 1.3
Fabaceae 2.1 Sapindaceae 1.0 Malvaceae 2.1 Others 1.7
Loranthaceae 2.1 Others 1.7 Rosaceae 1.6
Rutaceae 1.6 Rutaceae 1.4
Sapindaceae 1.2
Poaceae 1.0
Others 1.6
Total 100 Total 100 Total 100 Total 100

Asteraceae was present in the four samples, Myrtaceae in three, Anacardiaceae, Fabaceae and Rosaceae in two, and Betulaceae, Cucurbitaceae, Cyperaceae, Euphorbiaceae, Lamiaceae and Oleaceae in one. 78 different species of plants in bloom, belonging to 30 families and 71 genres, were documented during the 11 mo (Table 3) in order to have as many as possible species of pollen grains documented for reference. The five best represented families were Asteraceae with 33.33 %, Fabaceae with 8.97 %, Solanaceae with 6.41 %, Lamiaceae with 5.12 % and Verbenaceae with 3.84 %. These five families represent 29.41 % of the total number of families and 57.67 % of the total number of species. 17 of all the species have been reported to be nectar producers, seven pollen producers, 17 nectar and pollen producers and 37 are not documented in terms of their importance for honey bees; 50 % were forbs, 30.77 % shrubs and 19.23 % trees. Considering all the species, 88.46 % were native and 11.54 % were exotic. Twenty-six (26) species were documented to be visited by honey bees.

Table 3 Species of plants sampled for the reference collection 

Species Family Source Form Migratory
status
Acacia farnesiana Fabaceae N-P shrub native
Adenophyllum cancellatum Asteraceae x forb native
Argemone mexicana Papaveraceae P forb native
Asclepias glaucescens Apocynaceae N shrub native
Bidens odorata Asteraceae N-P forb native
Bidens pilosa Asteraceae N-P forb native
Bocconia arborea Papaveraceae x tree native
Brassica rapa Brassicaceae N forb exotic
Buddleja sessiliflora Scrophulariaceae N-P shrub native
Casimiroa edulis Rutaceae N tree native
Castilleja tenuiflora Orobanchaceae x forb native
Chromolaena collina Asteraceae x shrub native
Cissus verticillata Vitaceae N forb native
Clematis rhodocarpa Ranunculaceae x forb native
Conyza canadensis Asteraceae x forb native
Cucurbita foetidissima Cucurbitaceae P forb native
Dicliptera peduncularis Acanthaceae x forb native
Diphysa puberulenta Fabaceae N-P shrub native
Dyssodia tagetiflora Asteraceae x forb native
Ehretia latifolia Boraginaceae x tree native
Erythrina coralloides Fabaceae x tree native
Eucalyptus citriodora Myrtaceae N-P tree exotic
Eupatorium odoratum Asteraceae N-P forb native
Flaveria trinervia Asteraceae x forb native
Fleischmannia sonorae Asteraceae x forb native
Fraxinusuhdei Oleaceae N-P tree native
Gronovia scandens Loasaceae x forb native
Guazuma ulmifolia Malvaceae N-P tree native
Heimia salicifolia Lythraceae x shrub native
Helianthus annuus L. Asteraceae N-P forb native
Hyptis albida Lamiaceae N shrub native
Ipomoea hederifolia Convolvulaceae x forb native
Ipomoea murucoides Convolvulaceae N tree native
Ipomoea purpurea Convolvulaceae x forb native
Iresine diffusa Amarantaceae x forb native
Jacaranda mimosifolia Bignoniaceae P tree exotic
Lantana camara Verbenaceae P shrub native
Leonotis nepetifolia Lamiaceae N-P shrub exotic
Licopersicum esculentum var. cerasiforme Solanaceae N forb native
Lippia umbellata Verbenaceae N shrub native
Mandevilla foliosa Apocynaceae x shrub native
Melampodium perfoliatum Asteraceae x forb native
Melia azedarach Meliaceae N-P tree exotic
Mimosa galeottii Fabaceae N shrub native
Montanoa karwinskii Asteraceae N-P shrub native
Nicotiana glauca Solanaceae x shrub exotic
Olivaea tricuspis Asteraceae x forb native
Parthenium hysterophorus Asteraceae P forb native
Perityle microglossa Asteraceae x forb native
Phytolacca icosandra Phytolaccaceae N forb native
Pistacia mexicana Anacardiaceae x tree native
Pithecellobium dulce Fabaceae N-P tree native
Prosopis laevigata Fabaceae N-P tree native
Pseudognaphalium chartaceum Asteraceae x forb native
Psidium guajava Myrtaceae N tree native
Psilactis asteroides Asteraceae x forb native
Psittacanthus calyculatus Loranthaceae N forb native
Ricinus communis Euphorbiaceae N shrub exotic
Salvia misella Lamiaceae x forb native
Salvia tiliifolia Lamiaceae x forb native
Schinus molle Anacardiaceae N-P tree exotic
Senecio salignus Asteraceae P shrub native
Senna occidentalis Fabaceae x forb native
Serjania racemosa Sapindaceae N-P forb native
Solanum ferrugineum Solanaceae x shrub native
Solanum grayi Solanaceae x forb native
Solanum grayi var. grandiflorum Solanaceae x forb native
Tagetes erecta Asteraceae N forb native
Thunbergia alata Acanthaceae x forb exotic
Tithonia tubiformis Asteraceae N forb native
Tournefortia mutabilis Boraginaceae x shrub native
Trixis hyposericea Asteraceae x shrub native
Verbena bipinnatifida Verbenaceae x forb native
Verbesina barrancae Asteraceae x shrub native
Verbesina crocata Asteraceae x shrub native
Vernonanthura cordata Asteraceae N shrub native
Vernonia bealliae Asteraceae P shrub native
Viguiera quinqueradiata Asteraceae N shrub native

The columns show species, family, food source: P= pollen, N= Nectar, x= not documented, form of life and migratory status in Mexico.

The months with more species in bloom were September and November with 16 species each, then October with 13 and finally August with 12. Bees represent the primary pollinators among insects and honey bees are becoming the only ones in areas where intensive crop monoculture is gradually wiping out the wild native insects. One of the reasons is that A. mellifera belongs to one of the few bee genera known to have polylectic habits16. Yield increases are reported to be up to 96% in cultivated crops pollinated by them17. In terms of the sources used by the honey bees as revealed in this study, Myrtaceae had the second highest percentage in August and by far the first in September, October and November. This family was prominently represented by E. citriodora, an introduced species. Originally evolved in the Austro-Malaysian region18, has been introduced in many countries for its value as timber, fuel wood, wood fiber and ornament19. The floral phenology of Eucalyptus tends to be synchronous among different individuals within one stand but at the same time shows great variation in flowering time and even intermittent flowering periods over the greater part of the year20; honeybee has been documented to be one of the most prevalent visitors its flowers21.

In August the Asteraceae family was dominant over Myrtaceae. Asteraceae is the most abundant family in Mexico22-25 and represents an estimated 10 % of all know plants in the world26 and its center of diversification is located in Mexico, where it is the largest and most representative group, containing from 7 to 32 % of the country's flora and 12.5 % of Jalisco´s27. In September, the second most abundant family was Poaceae, but neither species nor genre were determined. This is also an extensive group, with more than 500 species worldwide, which includes the cereals humans consume and the grasses for cattle feed26. In October, the second most important families, in equal percentages were Fabaceae, represented by L. leucocephala and A. farnesiana, and Lamiaceae, by H. albida. Although the percentages in this study refer to the number of pollen grains and not to their volume, the sizes are still relevant because the ratios change when analyzed in terms of a different variable. E. citriodora pollen grains are small, 25 µm average, and have the shape of a flattened triangular prism. The volume of one these grains averages approximately 3,125 µm3. Contrastingly, the pollen grains of A. farnesiana are 60 µm average, and ellipsoid in shape. Their volume is approximately 78,539.8 µm3. E. citriodora represented 34 % of the sample and A. farnesiana (Fabaceae) 2.4 % in terms of number of grains. Nevertheless, if their total volumes compared, the proportions change radically: 106,250 µm3 for E. citriodora and 196,349.5µm3 for A. farnesiana, almost twice the volume of E. citriodora.

In November Asteraceae was the second most important family; some pollen species, regardless of their frequency, were present in at least two of the pollen load samples indicating their presence for longer than a single month thus representing a long-term food resource during the year. Such is the case with E. citriodora, present in the four samples, and Asteraceae and L. leucocephala (Fabaceae), present in three. Of the 23 pollen types found in the samples, seven have been reported as pollen sources for honey bees in other states A. farnesiana, Fraxinus uhdei, Heliocarpus terebinthinaceus, L. leucocephala, P. guajava, R. communis, and S. angulatus11-15,27,28.

Of the total number of plant species in bloom observed in the area throughout the year only 34.21% have been reported to be used by the honeybees22-26,29,30. This might be explained by the selectiveness of honey bees depending on the relative abundance and quality of nectar, pollen and distance to the sources.

Acknowledgments

This project was funded by the CONACYT México, Universidad de Guadalajara and the Universidad Autónoma Agraria Antonio Narro, Unidad Laguna. We wish to thank Rafael Ordaz-Briseño for his priceless assessment as an expert in beekeeping topics and Arturo Castro-Castro for the supervision in plant specimen preparation and identification. A special mention goes to our friend, fellow researcher and coauthor Jose Francisco Santana Michel who passed away before this publication.

Literature cited

1. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 2010;25:(6)345-353. [ Links ]

2. FAOSTAT-FAO Agriculture Organization of the United Nations. Retrieved from Retrieved from http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/S . Accessed May 25,2017. [ Links ]

3. Kostić AŽ, Barać MB, Stanojević SP, Milojković-Opsenica DM, Tešić ŽL, Šikoparija B,et al. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT-Food Sci Technol 2015;62(1):301-309. [ Links ]

4. Roulston TH, Cane JH. Pollen nutritional content and digestibility for animals. Pollen and pollination. Pl Syst Evol 2000;222:187-209. [ Links ]

5. Höcherl N, Siede R, Illies I, Gätschenberger H, Tautz J. Evaluation of the nutritive value of maize for honey bees. J Insect Physiol 2012;58(2):278-285. [ Links ]

6. Levin MD, Haydak MH. Seasonal variation in weight and ovarian development in the worker honeybee. J Econ Entomol 1951;44(1):54-57. [ Links ]

7. Wells H, Wells PH. Honey bee foraging ecology: optimal diet, minimal uncertainty or individual constancy?. J Anim Ecol 1983;52(3):829-836. [ Links ]

8. Dötterl S, Vereecken NJ. The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 2010;88(7):668-697. [ Links ]

9. Waller GD. Modification of the OAC pollen trap. Am Bee J 1980;(120):119-121. [ Links ]

10. Kearns CA, Inouye DW. Techniques for pollination biologists. Niwot, Colorado, USA: University Press of Colorado; 1993. [ Links ]

11. SAGADER. Secretaría de Agricultura, Ganadería y Desarrollo Rural. Flora nectarífera y polinífera del estado de Michoacán, México. 1999. [ Links ]

12. Franco OVH, Siqueiros DME, Hernández AEG. Flora apícola del estado de Aguascalientes. Universidad Autónoma de Aguascalientes, México. 2012. [ Links ]

13. SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Flora nectarífera y polinífera en el estado de Tamaulipas, México. 2003. [ Links ]

14. SAGADER. Secretaría de Agricultura, Ganadería y Desarrollo Rural. Flora nectarífera y polinífera en el estado de Chiapas, México. 2000. [ Links ]

15. Souza-Novelo N, Barrera-Vásquez A, Suárez-Molina VM. Plantas melíferas y poliníferas que viven en Yucatán. Fondo Editorial de Yucatán. 2001. [ Links ]

16. Cortopassi LM, Ramalho M. Pollen harvest by Africanized Apis mellifera and Trigona spinipes in São Paulo botanical and ecological views. Apidologie 1988;19(1):1-24. [ Links ]

17. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond [Biol] 2007;274(1608):303-313. [ Links ]

18. Hanks LM, Paine TD, Millar JG, Hom JL. Variation among Eucalyptus species in resistance to eucalyptus longhorned borer in Southern California. Entomol Exp Appl 1995;74(2):185-194. [ Links ]

19. Zacharin RF. Emigrant eucalypts: gum trees as exotics. Victoria, Australia: Melbourne University Press; 1978. [ Links ]

20. Griffin A. Floral phenology of a stand of mountain ash (Eucalyptus regnans F. Muell.) in Gippsland, Victoria. Aust J Bot 1980;28(4):393-404. [ Links ]

21. Horskins K, Turner V. Resource use and foraging patterns of honeybees, Apis mellifera, and native insects on flowers of Eucalyptus costata. Austral Ecol 1999;24(3):221-227. [ Links ]

22. Castellanos PBP, Ramírez AE, Zaldivar CJM, Análisis del contenido polínico de mieles producidas por Apis mellifera L. (Hymenoptera: Apidae) en el estado de Tabasco, México. Acta Zool Mex 2012;28(1):13-36. [ Links ]

23. Piedras GB, Quiroz GDL. Estudio melisopalinológico de dos mieles de la porción sur del Valle de México. Polibotánica 2007;23:57-75. [ Links ]

24. Ramírez AE, Navarro CLA, Díaz CE. Botanical characterisation of Mexican honeys from a subtropical region (Oaxaca) based on pollen analysis. Grana 2011;50(1):40-54. [ Links ]

25. Ramírez AE, Martínez BA, Ramírez MN, Martínez HE. Análisis palinológico de mieles y cargas de polen de Apis mellifera (Apidae) de la región Centro y Norte del estado de Guerrero, México. Bot Sci 2016;94(1):141-156. [ Links ]

26. Ordetx GS, Zozaya RJA, Franco MW. Estudio de la flora apícola nacional. Universidad de Chapingo, México, DF 1972. [ Links ]

27. Villaseñor JL, Ibarra G, Ocaña D. Strategies for the conservation of Asteraceae in Mexico. Conserv Biol 1998;12(5):1066-1075. [ Links ]

29. Acosta CS, Quiroz GDL, Arreguín SML, Fernández NR. Análisis polínico de tres muestras de miel de Zacatecas, México. Polibotánica 2011;(32):179-191. [ Links ]

30. Louveaux J. Étude expérimentale de la récolte du pollen. In: Chauvin R, editor. Traité de biologie de l'abeille, Masson et Cie, Paris, France 1968;(3):174-203. [ Links ]

Received: March 08, 2018; Accepted: May 25, 2020

*Corresponding author: jlreyes54@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License