SciELO - Scientific Electronic Library Online

 
vol.10 issue3Genetic variability in a Holstein population using SNP markers and their use for monitoring mating strategiesFarm-level risk factors associated with reproductive performance in small-scale dairy farms in Mexico author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias pecuarias

On-line version ISSN 2448-6698Print version ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.10 n.3 Mérida Jul./Sep. 2019

https://doi.org/10.22319/rmcp.v10i3.4804 

Articles

Defining growth curves with nonlinear models in seven sheep breeds in Mexico

Joel Domínguez-Viverosa  * 

Edwin Canul-Santosa 

Felipe Alonso Rodríguez-Almeidaa 

María Eduviges Burrola-Barrazaa 

Juan Ángel Ortega-Gutiérreza 

Francisco Castillo-Rangela 

aUniversidad Autónoma de Chihuahua. Facultad de Zootecnia y Ecología. Periférico Francisco R. Almada km 1. 31453 Chihuahua, Chih. México.


Abstract

Characterizing growth in livestock is important when making management, marketing and genetic improvement decisions. Nonlinear models were tested to identify those with the best fit for growth curves in seven sheep breeds [Blackbelly (n= 19,084); Pelibuey (n= 39,025); Dorper (n= 35,814); Katahdin (n= 74,154); Suffolk (n= 10,267); Hampshire (n= 7,561); and Rambouillet (n= 7,384)]. Using breed registry databases, live weight was assessed from birth to 230 d of age. The SAS program was applied to test six nonlinear models: Brody, Verhulst, von Bertalanffy, Gompertz, Mitscherlich and logistic. The criteria for selecting the best-fit model were the average prediction error; the prediction error variance; the Durbin-Watson statistic; the coefficient of determination; the root-mean-square error; and the Akaike and Bayesian information criteria. For the Hampshire, Pelibuey and Suffolk breeds the best-fit model was the von Bertalanffy, with a sigmoid curve and an inflection point age between 40 and 57 d. For the Katahdin, Blackbelly, Dorper and Rambouillet breeds the best-fit models were the Brody and Mitscherlich models, with a continuous growth curve, no inflection point and constant growth rate. Marked differences were observed in adult weight between breeds, with average values (kg) of 44.6 for Blackbelly, 49.2 for Rambouillet, 52.9 for Pelibuey, 55.6 for Hampshire, 60.2 for Katahdin, 64.7 for Suffolk and 65.2 for Dorper; values tended to be highest in the Brody and Mitscherlich models, and lowest in the logistic and Verhulst models.

Key words Growth rate; adult weight; model selection; von Bertalanffy; Brody; Nonlinear regression

Resumen

Caracterizar el crecimiento ayuda en la toma de decisiones de manejo, comercialización y mejoramiento genético. El objetivo fue identificar un modelo no lineal (MNL) para describir la curva de crecimiento en borregas de registro a través de siete razas. Se evaluó el peso vivo, desde el nacimiento hasta los 230 d de edad, de las razas Blackbelly (BB; n= 19,084), Pelibuey (PE; n= 39,025), Dorper (DR; n= 35,814), Katahdin (KT; n= 74,154), Suffolk (SF; n= 10,267), Hampshire (HS; n= 7561) y Rambouillet (RB; n= 7,384). Se evaluaron los MNL: Brody (BRO), Verhulst (VER), Von Bertalanffy (VBE), Gompertz (GOM), Mitscherlich (MIT) y Logístico (LOG). Los análisis se realizaron con el software SAS. Los criterios para seleccionar el modelo con mejor ajuste fueron: error de predicción promedio, varianza del error de predicción, estadístico Durbin-Watson, coeficiente de determinación, raíz del cuadrado medio del error, criterios de información Akaike y Bayesiano. Para HS, PE y SF, el mejor modelo fue VBE, con una curva sigmoide y edad al punto de inflexión entre 40 y 57 d. Los modelos BRO y MIT tuvieron el mejor ajuste para KT, BB, DR y RB, con una curva continua, sin punto de inflexión y tasa de crecimiento constante. Para peso adulto se observaron marcadas diferencias, con valores promedio (kg) de 44.6 en BB, 49.2 en RB, 52.9 en PE, 55.6 en HS, 60.2 en KT, 64.7 en SF y 65.2 en DR; con la tendencia de valores mayores para los modelos BRO y MIT, y los menores para LOG y VER.

Palabras clave Tasa de crecimiento; Peso adulto; Selección de modelos; Von Bertalanffy; Brody; Regresión no lineal

Introduction

In Mexico the Organization of the Sheep Breeders National Unit (Organismo de la Unidad Nacional de Ovinocultores - UNO) encompasses producers of specialized and pure breed sheep. This organization coordinates genetic improvement plans in sheep breeds based on genealogical records and production controls of the variables included in each breed’s selection criteria and objectives. Growth variables such as animal live weight are recorded at five points or ages1. Live weight data for different ages is used to generate a points distribution over time. This allows analysis and characterization of growth patterns based on nonlinear mathematical models (NLM), which use biological interpretation to summarize variation in live weight over time through a small number of growth parameters and indicators2,3.

Sheep production in Mexico occurs under various technological, agro-ecological and socioeconomic conditions. Organized and truthful documentation of events in the production unit, particularly financial variables, is essential for producers to determine unit profitability. Changes in animal live weight are influenced by genetic and environmental factors, with variable effects through time and during individual development. Each sheep breed has a characteristic growth pattern, requiring the testing of several NLM to identify that with the best fit for each breed. Identifying the NLM with the best fit provides objective and accurate growth pattern data which can be used by producers in decision-making regarding production, management and genetic improvement.

The present study objectives were: 1) To identify the best-fit NLM to describe the growth curve in four hair sheep breeds (Blackbelly, Pelibuey, Dorper and Katahdin) and three wool sheep breeds (Suffolk, Hampshire and Rambouillet); and, 2) To generate growth indicators that can characterize and analyze these growth curves.

Materials and methods

The analyzed database includes live weight records for female lambs in seven UNO-registered breeds: Blackbelly (BB), Pelibuey (PE), Dorper (DR), Katahdin (KT), Suffolk (SF), Hampshire (HS) and Rambouillet (RB). Analyzed variables were live weight at birth, 75, 120, 150 and 210 d of age, with measurements taken at intervals of ± 20 d with respect to the reference age (Table 1). Weight at 75 d corresponds to weaning. Because males are sold beginning at 120 d, only data for females was used in the analyses.

Table 1 Number of records at each age for the seven evaluated sheep breeds 

Breed WB W75 W120 W150 W210 Total
Katahdin 24,878 21,365 11,500 10,502 5,909 74,154
Pelibuey 14,164 11,796 5,301 4,993 2,771 39,025
Dorper 11,487 9,522 5,802 5,510 3,493 35,814
Blackbelly 7,151 5,439 2,475 2,416 1,603 19,084
Suffolk 3,636 2,836 1,542 1,459 794 10,267
Hampshire 2,597 2,177 1,236 1,056 495 7,561
Rambouillet 2,504 1,748 1,189 1,093 850 7,384

WB= live weight at birth; W75= live weight in 55 to 95 d interval; W120= live weight in 100 to 140 d interval; W150= live weight in 130 to 170 d interval; and W210= live weight in 190 to 230 d interval.

Data were from flocks mainly distributed in three regions of Mexico. Half (50 %) of the flocks were from the country’s central region and included primarily the SF, HS and RB breeds. The south-southeast region accounted for 22 % of the database, and corresponded to the PE, BB, DR and KT breeds. The north region represented 18 % of the data and included mostly the BB, DR and KT breeds. The remaining 10 % of the data was from flocks in other regions. Production systems in the central region are largely intensive or semi-intensive using stables combined with cultivated pastures. Systems in the north and south-southeast regions are semi-intensive and extensive, combining grazing with corrals. In the north, large arid and semi-arid areas with multispecies pastures and scrub are used, whereas in the south-southeast the tropical climate promotes wide availability of tropical grasses.

Seven NLM were evaluated: Brody (BRO), Verhulst (VER), von Bertalanffy (VBE), Gompertz (GOM), Mitscherlich (MIT) and logistic (LOG). All consisted of three regression coefficients (β1, β2 and β3)4,5,6. In NLM equations (Table 2), y i represents live weight (kg) measured at time t ; β1 is the asymptotic value when t tends to infinity, interpreted as the adult weight parameter (AW); β2 is a fit parameter when y ≠ 0 and t ≠ 0; and β3 is growth rate (GR), expressing weight gain as a proportion of total weight2,7. The VER, VBE, GOM and LOG models describe growth based on a sigmoid curve, for which inflection point age (IPA) and weight (IPW) were estimated8,9.

Table 2 Nonlinear models used to describe growth in registered sheep breeds 

Models Equation
Verhulst yi = β1*(1 + exp(-β2*t))-β3 + ei
Logistic yi = β1 / (1 + β2*(exp(-β3*t))) + ei
Von Bertalanffy yi = β1*((1 - β2*(exp(-β3*t)))**3) + ei
Gompertz yi = β1*(exp(-β2*(exp(-β3*t)))) + ei
Brody yi = β1*(1 - β2*(exp(-β3*t))) + ei
Mitscherlich yi = β1*(1 - exp(β32 - β3*t)) + ei

yi= live weight in kg measured at time t; β1= asymptotic value; β2= integration constant; β3= curve slope or growth rate.

Analyses were done using the Gauss-Newton method of the NLIN procedure in the SAS statistical program10. Selection of the model with the best fit was done based on seven criteria11,12,13: a) the Akaike information criterion [AIC = n*nl(sse/n) + 2k]; b) the Bayesian information criterion [BIC = n*nl(sse/n) + k*nl(n)]; c) the average prediction error [( APE=i=1nlwi - ewiewi*100 )/n]; d) the prediction error variance [ PEV =i=1n(ewi-lwi)2/n]; e) the Durbin-Watson statistic [DW= 2(1 - ρ); ρ= t=2n(et-et-1)2t=1net2]; f) the determination coefficient [R2 = (1 - (sse/tss))]; and g) the general standard error or model error, from the root-mean-square error (GSE=ssen-p-1. Where: lwi = live weight (kg) at i-th age (d); ewi = estimated live weight (kg) at i-th age (d); n = total number of data; sse = sum-squared error; tss = total sum-squared; k = number of parameters in model; nl = natural logarithm. The APE analyzes the relationship between measured and estimated weight, and, as a function of the symbol, the NLM overestimates (+) or underestimates (-) the predictions. For APE, PEV, GSE, AIC and BIC, the model with the lowest value was considered to have the best fit; for R2 it was the model with the highest value. The DW analyzes for auto correlations in the errors using scenarios: if 2<DW<4, there is a negative auto correlation; if 0<DW<2, there is no auto correlation; and if DW<0, there is a positive auto correlation.

Results and discussion

The statistical criteria used for selection of the best-fit model for each breed showed that based on R2 all the NLM explained 94 % or more of the variability in the analyzed data (Table 3). All the NLM also tended to underestimate the predictions (negative APE) without auto correlation in the residuals (0<DW<2). The PEV and APE results did not differ within breeds, but were higher for the LOG model in all breeds. Based on the AIC and BIC, the MIT and BRO model results did not differ within breeds and were the best fit for the KT, BB, DR and RB breeds. For the HS, PE and SF breeds, however, the best-fit model was the VBE, with epi between 40 and 57 d (Table 4), an age within the preweaning period. Based on the NLM, average IPW was 16.4 kg for PE, 20.2 kg for HS and 23.2 kg for SF.

Table 3 Statistics used for selection of best-fit nonlinear models 

Breeds Models§ *PEV *APE *DW *R2 *GSE *AIC *BIC
BB LOG 20.4 -17.8 0.66 0.95 4.3 55904 55927
GOM 19.3 -10.5 0.58 0.95 4.2 54563 54587
VBE 19.1 -8.4 0.56 0.95 4.1 54202 54225
VER 19.9 -13.5 0.62 0.95 4.2 54942 54966
MIT 18.8 -5.9 0.54 0.95 4.1 53757 53781
BRO 19.0 -6.0 0.56 0.95 4.1 53757 53781
DR LOG 44.3 -18.4 1.30 0.95 6.4 132665 132690
GOM 41.7 -10.5 1.30 0.95 6.1 130012 130037
VBE 41.1 -7.9 1.32 0.96 6.1 129282 129307
VER 42.2 -9.8 1.31 0.95 6.2 130754 130779
MIT 40.5 -5.4 1.36 0.96 6.0 128389 128415
BRO 41.0 -5.8 1.39 0.96 6.0 128389 128415
HS LOG 44.3 -12.4 0.04 0.95 5.7 26115 26135
GOM 42.8 -7.3 0.04 0.95 5.6 25799 25820
VBE 42.6 -6.3 0.04 0.96 5.6 25749 25770
VER 43.7 -9.9 0.04 0.95 5.6 25876 25897
MIT 42.8 -5.2 0.04 0.96 5.6 25755 25775
BRO 42.8 -5.4 0.04 0.96 5.6 25755 25775
KT LOG 37.1 -17.0 0.68 0.95 6.0 262113 262141
GOM 35.6 -9.9 0.64 0.95 5.8 257855 257882
VBE 35.3 -8.0 0.64 0.95 5.8 256792 256819
VER 35.9 -9.1 0.66 0.95 5.9 259020 259048
MIT 35.3 -6.1 0.68 0.95 5.7 255755 255782
BRO 35.4 -6.1 0.67 0.95 5.7 255755 255782
PE LOG 26.4 -15.1 0.26 0.94 4.6 118402 118428
GOM 25.6 -9.3 0.24 0.94 4.5 116815 116841
VBE 25.5 -7.0 0.24 0.94 4.5 116583 116608
VER 26.1 -8.6 0.25 0.94 4.5 117161 117187
MIT 25.6 -5.2 0.24 0.94 4.5 116745 116771
BRO 26.2 -5.9 0.26 0.94 4.5 116745 116771
RB LOG 19.8 -5.6 1.80 0.98 4.4 21873 21894
GOM 18.7 -4.9 1.80 0.98 4.2 21119 21139
VBE 18.5 -4.2 1.80 0.98 4.1 20914 20935
VER 19.1 -5.1 1.81 0.98 4.0 21355 21376
MIT 18.3 -3.5 1.80 0.98 4.0 20629 20650
BRO 18.4 -3.7 1.82 0.98 4.0 20629 20650
SF LOG 46.8 -9.1 0.04 0.95 6.4 37846 37867
GOM 45.0 -7.3 0.04 0.96 6.2 37354 37376
VBE 44.8 -6.1 0.06 0.96 6.2 37276 37298
VER 45.9 -9.1 0.05 0.96 6.3 37467 37489
MIT 44.8 -5.3 0.06 0.96 6.2 37277 37299
BRO 44.9 -5.3 0.07 0.96 6.2 37277 37299

Breeds: BB= Blackbelly; PE= Pelibuey; DR= Dorper; KT= Katahdin; SF= Suffolk; HS= Hampshire; RB= Rambouillet.

§Models: VER= Verhulst; LOG= Logistic; VBE= von Bertalanffy; GOM= Gompertz; BRO= Brody; MIT= Mitscherlich.

*Statistics for model selection: PEV= prediction error variance; APE= average prediction error; DW= Durbin-Watson statistic; R2= determination coefficient; GSE= general standard error; AIC= Akaike information criterion; BIC= Bayesian information criterion.

Table 4 Regression coefficients and growth indicators in evaluated nonlinear models 

Breeds Model§ ¥β1± se ¥β2± se ¥β3± se £IPW £IPA
BB LOG 33.1±0.13 7.37±0.08 0.0243±0.0001 16.6 82
GOM 36.9±0.21 2.42±0.01 0.0139±0.0001 13.6 63
VBE 40.0±0.28 0.575±0.01 0.0103±0.0001 11.9 53
VER 35.2±0.17 3.35±0.02 0.0171±0.0002 17.6 86
MIT 61.3±1.22 -13.11±0.03 0.0034±0.0002
BRO 61.2±1.31 0.955±0.02 0.0034±0.0002
DR LOG 48.8±0.14 7.61±0.07 0.0242±0.0001 24.4 84
GOM 54.1±0.22 2.48±0.01 0.0140±0.0001 19.9 65
VBE 58.6±0.29 0.586±0.01 0.0105±0.0001 17.4 54
VER 51.8±0.17 3.43±0.01 0.0171±0.0001 25.9 88
MIT 88.8±1.23 -11.52±0.22 0.0035±0.0001
BRO 88.9±1.22 0.959±0.0 0.0036±0.0001
HS LOG 45.4±0.24 6.99±0.13 0.0285±0.0003 22.7 68
GOM 50.0±0.37 2.31±0.02 0.0163±0.0002 18.3 51
VBE 53.2±0.48 0.552±0.03 0.0125±0.0001 15.8 40
VER 48.0±0.31 3.22±0.03 0.0201±0.0002 24.0 71
MIT 68.6±1.36 -12.31±0.49 0.0054±0.0002
BRO 68.6±1.36 0.935±0.01 0.0054±0.0001
KT LOG 43.5±0.09 7.42±0.04 0.0241±0.0001 21.8 83
GOM 48.6±0.15 2.44±0.01 0.0138±0.0001 17.9 65
VBE 52.9±0.21 0.581±0.01 0.0102±0.0001 15.7 54
VER 46.3±0.12 3.38±0.01 0.0171±0.0002 23.2 86
MIT 84.9±1.01 -12.83±0.17 0.0032±0.0001
BRO 84.9±0.98 0.959±0.01 0.0032±0.0001
PE LOG 35.9±0.01 8.48±0.07 0.0256±0.0001 17.9 83
GOM 40.7±0.18 2.57±0.01 0.0141±0.0001 14.9 67
VBE 44.7±0.24 0.597±0.01 0.0102±0.0001 13.2 57
VER 38.7±0.14 3.55±0.02 0.0174±0.0001 19.4 88
MIT 78.9±1.40 -12.01±0.22 0.0029±0.0001
BRO 78.9±1.41 0.966±0.01 0.0029±0.0001
RB LOG 42.7±0.16 6.05±0.09 0.0259±0.0002 21.4 69
GOM 45.9±0.23 2.14±0.02 0.0157±0.0001 16.9 48
VBE 48.1±0.28 0.524±0.02 0.0124±0.0001 14.3 36
VER 44.5±0.19 3.00±0.02 0.0191±0.0001 22.3 70
MIT 56.8±0.62 -13.96±0.32 0.0064±0.0001
BRO 56.9±0.61 0.915±0.01 0.0064±0.0001
SF LOG 51.7±0.23 7.67±0.13 0.0276±0.0002 25.8 74
GOM 57.5±0.36 2.42±0.02 0.0155±0.0001 21.1 57
VBE 61.6±0.49 0.571±0.01 0.0117±0.0001 18.3 46
VER 55.1±0.36 3.38±0.02 0.0191±0.0001 27.6 77
MIT 84.0±1.61 -12.03±0.35 0.0046±0.0001
BRO 84.0±1.61 0.945±0.01 0.0046±0.0001

Breeds: BB= Blackbelly; PE= Pelibuey; DR= Dorper; KT= Katahdin; SF= Suffolk; HS= Hampshire; RB= Rambouillet.

§Models: VER= Verhulst; LOG= Logistic; VBE= von Bertalanffy; GOM= Gompertz; BRO= Brody; MIT= Mitscherlich.

¥Regression coefficients in nonlinear models: β1= asymptotic value (kg); β2= fit parameter; β3= growth rate; se= standard error.

£Growth indicators: IPA= inflection point age (d); IPW= inflection point weight (kg).

The growth curves based on the best-fit models showed the differences in growth pattern by breed (Figures 1 and 2). The growth curve describes and represents the evolution of live weight over time. Analysis of growth curves generates information that can be used in management, feeding and genetic improvement programs. The NLMs express the growth curve according to several components: adult weight, growth rate, degree of maturity, and inflection point age and weight, among others2,7. Modifying or altering growth therefore requires strategies that improve these components14,15. The VBE model is characterized by a sigmoid curve (Figure 2), with the inflection point being where the GR transitions from an acceleration process to a deceleration phase. The BRO and MIT models, in contrast, describe a continuous growth curve with no inflection point (Figure 1), and in which the GR as a proportion of the AW is constant over time3,16.

Figure 1 Growth curves for Katahdin (KT), Blackbelly (BB), Dorper (DR) and Rambouillet (RB) sheep breeds based on Brody model 

Figure 2: Growth curves for Pelibuey (PE), Suffolk (SF) and Hampshire (HS) sheep breeds based on von Bertalanffy model 

Other studies highlight how different NLM provide the best fit for different sheep breeds. Similar studies with the Baluchi5, Hemsin17, and West African Dwarf18 sheep breeds reported that the BRO model was best fitted to describe growth. In an analysis of growth in Morada Nova sheep4, the Meloun I and Meloun III models were found to have the best fit, with growth patterns similar to those in the BRO and MIT models used in the present study. However, in the Segureñas9 and Awassi breeds19 the VBE model has been found to have the best fit.

Marked differences were observed in AW in the seven evaluated breeds (Table 4). This parameter tended to be highest in the BRO and MIT models, and lowest in the LOG and VER models. Average values were 44.6 kg in BB, 49.2 kg in RB, 52.9 kg in PE, 55.6 kg in HS, 60.2 kg in KT, 64.7 in SF and 65.2 in DR. Increases in female AW affect maintenance, reproduction and waste value needs. Given that a large percentage of lamb production costs occur in ewes, increasing ewe size can raise production costs; however, asymptotic weight can be kept constant in selection programs while GR is maximized14,20. Since GR refers to the velocity of growth relative to AW, high GR can result in AW being attained at a younger age. Growth rate (GR) is financially important because it can be used to determine the optimal moment for slaughter, which is usually when the animal has reached maximum GR13,21.

The correlations between AW and GR are essential in strategies aimed at modifying growth curves15,21. All correlations between AW and GR in the present study were negative and high (-0.70 to -0.99). These negative correlations suggest certain growth curve characteristics: a) older AWs do not derive from high GRs; b) a lower GR may lengthen the time to reach AW; and c) in genetic improvement schemes, GR can be increased without affecting AW7,15,22.

Conclusions and implications

For the Hampshire, Pelibuey and Suffolk breeds, a nonlinear model based on the von Bertalanffy model produced sigmoid type growth curves with an inflection point at 40 to 57 d. For the Katahdin, Blackbelly, Dorper and Rambouillet breeds, a nonlinear model based on the Brody model resulted in growth curves with a continuous growth rate and no inflection point. The differences observed between the breeds as manifested in curve pattern and growth indicators express varying genetic potential, which can be exploited in different production systems.

Acknowledgments

The authors thank the Organismo de la Unidad Nacional de Ovinocultores for providing access to its database within the framework of the collaboration agreement between the Universidad Autónoma de Chihuahua and the Consejo Nacional de los Recursos Genéticos Pecuarios. ECS received a scholarship from the Consejo Nacional de Ciencia y Tecnología to study his Master’s degree.

REFERENCES

1. CONARGEN. Guía técnica de programas de control de producción y mejoramiento genético en ovinos. Consejo Nacional de los Recursos Genéticos Pecuarios. México, DF. 2010. [ Links ]

2. Lewis RM, Emmans GC, Dingwall WS, Simm G. A description of the growth of sheep and its genetic analysis. Anim Sci 2002;74:51-62. [ Links ]

3. Agudelo GDA, Cerón MF, Restrepo LFB. Modelación de las funciones de crecimiento aplicadas a la producción animal. Rev Colomb Cienc Pecu 2008;21:39-58. [ Links ]

4. de Andrade SL, Souza PLC, Mendes CHM, Fonseca S, Gomes da SF. Traditional and alternative nonlinear models for estimating the growth of Morada Nova sheep. Rev Bras Zootec 2013;42:651-655. [ Links ]

5. Bahreini BMR, Aslaminejad AA, Sharifi AR, Simianer H. Comparison of mathematical models for describing the growth of Baluchi sheep. J Agr Sci Tech 2014;14:57-68. [ Links ]

6. Teixeira NMR, da Cruz JF, Neves FH, Santos SE, Souza CPL, Mendes MC. Descrição do crescimento de ovinos Santa Inês utilizando modelos não-lineares seleccionados por análise multivariada. Rev Bras Saude Prod Anim 2016;17:26-36. [ Links ]

7. Malhado CHM, Carneiro PL, Alfonso PRA, Souza AA, Sarmento JLR. Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova, Rabo Largo, and Santa Inês. Small Ruminant Res 2009;84:16-21. [ Links ]

8. Ben HM, Atti N. Comparison of growth curves of lamb fat tail measurements and their relationship with body weight in Babarine sheep. Small Ruminant Res 2013;95:120-127. [ Links ]

9. Lupi TM, Nogales S, León JM, Barba C, Delgado JV. Characterization of commercial and biological growth curves in the Segureña sheep breed. Animal 2015;9:1341-1348. [ Links ]

10. SAS. SAS/STAT User's Guide (Release 9.0). Cary NC, USA: SAS Inst. Inc. 2005. [ Links ]

11. Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. Graph Pad Software Inc. 2003. [ Links ]

12. Hossein-Zadeh NG. Modeling the growth curve of Iranian Shall sheep using non-linear growth models. Small Ruminant Res 2015;130:60-66. [ Links ]

13. Hossein-Zadeh NG, Golshani M. Comparison of non-linear models to describe growth of Iranian Guilan sheep. Rev Colomb Cienc Pecu 2016;29:199-209. [ Links ]

14. Owens FN, Dubeski P, Hanson CF. Factors that alter the growth and development of ruminants. J Anim Sci 1993;71:3138-3150. [ Links ]

15. Lupi TM, León JM, Nogales S, Barba C, Delgado JV. Genetic parameters of traits associated with the growth curve in Segureña sheep. Animal 2016;9:729-735. [ Links ]

16. Ribeiro de FA. Curvas de crescimento na produçã animal. Rev Bras Zootec 2005;34:786-795. [ Links ]

17. Kopuzlu S, Sezgin E, Esenbuga E, Bilgin OC. Estimation of growth curve characteristics of Hemsin male and female sheep. J Appl Anim Res 2014;42:228-232. [ Links ]

18. Gbangboche AB, Glele-Kakai R, Salifou S, Albuquerque LG, Leroy PL. Comparison of nonlinear growth models to describe the growth curve in West African Dwarf sheep. Animal 2008;2:1003-1012. [ Links ]

19. Topal M, Ozdemir M, Aksakal V, Yildiz N, Dogru U. Determination of the best nonlinear function in order to estimate growth in Morkaraman and Awassi lambs. Small Ruminant Res 2004;55:229-232. [ Links ]

20. Bathaei SS, Leroy PL. Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Res 1996;22:155-162. [ Links ]

21. Lambe NR, Navajas EA, Simm G, Bünger L. A genetic investigation of various growth models to describe growth of lamb of two contrasting breeds. J Anim Sci 2006;84:2642-2654. [ Links ]

22. Acioli da SLS, Bossi FA, de Lima da SF, Mendes GB, de Oliveira SR, Tonhati H, da Costa BC. Growth curve in Santa Inês sheep. Small Ruminant Res 2012;105:182-185. [ Links ]

Received: March 10, 2018; Accepted: September 27, 2018

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons