SciELO - Scientific Electronic Library Online

 
vol.14 número4Índices fisiológicos de siete especies forrajeras en diferentes ambientes tropicalesAnálisis de temperatura y precipitación en dos zonas aguacateras del estado de Morelos: periodo 1956-2019 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.14 no.4 Texcoco may./jun. 2023  Epub 04-Ago-2023

https://doi.org/10.29312/remexca.v14i4.3152 

Articles

Potential of legume species as soil fertility enhancers in tropical regions

Moisés Matías-Ramos1  * 

Claudia Isabel Hidalgo-Moreno1 

Mariela Fuentes-Ponce2 

Julián Delgadillo-Martínez1 

Jorge Dionisio Etchevers1 

1Programa de Edafología, Campus Montecillos- Colegio de Postgraduados. Carretera México-Texcoco km 36.5. Montecillo 56230, Texcoco, Estado de México (matias.moises@colpos.mx; hidalgo@colpos.mx; juliandm@colpos.mx; jetchev@colpos.mx).

2Departamento de Producción Agrícola y Animal-Universidad Autónoma Metropolitana-Xochimilco. México (mfponce@correo.xoc.uam.mx).


Abstract

An alternative to enhance the fertility of agricultural soils in tropical areas of Mexico and the world is through the use of vegetation covers and green manures, mainly of species of the family Leguminosae. The objective of this work was to analyze the potential of legumes as soil fertility enhancers in tropical agricultural areas through the documentary research technique, considering scientific research of the last 20 years, period 2000-2023. Derived from the review, 14 species widely studied and 24 more, with high potential as enhancers of the physical, chemical and biological properties of soils, were determined. The species most used in the tropics are: Mucuna pruriens L. (DC) (biomass: 2.6 to 7.9 t ha-1 year-1, N: 80 to 200 kg ha-1 year-1), Canavalia ensiformis (L.) DC (biomass: 4.6 t ha-1 year-1; N: 173 kg ha-1 year-1) and Centrosema macrocarpum Benth (biomass: 9.6 t ha-1 year-1, nitrogen: 311 kg ha-1 year-1). Production in crops associated with legumes has increased by up to 50%. Despite the benefits to soil and production, the acceptance and adoption of legumes has been limited by different causes, among them: lack of perception of the benefits of legumes, failures in the technology generated and applied, and scarce participatory approach in their selection. With the information generated in this work, 10 recommendations were conceived to facilitate the selection of species, provide information that facilitates their adoption and that serves as a basis for future studies.

Keywords: vegetation cover; degradation; organic matter; nitrogen

Resumen

Una alternativa para mejorar la fertilidad de los suelos agrícolas en zonas tropicales de México y el mundo es mediante el uso de coberturas vegetales y abonos verdes, principalmente de especies de la familia Leguminosae. El objetivo de este trabajo fue analizar el potencial de las leguminosas como mejoradoras de la fertilidad del suelo en áreas agrícolas tropicales mediante la técnica de investigación documental, considerando investigaciones científicas de los últimos 20 años, período 2000-2023. Derivado de la revisión, se determinaron 14 especies estudiadas ampliamente y 24 más, con alto potencial como mejoradoras de las propiedades físicas, químicas y biológicas de los suelos. Las especies más utilizadas en los trópicos son: Mucuna pruriens L. (DC) (biomasa: 2.6 a 7.9 t ha-1 año-1, N: 80 a 200 kg ha-1 año-1), Canavalia ensiformis (L.) DC (biomasa: 4.6 t ha-1 año-1; N: 173 kg ha-1 año-1) y Centrosema macrocarpum Benth (biomasa: 9.6 t ha-1 año-1, nitrógeno: 311 kg ha-1 año-1). La producción en los cultivos asociados con leguminosas ha aumentado hasta en 50%. A pesar de los beneficios al suelo y en la producción, la aceptación y adopción de leguminosas ha sido limitado por diferentes causas, entre ellas: la falta de percepción de los beneficios de las leguminosas, fallas en la tecnología generada y aplicada, y escaso enfoque participativo en su selección. Con la información generada en este trabajo se concibieron 10 recomendaciones para facilitar la selección de especies, proveer información que faciliten su adopción y que sirva como base en futuras investigaciones.

Palabras clave: cobertura vegetal; degradación; materia orgánica; nitrógeno

Introduction

Soil fertility is a broad concept that integrates the chemical, physical and biological attributes associated with its ability to generate benefits to the environment and human societies (Etchevers et al., 2022). When these attributes are affected, soil fertility can be reduced and soil can be degraded, Food and Agriculture Organization of the United Nations (FAO) defines soil degradation as the changes in its characteristics that affect its functions and cause the reduction of agroecosystem yields (FAO-ITPS, 2021).

Degradation caused by inadequate management practices generates loss of soil fertility, considered the most serious problem because it limits the purpose of food security and adaptation to climate variability, which influence conditions of poverty and rural migration by preventing soils from providing goods and services in the expected way (Cotler et al., 2017; Estrada-Herrera et al., 2017). The use of cover crops represents an alternative to enhance the fertility of degraded tropical soils, by incorporating organic matter into the soil (OMS) that enhances its characteristics (Prager et al., 2012). The species most used for this purpose belong to the family Leguminosae for their ability to fix atmospheric nitrogen to the soil (Mpai et al., 2016).

Although there is ample information on the potential of legumes as enhancers of soil properties, there is a need to collect data on tropical species to make it easier for producers and regional and local programs to select the most appropriate for their use. The objective of this work was to document research conducted in Mexico and other regions of the world on the use of the legume species most frequently used for their potential to enhance soil fertility in tropical agricultural areas.

Methodology

In this review we searched the following repositories; ScienceDirect, Scopus, Scielo, Redalyc and Google Scholar for the period 2000-2023, using keywords such as: tropical legume species, crop association, cover crops, green manures, biomass production, soil fertility, soil degradation. The searches prioritized research of scientific papers, obtaining just over 200 results, from which a total of 65 studies that had greater relevance in the subject were selected.

Results and discussion

Soil fertility associated with vegetation cover in tropical regions

The vegetation cover plays a very important role in the ecosystems of tropical zones because it enhances the level of nutrients of the surface soil, which allows plants to exploit the deepest nutrient reserves, recover leachates, provide organic remains that are deposited on the surface, benefiting microorganisms that contribute to their incorporation (Isaac and Nair, 2006; Alegre et al., 2015). The vegetation cover protects the stability of surface aggregates against the destructive action of rain (Matías et al., 2020).

The removal and burning of forest cover, a common practice in the soils of the Yucatán Peninsula, decreases the production of organic residues. The problem of soil quality deterioration worsens because an important part of soil fertility is maintained by nutrient recycling (Alegre et al., 2015). Given the evident decrease in nutrients observed in tropical soils, there is currently a trend towards more rational use of soil, based on conservation principles that contribute to obtaining maximum yields with minimum degradation.

Use of green covers as soil fertility enhancers

As a consequence of the loss of soil fertility, it is relevant to develop projects that identify and evaluate the factors that govern the process to help to mitigate it. Currently, there are technologies that allow reducing the depletion of soil nutrients, among which are: conservation agriculture, minimum tillage, the use of organic amendments, residue management, agroforestry techniques, crop rotation and the use of green manures and vegetation covers (Halbrendt et al., 2014; Delgado, 2017).

‘Green covers’, a term defined by Anderson et al. (1997), are live vegetation covers that cover the soil, temporarily or permanently, grown in association with other plants (intercropped, in relay or in rotation). Their use is a way to increase the productivity of agricultural soils and reduce their degradation. According to Delgado (2017), their use has a positive correlation with soil porosity, moisture content, bulk density, temperature regulation and with keeping soil particles cohesive. Although cover crops can belong to any plant family, most are legumes, as they have a high capacity to enhance soil conditions by recycling nutrients, symbiotic fixation of atmospheric nitrogen, and control of undesirable vegetation (Mpai et al., 2016).

Importance of legumes to increase soil fertility

The use of legumes in systems is recognized for their ability to recover soil fertility (Prager et al., 2012; Mpai et al., 2016). Improvements in the quality of a soil depend on its properties, climatic conditions and management practices adopted (Sánchez et al., 2019). In warm regions, legumes have been used because they favor the fixation of atmospheric nitrogen through symbiosis with rhizobia (Wang and Sainju, 2014), an element frequently deficient in them.

In tropical agricultural systems, legumes represent a substantial source of nitrogen (N) product of symbiotic fixation (Douxchamps et al., 2014). The N they fix is readily available for associated crops, via residue mineralization, as it contains higher concentration of N and a lower carbon:nitrogen (C:N) ratio than grasses Legumes decompose rapidly, providing N to subsequent crops and when legumes contain tannins, it may be available up to 90 days after incorporation (Mulvaney et al., 2009; Wang and Sainju, 2014).

In addition to providing N, legumes incorporate biomass (carbon) into the soil, as well as nutrients such as phosphorus, potassium, calcium and magnesium (Guzmán et al., 2008). The legumes here called tropical can develop in various conditions, so it is necessary to select the most suitable species for specific conditions, considering the edaphoclimatic situation of the establishment site, which would help to obtain greater success in their introduction.

Species of tropical legumes most used as green manures

As a result of this research, Table 1 was made, which shows 14 species of legumes with significant contributions of biomass and nitrogen to the soil. The species of Mucuna sp. and Canavalia ensiformis (L.) DC are the most used because they have high biomass yields (Kaizzi et al., 2006). Puertas et al. (2008) recommend using Centrosema macrocarpum Benth to enhance soil fertility due to its ability to provide nutrients to the soil (N 311 kg ha-1, P 25 kg ha-1, K 155 kg ha-1) and to produce a considerable amount of biomass (9.61 t ha-1). Species such as Leucaena leucocephala (Lam.) can produce approximately 20 t ha-1 year-1 of biomass, contributing about 358 kg ha-1 of N, 28 kg ha-1 of P, 232 kg ha-1 of K and 144 kg ha-1 of Ca (Bossa et al., 2005). The rate of nitrogen fixation is variable depending on the species and management.

Table 1 Biomass (t ha-1 year-1) and nitrogen fixed to the soil (kg ha-1 year-1) by legume species in the tropics and subtropics. 

Species Place of establishment Biomass (t ha-1 year-1) Fixed nitrogen (kg ha-1 year-1) Source
Leucaena leucocephala (Lam.) Port-au-Prince, Haiti 20 to 35 388 Bossa et al.(2005)
Vigna unguiculata (L.) Yucatán, Mexico NE* 23.2 Terán et al.(1998)
Crotalaria juncea L. Hawaii, USA 7 150-165 Rotar and Joy (1983)
Alabama, USA 5.9 126 Reeves et al. (1996)
Mucuna pruriens L. (DC) Eastern Uganda 2.6 to 7.9 80 to 200 Kaizzi et al. (2006)
Mucuna sp. Yucatán, Mexico 5.4 43.4 Castillo et al. (2010)
Phaseolus lunatus L. (long cycle) Yucatán, Mexico 5.7 52.9
Phaseolus lunatus L.(short cycle) Yucatán, Mexico 3.15 31.9
Phaseolus vulgaris L. Veracruz, Mexico 2.71 to 8.26 14.72 to 113 Díaz et al. (2017)
Canavalia ensiformis (L.) DC. San Martín, Peru 4.59 173.68 Puertas et al. (2008)
Arachis pintoi Krapov. & W.C. Greg Tabasco, Mexico 5.07 130.38 Vera-Núñez et al. (2008) Puertas et al. (2008)
Calopogonium mucunoides (L.) Tabasco, Mexico 5.93 189.16
Centrosema macrocarpum Benth. San Martín, Peru 9.61 311.21
Clitoria ternatea L. Veracruz, Mexico NE* 26.104 Díaz et al. (2017)
Cajanus cajan (L.) Mill sp. Tabasco, Mexico NE* 230 Vera-Núñez et al. (2008)

*No data.

Table 2 presents 24 species with potential for use as soil enhancers and that currently have some alternative use, a characteristic that can benefit them and help their use. These species can be useful as a reference for experimental trials in tropical regions of Mexico and other countries.

Table 2 Potential legume species for use as agricultural soil enhancers in the tropical areas of Mexico. 

Species Annual Perennial Use Source
Edible Forage Grass Live fence
Aeschynomene americana L. x x x Díaz-Vergara et al. (2020)
Albizia lebbeck (L.) Benth. x x Mireles et al. (2020)
Alysicarpus vaginalis (L.) x x Díaz-Vergara et al. (2020)
Arachis hypogaea L. x x x Montero (2020)
Calapogonium sp. x x Díaz-Vergara et al. (2020)
Calliandra calothyrsus Meissn. x x Crespo et al. (2011)
Canavalia gladiata (Jacq.) DC. x x Chel-Guerrero et al. (2016)
Chamaecrista kunthiana(Schltdl. & Cham.)H.S. Irwin & Barneby x x Díaz-Vergara et al. (2020)
Desmodium ovalifolium (L.) DC. x x x Díaz-Vergara et al. (2020)
Enterolobium cyclocarpum (Jacq.) Griseb x x Pinto-Ruiz et al. (2010)
Erythrina glauca Willd x x Pinto-Ruiz et al. (2010)
Leucaena diversifolia Benth x x Pinto-Ruiz et al. (2010)
Macroptilium atropurpureum (Moc. & Sesse ex DC.) x x x Alatorre-Hernández et al. (2018)
Macrotyloma uniflorum (Lam.) x x x x Echo community (2017)
Mucuna bracteata DC. x x Díaz-Vergara et al. (2020)
Neonotonia wightii (Arn.) J.A. Lackey x x x López-Vigoa et al. (2019)
Phaseolus acutifolius x x Alatorre-Hernández et al. (2018)
Pithecellobium dulce (Roxb.) Benth x x x x Pinto-Ruiz et al. (2010)
Pueraria phaseoloides (Roxb.) x x Ribeiro and Antoniol (2021)
Sesbania rostrata S. x x x x Muñiz et al. (2012)
Vigna radiata (L.) Wilezek x x x Miquilena and Higuera (2012)
Vigna subterranea (L.) Verdc. x x Miquilena and Higuera (2012)
Vigna umbellata (Thunb.) x x x Miquilena and Higuera (2012)
Lablab prurpureus (L). Sweet x x x x Beltrán et al. (2005)

Effect of the use of legume species as soil enhancers on the production of crops of interest

The introduction of legumes associated with different tropical crops has changed conventional practices, becoming a technology that promotes soil conservation and increases crop yields (Erenstein, 2002). This review collected results of the use of legumes in the production of crops of interest (Table 3). The association of legume crops as soil enhancers increased the production of the associated crop under traditional management up to 50%. In some of these studies, the results were observed in the second or third year after the use of legumes.

Table 3 Effect on the establishment of legumes and different crops. 

Legume species Associated crop Crop yield Place of establishment Source
Mucuna pruriens L. Zea mays L. 1 076 kg ha-1 year-1 Oaxaca, Mexico Serrano et al. (2006)
Canavalia ensiformis (L.) and Mucuna pruriens L. Zea mays L. 1 477 kg ha-1 year-1 Yucatán, Mexico Ayala et al. (2008)
Mucuna pruriens L. and Crotalaria juncea Zea mays L. 2 570 kg ha-1 year-1 Isabela, Puerto Rico Martínez-Mera et al. (2016)
Mucuna sp. Zea mays L. 1 819 kg ha-1 year-1 Yucatán, Mexico Castillo et al. (2010)
Sesbania rostrata S. Oryza sativa L. Increase of 1 000 kg ha-1 year-1 Havana, Cuba Muñiz et al. (2012)
Crotalaria juncea L. Manihot esculenta Crantz 13 026 kg ha-1 year-1 fresh weight Tabasco, Mexico Magaña et al. (2020)

Castro-Rincón et al. (2018) reported studies conducted in several countries; for example, in studies carried out with rice in Brazil, it was found that, in the treatments with green manures of legumes, they increased the production by 18% to 20% with respect to the control. In the same study, it is reported that, in Uganda, 50 to 60% higher maize grain and bean yields were observed when using green manures. The results suggest that the yields obtained were due to the inclusion of legumes.

Transfer of technologies for the adoption and use of legumes

The studies described in this review show that it is possible to enhance soil fertility and that the benefits of using species of the legume genus are scientifically and clearly demonstrated. Nevertheless, the adoption and use of green manures by producers has not been entirely positive. In the study conducted by Castro-Rincón et al. (2018), they found that producers’ adoption of the technology has been low due to the following reasons: 1) producers’ lack of perception of legume benefits; 2) failures in the technology generated and applied; and 3) lack of a participatory approach in research and dissemination processes. Another limitation is the high cost of seeds and the difficulty of obtaining a synchrony between the release of the nutrients contained in these plants and the demand of the main crop (Resende et al., 2001).

The species to be used as soil fertility enhancer must be adapted to the farmer’s production system, have low implantation cost, be resistant to pests and fast growing (Sodré et al., 2004). Zhang et al. (2013) recommend the use of native herbaceous and shrub species that are adaptable to the ecological conditions of the site. Hand in hand with technical recommendations, public policies should be developed for the implementation and development of projects that promote the development and use of technologies aimed at reversing soil degradation, efforts should be aimed at generating technologies or applying existing ones to reverse actions that have degraded the soil (Etchevers et al., 2022).

Conclusions

The use of legumes in cultivation systems, in addition to providing N, helps to reduce erosion and enhance the physical (structure, porosity, bulk density, moisture retention), chemical (availability of nitrogen, phosphorus, potassium, calcium and magnesium) and biological (increase in microbial activity) properties of the soil. Due to their high potential, tropical legume species represent an alternative to enhance soil fertility.

It was determined that the species most used for their effectiveness in tropical areas of Mexico and other parts of the world are: Mucuna pruriens L. (DC), Canavalia ensiformis (L.) DC and Centrosema macrocarpum Benth. There are also shrub and tree species that can fix up to 300 kg ha-1 year-1 of N, such as Leucaena leucocephala (Lam.), which can be used within silvopastoral systems or in combination with other species of commercial interest.

Although there is enough scientific information that highlights the benefits of using legumes for the soil, it is necessary to have more studies that focus on the associations of legumes with other crops to avoid competition with the crop of interest, to know in detail the edaphoclimatic requirements of the species to be used for this purpose, to know more about its phenological cycle and its growth habit. The dissemination of the information on the advantages of using legumes aimed at producers in tropical areas in Mexico is scarce, there is a need for dissemination with a participatory approach that considers specific needs. Insufficient information limits the adoption of the use of legumes as soil enhancers in the Mexican tropics.

To achieve the adoption of the use of vegetation covers, it is recommended to highlight the secondary benefits of introducing these species, that it has a low cost of implementation, because they are species of the region and easy to manage. The information obtained in this review may help future research in the selection of legumes because of their high potential to enhance soil fertility in tropical regions.

Bibliografía

Alatorre-Hernández, A.; Guerrero-Rodríguez, J. D. Olvera-Hernández, J. I. Aceves-Ruíz, E. y Vaquera-Huerta, H. 2018. Leguminosas forrajeras herbáceas de enredadera, recursos poco valorados en el trópico seco. Rev. Fitotec. Mex. 41(4):403-411. [ Links ]

Alegre, J.; García, S.; Vega, R. y Arévalo, Y. 2015. Manual reciclaje de nutrientes en sistemas agroforestales. La Moilina-Lima. ResearchGate. 25 p. Doi: 10.13140/RG.2.2.17646.72003. [ Links ]

Anderson, S.; Ferraes, N.; Gundel, S.; Keane, B. y Pound, B. 1997. Cultivos de Cobertura: componentes de sistemas integrados. Taller Regional Latinoamericano. Facultad de Medicina Veterinaria y Zootecnia-Universidad Autónoma de Yucatán. Mérida, Yucatán, México. 4-116 pp. [ Links ]

Ayala, S. A.; Krishnamurthy, L. y Basulto, G. J. A. 2008. Leguminosas de cobertura para mejorar y sostener la productividad de maíz en el sur de Yucatán. Terra Latinoam. 27(1):63-69. [ Links ]

Beltrán-Morales, F. A.; García-Hernández, J. L.; Valdez-Cepeda, R. D.; Murillo-Amador, B.; Troyo-Dieguez, E.; Larrinaga-Mayoral, J.; Ruiz-Espinoza, F. H.; Fenech-Larios, L. y García-Rodríguez, F. 2005. Sistemas de labranza, incorporación de abono verde y recuperación de la fertilidad de un yermosol háplico. Terra Latinoam. 23(3):381-387 [ Links ]

Bossa, J. R.; Adams, J. F.; Shannon, D. A. and Mullins, G. L. 2005. Phosphorus and potassium release pattern from leucaena leaves in three environments of Haiti. Nutr. Cycl. Agroecosys. 73 (1):25-35. [ Links ]

Castillo, C. J. B.; Caamal-Maldonado, J. A.; Jiménez-Osornio, J. J. M.; Bautista-Zúñiga, F.; Amaya-Castro, M. J. y Rodríguez-Carrillo, R. 2010. Evaluación de tres leguminosas como coberturas asociadas con maíz en el trópico subhúmedo. Agron. Mesoam. 21(1):39-50. Doi: https://doi.org/10.15517/am.v21i1.4910. [ Links ]

Castro-Rincón, E.; Mojica-Rodríguez, J. E.; Carulla-Fornaguera, J. E. y Lascano-Aguilar, C. E. 2018. Abonos verdes de leguminosas: integración en sistemas agrícolas y ganaderas del trópico. Agron. Mesoam. 29(3):711-729. Doi: 10.15517/ma.v29i3.31612. [ Links ]

Chel-Guerrero, L. A.; Delgado-Herrera, A.; Betancur-Ancona, D. A.; Pérez-Aviña, P. y Castellanos-Ruelas, A. F. 2016. Evaluación proteínica y energética de semillas tratadas de Canavalia empleadas como alimento para aves en el trópico. Nova Sci. 8(17):219-232. [ Links ]

Cotler, A. H. y Cuevas, F. Ma. L. 2017. Estrategias de conservación de suelos en agroecosistemas de México. Fundación Río Arronte, IAP. 1a Ed. Ciudad de México. 114 p. [ Links ]

Crespo, Z. M.; Rodríguez, A. A.; Valencia, E. C. y Randel, P. F. 2011. Características agronómicas y composición química de tres leguminosas arbustivas: Cratylia Argentea (Desv.) Kuntze, Calliandra Calothyrsus meisn y Leucaena Leucocephala (lam.) De Wit, J. Agrie. Univ. RR. 95(1-2):99-104. Doi: https://doi.org/10.46429/jaupr.v95i1-2.2552. [ Links ]

Delgado, D. M. 2017. Aplicación de enmiendas orgánicas para la recuperación de propiedades físicas del suelo asociadas a la erosión hídrica. Lámpsakos. 1(17):77-83.. Doi: http://dx.doi.org/10.21501/21454086.1907. [ Links ]

Díaz, P. L. A.; Vázquez, L. D.; Jarquín, S. A.; Velázquez, S. A. y Lara, R. D. A. 2017. Especies tropicales (Fabaceae): inversión asociada al aporte rizosférico de nitrógeno y fósforo al suelo. Agro productividad. 10(12):116-120. [ Links ]

Díaz, V. M.; Díaz, O. N. y Osorio, B. O. 2020. Biodiversidad y servicios ecológicos de las arvenses en el cultivo de tomate en la provincia de Los Santos República de Panamá. Visión Antataura. 4(2):16-34. Doi: https://doi.org/10.48204/j.vian.v4n2a2. [ Links ]

Douxchamps, S.; Rao, I. M.; Peters, M.; Van-Der-Hoek, R.; Schmidt, A.; Martens, S.; Polania, J.; Mena, M. A.; Binder, C. R.; Schöll, R.; Quintero, M.; Kreuzer, M.; Frossard, E. and. Oberson, A. 2014. Farm-scale tradeoffs between legume use as forage versus green manure: the case of Canavalia brasiliensis. Agroecol. Sustain. Food Syst. 38(1):25-45.. Doi: https://doi.org/10.1080/21683565.2013.828667. [ Links ]

Echo community. 2017. Buenas prácticas. Selección de leguminosas como abono verde/cultivos de cobertura. Echo Development Notes. North Fort Myers, Florida 33917. USA. Boletín Núm. 7. 18 p. https://www.echocommunity.org/es/resources/f9596754-bd6d-4895-a4de-4bc77de91728. [ Links ]

Erenstein, O. 2002. Crop residue mulching in tropical and semi-tropical countries: an evaluation of residue availability and other technological implications. Soil Tillage Res. 67(2):115-133. Doi: https://doi.org/10.1016/S0167-1987(02)00062-4. [ Links ]

Estrada-Herrera, I. R.; Hidalgo-Moreno, C.; Guzmán-Plazola, R.; Almaráz-Suárez, J. J.; Navarro-Garza, H.; Etchevers-Barra, J. D. 2017. Indicadores de calidad de suelo para evaluar su fertilidad. Agrociencia. 51(8):813-831. [ Links ]

Etchevers, J. D.; Hidalgo, M.C. y Paz, P. F. 2022. Degradación de suelos y necesidad de políticas públicas. Elementos para políticas públicas. 3(3):267-273 [ Links ]

FAO-ITPS. 2021. Recarbonizing global soils-A technical manual of recommended management practices. Volume 1: Introduction and methodology. Rome, FAO. Doi: https://doi.org/10.4060/cb6386en. [ Links ]

Guzmán, C. G. I. y Alonso, M. A. M. 2008. Buenas prácticas en producción ecológica. Uso de abonos verdes. Centro de investigación y formación en agricultura ecológica y desarrollo rural. Ministerio de Medio Ambiente y Medio Rural y Marino. Camino del Jan, s/n 18320 Santa Fe Granada, España.22p. ISBN:978-84-491-0867-9. [ Links ]

Halbrendt, C. J.; Kimura, A. H.; Gray, S. A.; Radovich T., J. K.; Reed, B. B. and Tamang, B. B. 2014. Implications of conservation agriculture for men’s and women’s workloads among marginalized farmers in the Central Middle Hills of Nepal. Mt. Res. Dev. 34(3):214-222. Doi: https://doi.org/10.1659/mrd-journal-d-13-00083.1. [ Links ]

Isaac, S. R. and Nair, M. A. 2006. Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India. J. Agrofor. Syst. 67 (3):203-213.. Doi: https://doi.org/10.1007/s10457-005-1107-3. [ Links ]

Kaizzi, C. K.; Ssali, H. and Vlek, P. L. G. 2006. Differential use and benefits of Velvet vean (Mucuna pruriens var. utilis) and N fertilizers in maize production in contrasting agro-ecological zones of E. Uganda. Agric. Syst. 88(1):44-60. Doi: https://doi.org/10.1016/j.agsy.2005.06.003. [ Links ]

López-Vigoa, O.; Lamela-López, L.; Sánchez-Santana, T.; Olivera-Castro, Y.; García-López, R.; Herrera-Villafranca, M. y González-Ronquillo, M. 2019. Evaluación del valor nutricional de los forrajes en un sistema silvopastoril. Pastos y Forrajes. 42(1):57-67. [ Links ]

Magaña, V. W.; Obrador, O. J.; García, L. E.; Castelán, E. M. y Carrillo, Á. E. 2020. Rendimiento comparativo de la yuca bajo fertilización mineral y abono verde. Rev. Mex. Cienc. Agríc. 11(6):1259-1271. [ Links ]

Martínez-Mera, C. E.; Valencia, E. y Cuevas, E. H. 2016. Evaluación del rendimiento de maíz dulce (Zea mays 'Suresweet') con las leguminosas cobertoras mucuna enana (Mucuna pruriens) y crotalaria (Crotalaria juncea “Tropic Sun”) en un Oxisol de Puerto Rico University of Puerto Rico. 1. J. Agric. 00(l):57-70 [ Links ]

Matías, R. M.; Gómez, D. J. D.; Monterroso, R. A. I.; Uribe, G. M.; Villar, H. B de J.; Ruíz, G. P. y Asencio, G. C. 2020. Factores que influyen en la erosión hídrica del suelo en un bosque templado. Rev. Mex. Cienc. Forest. 11(59):51-71. Doi: https://doi.org/10.29298/rmcf.v11i59.673. [ Links ]

Miquilena, L. E. y Higuera, M. A.. 2012. Evaluación del contenido de proteína, minerales y perfil de aminoácidos en harinas de Cajanus cajan, Vigna unguiculata y Vigna radiata para su uso en la alimentación humana. Rev. Científica UDO Agrícola. 12(3):730-740. [ Links ]

Mireles, F. S.; Ly, C. J. Caro, R. Y. and Grageola, N. F. 2020. Foliage of Albizia lebbeck (L.) Benth for feeding pigs. 1. Indices of consumption pattern and productive behavior. Rev. Bio Cienc. 7(1)::1-10. Dio: https://doi.org/10.15741/revbio.07.e940. [ Links ]

Montero, T. J. 2020. Importancia nutricional y económica del maní (Arachis hypogaea L.). Rev. de Investigación e Innovación Agropecuaria y de Recursos Naturales. 7(2):112-124. [ Links ]

Mpai, T. P.; Jaiswal, S. K. and Dakora, F. D. 2016. Biological nitrogen fixation and molecular diversity of rhizobia isolated from root nodules of wild legumes: Polhilia, Wiborgia and Wiborgiella species of the South African Cape fynbos. South Afr. J. Bot. 103 (1):336.. Doi: https://doi.org/10.1016/j.sajb.2016.02.122. [ Links ]

Mulvaney, R. L.; Khan, S. A. and Ellsworth, T. R. 2009. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J. Environ. Qual. 38 (6):2295-2314.. doi:10.2134/jeq2008.0527. [ Links ]

Muñiz, U. O.; Cabello, M. R.; Socorro, Q. M.; Nuviola, M. A. y Dueñas, V. G. 2012. La Sesbania Rostrata como fuente alternativa de nutrientes en el cultivo del arroz. Spanish J. Soil Sci. 12(2):57-62. Doi: 10.3232/SJSS.2012.V2.N3.06. [ Links ]

Pinto-Ruiz, R.; Hernández, S. D.; Gómez, C. H.; Cobos, M. A.; Quiroga, M. R. y Pezo, D. A.. 2010. Árboles forrajeros de tres regiones ganaderas de Chiapas, México: usos y características nutricionales. Universidad y Ciencia. Trópico Húmedo. 26(1):19-31. [ Links ]

Prager, M. S.; Sanclemente R. , O. E.; Sánchez, P. M.; Gallego, J. M. y Ángel, D. I. 2012. Abonos verdes: tecnología para el manejo agroecológico de los cultivos. Agroecología. 7(1):53-62. [ Links ]

Puertas, R. F.; Arévalo, G. E.; Zúñiga, C. L.; Alegre, J. C.; Loli, F. O.; Soplin, V. H. y Baligar, V. C. 2008. Establecimiento de cultivos de cobertura y extracción total de nutrientes en el suelo de trópico húmedo en la Amazonía peruana. Ecología Aplicada. 7(1-2):23-28. [ Links ]

Reeves, D. W.; Mansoer, Z. Z. and Wood, C. W. 1996. Suitability of sun hemp as an alternative legume cover crop. Proceedings of the New Technology and Conservation Tillage. 96(7):125-130. [ Links ]

Resende, A. S.; Quesada, D. M.; Xavier, R. P.; Guerra, J. G. M.; Boddey, R. M.; Alves, B. J. A. and Urquiaga, S. E.. 2001. Uso de leguminosas para adubação verde: importância da relação talo/ folha. Agronomia. 35(1-2):77-82. [ Links ]

Ribeiro, M. R. and Antoniol, F. J. R. 2021. Trocas gasosas de Pueraria phaseoloides (Roxb.) Benth submetida à variação da temperatura foliar. Circular Técnica. 82 (1):1-12. [ Links ]

Rotar, P. P. and Joy, R. J. 1983. Tropic Sun sunn hemp, Crotalaria juncea L. research extension. College of Tropical Agriculture and Human Resources. University of Hawaii, Honolulu, HI, USA. 2(36): 1-7. [ Links ]

Sánchez, N. V.; Zornoza, B. R..; Faz, C. A. and Fernández, A. J. 2019. Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions. Sci. Hortic. 246 (1):835-841.. Doi: https://doi.org/10.1016/j.scienta.2018.11.065. [ Links ]

Serrano, A. V. y Cano, G. M. A. 2006. Leguminosas de cobertura para reducir la erosión y mejorar la fertilidad de suelo de ladera. Terra Latinoam. 25(4):427-435. [ Links ]

Sodré, F. J.; Cardoso, A. N.; Carmona, R. and Carvalho, A. M. 2004. Fitomassa e cobertura do solo de culturas de sucessão ao milho na Região do Cerrado. Pesqui. Agropecu. Bras. 39(4):327-334. Doi: https://doi.org/10.1590/S0100-204X2004000400005. [ Links ]

Terán, C. S.; Rasmussen, H. C. y May, C. O. 1998. Las plantas de la milpa entre los mayas. Ed. Fundación Tunben Kin, AC. Mérida, Yucatán, México. ISBN: 9709206001; 9789709206005. 278 p. [ Links ]

Vera-Núñez, J. A.; Infante-Santiago, J. P.; Velasco-Velasco, V.; Salgado-García, S.; Palma-López, D. J.; Grageda-Cabrera, O. A.; Cárdenas-Navarro, R. and Peña-Cabriales, J. J. 2008. Influence of fertilization on biological nitrogen fixation in herbaceous legumes grown in acid savannah soil from the Tabasco state, Mexico. J. Sustain. Agric. 3 (3):25-42.. Doi: https://doi.org/10.1300/J064v31n03_04. [ Links ]

Wang, J. and Sainju, U. M. 2014. Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types. Plos One. 9(8) 1-11:. Doi: https://doi.org/10.1371/journal.pone.0105039. [ Links ]

Zhang, Z. Y.; Wan, C. Y.; Zheng, Z. W.; Hu, L.; Feng, K.; Chang, J. B and Ping, X. 2013. Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the Three Gorges Reservoir in China. Environ. Sci. Pollut Res. 20(10):7080-7091. Doi: https://doi.org/10.1007/s11356-013-1702-1. [ Links ]

Received: March 01, 2023; Accepted: June 01, 2023

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons