SciELO - Scientific Electronic Library Online

 
vol.10 issue4Comparison of the direct and indirect routes of human values’ influence on consumption of two traditional cheeses from Chiapas, MexicoSupplementation of ascorbic acid to improve fertility in dairy cattle. Review author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias pecuarias

On-line version ISSN 2448-6698Print version ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.10 n.4 Mérida Oct./Dec. 2019  Epub Apr 30, 2020

https://doi.org/10.22319/rmcp.v10i4.4959 

Articles

Endoparasites in captive Odocoileus virginianus and Mazama temama in Veracruz, Mexico

Cristina Salmorán-Gómeza 

Ricardo Serna-Lagunesa  * 

Norma Mora Colladoa 

Dora Romero-Salasb 

Dulce María Ávila-Nájerac 

Pedro Zetina-Córdobac 

a Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias, región Orizaba-Córdoba, Unidad de Manejo y Conservación de Recursos Genéticos. Josefa Ortiz de Domínguez S/N, Col. Centro, Peñuela. 94945 Amatlán de los Reyes, Veracruz, México.

b Universidad Veracruzana, Facultad de Medicina Veterinaria y Zootecnia, Veracruz, México.

c Universidad Politécnica de Huatusco. Unidad Académica de Biotecnología y Agroindustrial. Huatusco, Veracruz, México.


Abstract

Parasitosis in commercially important captive wild species can cause losses due to decreased productivity, increased veterinary expenses, secondary infections and animal mortality. An analysis was done to quantify endoparasite prevalence and abundance in the cervids Odocoileus virginianus and Mazama temama in captivity. Fecal samples (n= 60) were collected during the rainy and dry seasons from six O. virginianus and four M. temama of different ages and sexes. Endoparasites were extracted using the flotation technique with a saturated sugar solution, and the parasites identified by anatomical comparison. Seven parasite genera were identified: Ascaris sp.; Eimeria sp.; Estrongilido sp.; Strongyloides sp.; Parascaris sp.; Paragonimus sp.; and Taenia sp. In both cervid species Ascaris sp. and Eimeria sp. exhibited the highest abundance. Males and females of each cervid species exhibited different parasite prevalences. Parascaris sp. and Paragonimus sp. were found only in O. virginianus. No differences (P>0.05) were present in parasite abundance between the rainy and dry seasons. The genus Ascaris was generally more abundant than the other parasite genera (P<0.05). These results will be useful in the control and prevention of parasites in captive ungulates.

Key words Ascaris sp.; Cervids; Parasitosis; Flotation technique; Zoonosis

Resumen

El estudio de la parasitología de animales silvestres de importancia económica en cautiverio es relevante, ya que la parasitosis se traduce en pérdidas por disminución de productividad, aumento de gastos veterinarios, infecciones secundarias y pérdida de ejemplares. El objetivo de este trabajo fue determinar la prevalencia y abundancia de la diversidad de endoparásitos presentes en Odocoileus virginianus y Mazama temama en cautiverio. Durante la temporada de lluvias y secas, se recolectaron 60 muestras fecales de seis ejemplares de O. virginianus y cuatro de M. temama de diferente edad y sexo; se usó la técnica de flotación con solución saturada de azúcar, para recolectar e identificar los parásitos mediante comparación anatómica. Se identificaron siete géneros de parásitos: Ascaris sp., Eimeria sp., Estrongilido sp., Strongyloides sp., Parascaris sp., Paragonimus sp., y Taenia sp., siendo los dos primeros con mayor abundancia en ambos cérvidos. La prueba de X 2 determinó que la presencia de endoparásitos está asociada al sexo y a la especie de venado: machos y hembras de cada especie de venado, presentaron distinta prevalencia parasitaria. Parascaris sp. y Paragonimus sp., fueron parásitos que se encontraron solamente en O. virginianus. No se encontraron diferencias significativas (P>0.05) entre la abundancia de parásitos entre las épocas de lluvias y secas; el género Ascaris fue significativamente más abundante con respecto a otros parásitos (P<0.05). Esta información sirve para el control y prevención de parásitos de ungulados en cautiverio de importancia económica y para su conservación.

Palabras clave Ascaris sp.; Cérvidos; Parasitosis; Técnica de flotación; Zoonosis

Introduction

The ecology of diseases and parasitosis in wildlife has been studied for over a century, with special emphasis on species used for hunting and eating1,2. An animal health approach has been used to address this issue in recent decades because zoonotic diseases can occur that affect domestic animals and humans, leading to death in both wild and captive animal populations3,4,5,6.

White-tailed deer (Odocoileus virginianus) is in high demand for hunting and other uses7,8. The diversity of parasites that cause infectious diseases in this cervid have been described5. These can affect behavior, reproduction and even morbidity and mortality2,9,10. The Central American red brocket (Mazama temama) is distributed from southeast Mexico to northern Columbia. Very little study has been done of its parasitosis11, and only minimal data is available on the conditions needed to maintain it in captivity and conserve its populations.

Protozoa, helminths, arthropods and pentastomides are the most abundant parasites in domestic animals12. In cervids the most common diseases are caused by viruses, bacteria, infectious conditions and parasitosis2. Gastrointestinal parasitosis is a major pathology in deer and is mainly caused by helminths and protozoa13. Factors such as climate14, the presence or absence of intermediate hosts, soil composition, vegetation type and water quality are principal factors influencing parasite prevalence12. Mortality in wild O. virginianus populations due to gastrointestinal parasites is approximately 2.7 %15.

Wildlife Conservation Management Units (UMA) have been implemented in Mexico as a management strategy for wildlife conservation and exploitation. When intensive management of wild animals in UMAs involves inadequate animal health protocols, losses can be incurred due to decreased reproduction and productivity16, and higher incidences of secondary infections, increased digestive tract lesions, anaphylactic reactions, anemia, and even death. Mismanagement can also increase the chance of these conditions becoming zoonotic diseases, and inadequate prevention and mitigation measures raise the risk of contagion between wildlife and livestock3,17,18. Cervid management programs need to consider the prevention and control of the most common infectious and parasitic diseases to ensure population viability and reproductive success2.

Research and data on parasitosis in captive wildlife is scarce15,19,20, and management plans for successful in situ and ex situ production of cervids in UMA have not met expectations21. Greater knowledge is needed on the parasites that affect the health of ex situ cervid populations. The present study objective was to quantify parasite prevalence, abundance, and endoparasite diversity in a captive population of O. virginianus and M. temama.

Material and methods

Study area

The study was done at El Pochote, an intensive mode UMA registered with the Ministry of Environment and Natural Resources (SEMARNAT; UMA-IN-CR-0122-VER/og). Located in the municipality of Ixtaczoquitlán, in the state of Veracruz, Mexico (18°52’13.70” N; 97°02’59.97” W) it is at 1,137 m asl. Regional climate is semi-warm humid (Cwa) with abundant summer rains, an annual temperature ranging from 18 to 24 °C and annual average rainfall from 1,900 to 2,600 mm. Vegetation around the El Pochote UMA is mainly evergreen tropical and second-growth forests22. The main objective of this UMA is conservation and reproduction of O. virginianus and M. temama.

Cervid specimens

The experimental animals were six O. virginianus (three females [2, 3 and 5 yr of age] and three males [3, 4 and 9 yr of age]) and four M. temama (two females [2 and 4 yr of age] and two males [both 3 yr of age]. All were apparently healthy and had good body condition. One year before sampling began all animals were administered the Hemoplex® supplement (2 ml per 10 kg weight) and the Catosal® metabolic stimulant, both by intramuscular injection. The two cervid species were kept in separate corrals (30 m long by 12.5 m wide) surrounded by deer fence and with 50 m distance between corrals. Each corral was equipped with two drinking bottles, was roofed, and an 80 % shade mesh placed at head height (1.2 to 60 cm above ground surface) to avoid eye contact between the species. Feces were cleaned daily. The animals were fed daily at 0800 h with alfalfa (20% ~ 2 kg per animal) and a balanced feed for sheep (80% ~ 4 kg per animal) containing crude protein (34%), fat (2%), crude fiber (5%), ash (17%) and moisture (13%). Water was freely available.

Feces samples

Parasite incidence and abundance can vary between seasons23. Fecal samples were therefore collected during two seasons: rainy (September-November) and dry (March-May). In each sampling period, feces were collected from all animals once a month. At the first spontaneous defecation, approximately between 0600 and 0900 h, the portion of excreta not in direct contact with the ground was collected manually using latex gloves, placed in a sealed, marked plastic bag, and stored at 4 °C in a cooler. For analysis the samples were transported to the Optical Microscopy Laboratory of the Faculty of Biological and Agricultural Sciences, Orizaba-Córdoba region, Universidad Veracruzana. A total of 60 stool samples were collected from each species, 30 during the rainy season (2016) and 30 during the dry season (2017).

Feces analysis

Parasites and their eggs were extracted using flotation in a saturated sugar solution, based on the separation of particles of greater and lesser density. Eggs and whole individual parasites were collected and fixed on slides for later morphological identification24.

Endoparasite morphological identification and abundance

The extracted parasites were identified by comparison of anatomical characteristics with those reported in the Parasitological Catalogs25, and books on parasitology and the parasite diseases of domestic animals12. Oocyst taxon genus was identified based on the number of sporozoites present26. Abundance was considered the number of endoparasites recorded in each cervid host, since this is an indirect measure of prevalence20,27.

Statistical analysis

Cervid species (O. virginianus and M. temama), sex (males and females) and collection season (dry and rainy) were treated as sources of variation. The response variable was parasite abundance in each cervid host since this is considered an indicator of nematode parasite infection27. Prevalence (%) by sex, and cervid species was calculated, and descriptive statistics of abundance generated for each source of variation. A Kruskall-Wallis test was applied together with the Fisher’s LSD (least significant difference) means comparison test (α= 0.05) to identify which parasite species was most abundant in each cervid species, sex and season (rainy or dry). A χ2 test was run to determine the association of parasite abundance to cervid species and sex.

Results

Seven endoparasite genera were identified among the two studied cervid species: Ascaris sp., Eimeria sp., Estrongilido sp., Paragonimus sp., Parascaris sp., Strongyloides sp. and Taenia sp. Abundances varied between the seasons and cervid species (Figure 1; Table 1). All (100%) the experimental animals exhibited endoparasites. The gastrointestinal parasite genera Parascaris sp., Paragonimus sp., and Taenia sp. were prevalent in O. virginianus and absent in M. temama.

Figure 1 Endoparasite abundance in O. virginianus and M. temama in the El Pochote UMA. Different lowercase letters above the bars indicate significant difference  

Table 1 Endoparasite genera identified in O. virginianus and M. temama, and their average abundance during the rainy and dry seasons at El Pochote UMA, Veracruz, Mexico 

Season Cervid Parasite Species Average abundance SD
Rainy M. temama Ascaris sp. 2.00 1.4
Eimeria sp. 1.67 1.7
Estrongilido sp. 1.67 1.2
Strongyloides sp. 0.67 1.1
Taenia sp. 0.33 0.8
O. virginianus Ascaris sp. 2.33 2.0
Eimeria sp. 1.67 1.2
Paragonimus sp. 0.33 0.8
Parascaris sp. 0.33 0.8
Dry M. temama Ascaris sp. 3.00 0.0
Eimeria sp. 0.33 0.8
Estrongilido sp. 0.33 0.8
Strongyloides sp. 0.33 0.8
O. virginianus Ascaris sp. 1.33 1.1
Estrongilido sp. 1.67 1.7
Parascaris sp. 0.67 0.8
Strongyloides sp. 0.33 0.8

SD= standard deviation.

No significant effect (P>0.05) on parasite abundance was observed for season or cervid species (Table 2). Differences (P<0.05) in abundance were identified between the endoparasite genera, with Ascaris sp. being the most abundant genus (Table 3).

Table 2 Effect of season (dry vs. rainy), host cervid species (O. virginianus and M. temama) and endoparasite genus 

SS DF MS F P-valor
Model 13.06 8 1.63 2.98 0.007
Seasons 0.14 1 0.14 25 0.619
Cervid species 1.07 1 1.07 1.95 0.167
Parasite 11.86 6 1.98 3.61 0.004*
Error 31.2 57 0.55
Total 44.26 65

SS= sum of squares; DF= degrees of freedom; MS= mean squared; F= table value; P-valor = significance value.

Table 3 Average abundance by endoparasite genus in the two studied cervid species 

Endoparasite N Average SE Differences
Taenia sp. 6 0.17 0.57 a
Paragonimus sp. 6 0.17 0.57 a
Strongyloides sp. 12 0.33 0.4 a
Parascaris sp. 6 0.5 0.57 a
Estrongilido sp. 12 0.92 0.4 a
Eimeria sp. 12 0.92 0.4 a
Ascaris sp. 12 2.17 0.4 b*

N= sample size; SE= standard error; *differences at α = 0.05.

The parasite genus Eimeria sp. was associated with male M. temama and female O. virginianus (X 2 = 8.57, d.f. 1; P= 0.0034). Taenia sp. was present in one male M. temama and Paragonumus sp. in one female O. virginianus (X 2 , P<0.05). The genera Parascaris sp., Ascaris sp., Estrongilido sp., and Strongyloides sp. exhibited no association (X 2 , P>0.05) to sex or cervid species.

Discussion

Seven endoparasite genera were identified in O. virginianus and M. temama. This study constitutes the first report of these endoparasites in UMAs in situ or ex situ in the state of Veracruz. The genera Ascaris sp. and Eimeria sp. were recorded in both seasons and both cervid species, whereas Taenia sp. was present only during the rainy season (P>0.05) in M. temama.

In various studies analyzing different sample sizes (20 to 200 feces samples) at different times of year (dry, transition and rainy seasons), eight parasite genera have been described of which Eimeria sp. and Strongyloides sp. had the highest abundances20,27,28; both these genera were also recorded in the present results. Another study of approximately 1,000 feces samples from O. virginianus collected from three corrals during a one-year period identified seven endoparasite genera15. These included Eimeria sp. and Strongyloides sp., both of which were reported in previous studies and the present results.

In the present study Ascaris sp. was the most prevalent genus in both cervid species, with levels significantly higher than the other identified parasite genera. Ascarididae Family parasites are present throughout the animal kingdom, and are commonly found in the intestines of fish, amphibians, reptiles, birds and mammals. However, they tend to cause the most damage in domestic species such as pigs, horses, cattle, poultry, dogs and cats, but can also be found in wild mammals such as foxes27. Ascaris sp. nematode eggs have been identified in the primates Alouatta fusca and A. seniculus, most probably via anthropozoonotic contamination29, that is, cross-contamination from caregivers. Species belonging to the genus Eimeria sp. mainly parasitize mammals, and are common parasites of the host digestive canal where they take root in the epithelial cells and destroy them, causing the disease known as coccidiosis25.

Compared to wild populations, captive ungulates have a higher number of endoparasites13. This may be due to an increased risk of parasite transmission from their general dependence on feed prepared by humans, often without proper sanitary protocols, and excess moisture in corrals from puddles and water leaking from drinking bottles30. In addition, the stress of captivity can reduce immunological capacity, and promote parasitosis and greater parasite diversity and abundance31.

The lack of inter-seasonal differences in parasite types and abundance observed in the present results coincide with previous studies20,28. A favorable climate for parasite transmission in both of the seasons is the most probable reason for this lack of difference. All the identified parasites utilize intermediate hosts, meaning greater or lesser parasite frequency in the studied cervids would depend on the presence of these hosts32.

Wild animals are hosts to a variety of parasites but are normally able to keep their parasite communities in balance, preventing disease symptoms from appearing33. Factors that can weaken a host’s immune system include age, malnutrition and stress, among others, all of which can increase the risk of excessive parasitization34. The spread of endoparasites between wild and domestic species can be dangerous35. Variations in parasite abundance and richness between cervid species can be related to habitat, coexistence with other species, enclosure size and characteristics, and population density36,37. Future research will need to consider the characteristics of enclosures at UMAs to detect the risk factors associated with parasitosis.

Parasite dynamics over time may be influenced by host sex since parasite prevalence by host sex is linked to individual traits such as age and body condition38. For example, adult Alces alces have a higher parasite load than sub adults during the mating season39, whereas in O. virginianus this occurs outside the mating season40. In the present study Eimeria sp. and Paragonumus sp. were prevalent in O. virginianus females during the mating season, possibly due to infection by males. Of note is that the presence of Taenia sp. in one male M. temama was not necessarily sex-dependent but more probably due to high humidity in the enclosure, tree leaves falling into the corral and/or ingestion of plant sprouts. Further study is needed on the parasitology of M. temama to strengthen management programs for captive populations, and contribute to their conservation, as has been done successfully with other ungulates (e.g. Gazella gazella)41.

Conclusions and implications

The analyses reported here of gastrointestinal parasite prevalence and diversity in captive O. virginianus and M. temama identified seven parasite genera among the two cervid species. Both species can be treated with specific deparasitization treatments to prevent excessive parasite load, which can cause host morbidity or mortality. Based on the present data the dry season would be the best season in which to apply deparasitization treatments. Ascaris sp. was the most abundant in both cervids, followed by Estrongilido sp. and Eimeria sp. These findings highlight the importance of identifying parasitosis risk factors in captive wildlife to optimize prevention and mitigation strategies. The present results have implications for the conservation and management of captive O. virginianus and M. temama, as well as for prevention of zoonotic diseases that can affect wild and domestic animal populations, with possible financial impacts for producers.

Acknowledgements

The authors thank Arantxa Penagos de la Llave for technical assistance and access to El Pochote UMA; Carlos Manuel Galán Páez for laboratory assistance; and the Genetic Resources Management and Conservation Unit of the Faculty of Biological and Livestock Sciences for bioinformatic analyses.

REFERENCES

1. Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HI. Global spread of helminth parasites at the human-domestic animal-wildlife interface. Glob Chang Biol 2018;24(7):3254-3265. [ Links ]

2. Campbell T, VerCauteren KC. Diseases and parasites of White-Tailed Deer. In: Hewitt DG editor. Biology and management of White-Tailed Deer. USDA National Wildlife Research Center-Staff Publications. 2011:219-249. [ Links ]

3. Wobeser GA. Investigation and management of disease in wild animals. New York, USA: Plenum Press; 1994. [ Links ]

4. Schultz SR, Barry RX, Johnson MK, Miller JE, Forbes DA. Effects of feed plots on fecal egg counts of white-tailed deer. Small Rumin Res 1994;13(1):93-97. [ Links ]

5. Medina-Vogel G. Ecología de enfermedades infecciosas emergentes y conservación de especies silvestres. Arch Med Vet 2010;42(1):11-24. [ Links ]

6. Gallina S, Escobedo-Morales LA. Análisis sobre las Unidades de Manejo (UMAs) de ciervo rojo (Cervus elaphus Linnaeus, 1758) y wapiti (Cervus canadensis Erxleben, 1777) en México: problemática para la conservación de los ungulados nativos. Trop Conserv Sci 2009;2(2):251-265. [ Links ]

7. Davidson WR, McGhee MB, Nettles VF, Chappell LC. Haemonchosis in white-tailed deer in the southeastern United States. J Wild Dis 1980;16(4):499-508. [ Links ]

8. Mandujano S, Pérez TD, Escobedo LA, Yañez C, González A, Pérez LA, Ramos MI. Venados: animales de los dioses. Veracruz, México: Secretaria de Educación de Veracruz; 2010. [ Links ]

9. Conti JA, Howerth EW. Osteragiosis in a white-tailed deer due to Ostertagia. J Wild Dis 1987;23(1):159-162. [ Links ]

10. Suzán G, Galindo F, Ceballos G. La importancia del estudio de enfermedades en la conservación de fauna silvestre. Vet México 2000;31(3):223-230. [ Links ]

11. Mandujano S. Análisis bibliográfico de los estudios de venados en México. Acta Zool Mex 2004;20(1):211-251. [ Links ]

12. Quiroz RH. Parasitología y enfermedades parasitarias de animales domésticos. México: Ed. Limusa; 2012. [ Links ]

13. Mukul-Yerves JM, Zapata-Escobedo MDR, Montes-Pérez RC, Rodríguez-Vivas RI, Torres-Acosta JF. Parásitos gastrointestinales y ectoparásitos de ungulados silvestres en condiciones de vida libre y cautiverio en el trópico mexicano. Rev Mex Cienc Pecu 2014;5(4):459-469. [ Links ]

14. Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol Parasites Wildl 2000;30(12-13):1395-1405. [ Links ]

15. Montes PRC, Rodríguez VRI, Torres AFJ, Ek PLG. Seguimiento anual de la parasitosis gastrointestinal de venados cola blanca, O. virginianus (Artiodactyla: Cervidae) en cautiverio en Yucatán, México. Rev Biol Trop 1998;46(39):821-827. [ Links ]

16. García RC. Parasitosis del Ciervo Ibérico Español. Madrid, España: Ministerio de Agricultura, Pesca y Alimentación. 2006. [ Links ]

17. Reissig EC, Massone AR, Iovanitti B, Gimeno, EJ, Uzal FA. A survey of parasite lesions in wild red deer (Cervus elaphus) from Argentina. J Wild Dis [in press] 2018; doi.org/10.7589/2017-06-136. [ Links ]

18. Hernández JA, Arroyo FL, Banilla R, Sánchez-Andrade R, Arias MS. Control biológico de parásitos en la ganadería, hongos del duelo. Zoocienc 2015;2(1):2-11. [ Links ]

19. Aguilar R. Gusanos parásitos de fauna silvestre. Algunas formas de estudio. Ciênc Cult 2008;15:55-61 [ Links ]

20. Valdés VV, Saldaña A, Pineda VJ, Camacho JA, Charpentier CV, Cruz TA. Prevalencia de parásitos gastrointestinales en Odocoileus virginianus y Tayassu tajacu en cautiverio de la República de Panamá. Acta Zool Mex 2010;26(2):477-480. [ Links ]

2 1. Gallina-Tessaro S, Hernández-Huerta A, Delfín-Alfonso CA, González-Gallina A. Unidades para la conservación, manejo y aprovechamiento sustentable de la vida silvestre en México (UMA). Retos para su correcto funcionamiento. Investigación Ambiental, Ciencia y Política Pública 2009;1(2):143-152. [ Links ]

22. Cházaro-Basáñez MJ. Exploraciones botánicas en Veracruz y estados circunvecinos. I. Pisos altitudinales de vegetación en el centro de Veracruz y zonas limítrofes con Puebla. Cienc Hombre 1992;10:67-115. [ Links ]

23. Quiroz RH, Figueroa J, Ibarra F, López M. Epidemiología de enfermedades parasitarias en animales domésticos. México: Facultad de Medicina Veterinaria y Zootecnia, Departamento de Parasitología, Universidad Nacional Autónoma de México. 2011. [ Links ]

24. Liébano HE, Flores CJ. Identificación de larvas infectantes de nematodos gastroentéricos en bovinos y ovinos de México. En: Centro Nacional de Investigaciones Disciplinarias en Parasitología Veterinaria Editor. Diagnóstico de las nematodosis gastrointestinal de los rumiantes en México: México; 1999:23-40. [ Links ]

25. Cordero M, Rojo F, Martínez A, Sánchez C, Hernández S, Navarrete J, Carvalho M. Parasitología Veterinaria. España: Mc Graw-Hill Interamericana; 1999. [ Links ]

26. Rodríguez-Vivas RI, Cob-Galera LA. Técnicas diagnósticas en parasitología veterinaria. Mérida, México: Universidad Autónoma de Yucatán. Mérida, México; 2005. [ Links ]

27. Mukul-Yerves JM, Pereida-Hoíl AJ, Rodríguez-Vivas RI, Montes-Pérez RC. Parasitosis gastrointestinal en venados cola blanca (Odocoileus virginianus yucatanensis) y temazate (Mazama temama) en condiciones de cautiverio en Yucatán, México. Bioagrociencias 2004;7(1): 33-37. [ Links ]

28. Barranco SG. Frecuencia de parásitos gastrointestinales en heces de venado cola blanca (Odocoileus virginianus) pertenecientes a unidades de manejo para la conservación de la vida silvestre (UMA) del estado de Morelos [tesis Licenciatura]. Toluca, México: Universidad Autónoma del Estado de México; 2016. [ Links ]

29. Beltrán-Saavedra L, Martín P, Gonzáles JL. Estudio coproparasitológico de mamíferos silvestres en cautiverio con destino a relocación en Santa Cruz, Bolivia. Vet Zootec 2008;3(1):51-60. [ Links ]

30. Konjević D, Janicki Z, Calmels P, Jan DS, Marinculić A, Šimunović M, Poljak Z. Evaluation of factors affecting the efficacy of treatment against Fascioloides magna in wild red deer population. Vet Ital 2018;54(1):33-39. [ Links ]

31. Martínez FA, Binda JL, Maza Y. Determinación de platelmintos por coprología en carnívoros silvestres. En: Universidad Nacional del Nordeste Editor. Comunicaciones científicas y tecnológicas. Argentina. 2005. [ Links ]

32. Xiao-Long H, Gang L, Yu-Ting W, Yi-Hua W, Tian-Xiang Z, Shuang Y, De-Fu H, Shu-Qiang L. Regional and seasonal effects on the gastrointestinal parasitism of captive forest musk deer. Acta Trop 2018;177:1-8. [ Links ]

33. Romero S, Ferguson B, Guiris D, González D, López S, Paredes A, Weber M. Comparative parasitology of wild and domestic ungulates in The Selva Lancandona, Chiapas, México. Proc Helminthol Soc Wash 2008;75(1):115-126. [ Links ]

34. Cañizales I, Guerrero R. Parásitos y otras enfermedades transmisibles de la fauna cinegética en Venezuela. En: Academia de ciencias físicas, matemáticas y naturales: Simposio de investigación y manejo de fauna silvestre en Venezuela. 2010:97-108. [ Links ]

35. Höglund J, Christensson D, Holmdahl J, Mörner T, Osterman E, Uhlhorn H. The first record of the nematode Ashworthius sidemi in Sweden. Proc 21st Int Conf of WAAVP. Ghent, Belgium; 2007. [ Links ]

36. Kowal J, Nosal P, Bonczar Z, Wajdzik M. Parasites of captive fallow deer (Dama dama L.) from southern Poland with special emphasis on Ashworthius sidemi. Ann Parasitol 2012;58(1):23-26. [ Links ]

37. Davidson KR, Kutz JS, Madslien K, Hoberd E, Handeland K. Gastrointestinal parasites in an isolated Norwegian population of wild red deer (Cervus elaphus). Acta Vet Scand 2014;56(1):56-59. [ Links ]

38. Horcajada-Sánchez F, Navarro-Castilla Á, Boadella M, Barja I. Influence of livestock, habitat type, and density of roe deer (Capreolus capreolus) on parasitic larvae abundance and infection seroprevalence in wild populations of roe deer from central Iberian Peninsula. Mammal Res 2018;63(2):213-222. [ Links ]

39. Grandi G, Uhlhorn H, Ågren E, Mörner T, Righi F, Osterman-Lind E, Neimanis A. Gastrointestinal parasitic infections in dead or debilitated Moose (Alces alces) in Sweden. J Wildl Dis 2018;54(1):165-169. [ Links ]

40. Heine KB, DeVries PJ, Penz CM. Parasitism and grooming behavior of a natural white-tailed deer population in Alabama. Ethol Ecol Evol 2017;29(3):292-303. [ Links ]

41. Ortiz J, de Ybáñez MR, Garijo MM, Goyena M, Espeso G, Abaigar T, Cano M. Abomasal and small intestinal nematodes from captive gazelles in Spain. J Helminthol 2001;75(4):363-365. [ Links ]

Received: June 28, 2018; Accepted: October 05, 2018

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons