SciELO - Scientific Electronic Library Online

 
vol.14 número4Caracterización morfológica y productiva de accesiones de Jatropha curcas L. no tóxica en la región central de VeracruzPotencial de especies de leguminosas mejoradoras de la fertilidad del suelo en regiones tropicales índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.14 no.4 Texcoco Mai./Jun. 2023  Epub 04-Ago-2023

https://doi.org/10.29312/remexca.v14i4.3475 

Articles

Physiological indices of seven forage species in different tropical environments

Erika Andrea-Hernández1  * 

Carlos Vicente Duran-Castro2 

Bernardo Silva-Aguilar3 

Francisco Indalecio Juárez-Lagunes4 

Oscar Mauricio Vélez-Terranova2 

María Sara Mejía de Tafur2 

1Ingenieria en Agronomía-Instituto Tecnológico Superior de Tantoyuca. Tantoyuca, México. Desviación Lindero Tametate S/N, La Morita, CP 92100 (erikandreah@gmail.com).

2Departamento de Ciencia Animal, Facultad de Ciencias Agropecuarias-Universidad Nacional de Colombia, sede Palmira, Colombia. Carrera 32 12 -00. CP 763531 (cvduranc@unal.edu.co; msmejiat@unal.edu.co; omvelezt@unal.edu.co).

3Ingenio San Carlos. Vía Riofrío, Tuluá, km 3, Valle del Cauca, Colombia. CP 763028 (bsilva0407@gmail.com).

4Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana. Miguel Ángel de Quevedo S/N, esq. Yáñez. Col. Universidad Veracruzana CP 91710. Veracruz, Veracruz, México (fjuarez@uv.mx).


Abstract

Forages must constantly carry out processes of adaptation to different changes in environmental factors, which leads to their physiological variables being affected. The objective was to evaluate the physiological behavior of seven tropical forage species under different environmental conditions in 2019 in Palmira, Colombia. A randomized complete block design was implemented in three localities with different altitudes, with four repetitions per species for a total of 28 experimental units per locality. An Lcpro+ portable photosynthetic measurement analyzer was used to collect data on photosynthesis rate (TA), stomatal conductance (Gs), transpiration rate (E) and Internal CO2 (Ci). The collected data were analyzed by a comparison of means with Duncan’s test (p≤ 0.05). The physiological indicators of the species Star, Kikuyu and the legume Centrosema molle in the three altitudes and the two seasons would demonstrate the mechanisms of adaptation that they develop in adverse places in which they are established.

Keywords: adaptability; altitude; seasons; forages

Resumen

Constantemente los forrajes deben realizar procesos de adaptación a los diferentes cambios en los factores ambientales lo cual conlleva a que sus variables fisiológicas se vean afectadas. El objetivo fue evaluar el comportamiento fisiológico de siete especies forrajeras tropicales en diferentes condiciones ambientales durante 2019 en Palmira, Colombia. Se implementó un diseño de bloques completos al azar, en tres localidades con diferentes altitudes, con cuatro repeticiones por especie para un total de 28 unidades experimentales por localidad. Se utilizó un analizador de medición fotosintético portátil Lcpro+, para la toma de datos de la tasa de fotosíntesis (TA), conductancia estomática (G s ), tasa de transpiración (E) y CO2 Interno (Ci). Los datos recolectados fueron analizados mediante una comparación de medias con la prueba de Duncan (p≤ 0.05). Los indicadores fisiológicos de la especie Estrella, Kikuyo y la leguminosa Centrosema molle en las tres altitudes y las dos épocas demostrarían los mecanismos de adaptación que estas desarrollan en lugares adversos a los que se establecen.

Palabras clave: adaptabilidad; altitud; épocas; forrajes

Introduction

Forages represent the main source of food for ruminants, but they are not always managed properly, due to the little knowledge available regarding the physiological behavior for their growth, as well as their nutritional composition. On the other hand, soil fertility, management and climatic conditions significantly influence grass production (Costa et al., 2007). The study of the dynamics of grass ecosystems and especially their capacity to transform light energy into biomass, and of other substrates as determinants of growth has been a subject still little studied in tropical regions (Del Pozo, 2002; González, 2011).

Most of the changes that occur in the phytomass, or in the chemical constituents of the plant, over time, are limited to a growth analysis by means of empirical indices without further studying the multiple and complex functions that develop in the different morphological structures, nor in the relationships and interrelationships that are established between the production system and the environment, which are key factors for the development of management practices in forage resources (Del Pozo, 2002).

Forage production is the result of the transformation of solar energy into organic compounds through photosynthesis, where carbon from the atmosphere is combined with water and transformed into carbohydrates using solar energy (Oliveira et al., 2007). Energy conversion, however, is a relatively inefficient process, as only 2 to 5% of the light energy that reaches the surface can be effectively used for canopy growth (Bernardes, 1987). Light radiation is the basic determinant of plant growth through photosynthesis and other physiological processes, such as transpiration and nutrient absorption.

The efficient use of light can be a competitive advantage for plants in the transformation of light energy into chemical energy. The intensity of light varies throughout the year, depending on the angle of radiation of the incident light (latitude) and cloudiness (Lara and Pedreira, 2011). Temperature is another important factor in photosynthesis since plants, by presenting genetic diversity and different growth and development strategies, respond better to temperature changes than to constant temperatures (Buxton and Fales, 1994). Baruch and Fisher (1991) indicate that the optimal photosynthetic activity of tropical grasses and legumes is between 35 to 39 °C and between 30 to 35 °C, respectively.

Temperatures below 0 and 20 °C would cause a low conversion of sugars in plant tissues, product of a decrease in biosynthesis processes and due to an energy deficit produced by a reduction in respiratory rate, affecting growth. Above-optimal temperatures also substantially reduce growth, due to a decrease in photosynthetic activity due to enzymatic inactivation, protein denaturation, and an increase in respiratory demand (respiration and photorespiration) (Pollock, 1990).

In addition, high temperatures increase the transpiration rate of plants and create a negative water balance that reduces cell expansion and therefore growth (Taiz and Zeiger, 2010). Due to the above, the objective of the present study was to evaluate the physiological indices of photosynthetic rate, stomatal conductance, transpiration rate and internal CO2 in seven tropical forage species at different altitudes and seasons to identify their adaptation mechanisms.

Materials and methods

Area of study

The study was conducted in three localities in the municipality of Palmira, department of Valle del Cauca: the first in the Mario González Aranda Farm of the National University of Colombia, Palmira campus. The climate in this region is classified as tropical dry forest (Henríquez et al., 2005) with average annual temperature and precipitation of 24 °C and 1 020 mm respectively and an altitude of 1 000 masl. The soil classification is Clayey (Cl) with > 19.80% sand, 0.08 of organic matter and a pH of 6.9.

The second and third localities were located in the village of La Veranera, corregimiento of Toche. The climatic classification of the area is very humid montane forest (Henríquez et al., 2005) with average annual temperature and precipitation of 15 °C and 1 800 mm, respectively. The height masl varies between 1 500 and 2 000. The classification of the soil at 1 500 and 2 000 masl is Loamy (L) with >20.32% clay, organic matter 0.10 and pH 6 and in Sandy loamy (SL) with >36.32% clay, organic matter 0.26 and pH 6.1, respectively.

Experimental design, data collection and forage species

The forage species evaluated were Star (Cynodon plectostachyus K. Schum), Kikuyu (Pennisetum clandestinum Hochst. ex Chiov), Toledo (Urochloa brizantha Hochst. ex A. Rich. CIAT 26110), Humidicola (Urochloa humidicola Rendle. Schweick. CIAT 26159), Mulato II (Urochloa hibrido, CIAT 36087), Tanzania (Megathyrsus max Jacq) and Centrosema molle (Mart. ex Benth CIAT 15160). Twenty-eight plots of 8 m2 (4*2 m) were established at 1 000, 1 500 and 2 000 masl.

Data collection was carried out by randomly selecting three healthy plants, in each of the plots of the six grasses and one legume, in the rainy and dry seasons in 2019 every 20 days between 8:00 am and 10:00 am. For each beginning of the season, a uniformity cut was made according to those suggested by Toledo and Schultze (1982). Readings of photosynthesis rate (TA) μmol CO2 m-2 s-1, stomatal conductance (G) mol m-2 s-1, transpiration rate (E) mmol m-2 s-1 and internal CO2 (Ci) μmolmol-1 were made using the Lcpro+ portable photosynthetic measurement analyzer, manufactured by the company ADC Bio-Scientific in the UK.

Statistical analysis

Data collected during readings were analyzed using the general linear program (GLM) of the statistical program SAS® V.9.3 (SAS Institute Inc., 2011). Duncan’s test (p≤ 0.05) was used for comparison of treatment means.

Results and discussion

Gas exchange

The statistical analysis of the data indicates that the TA by species and season presented a variation between 35.95 and 15.13 μmol CO2 m-2 s-1 and 30.94 and 28.97 μmol CO2 m-2 s-1 respectively, Table 1. The highest TA was observed in the species of Star, Mulato II, Toledo and Tanzania (Table 1). This is similar to those reported by Silva et al. (2012) in cultivars of the genus Megathyrsus, Cynodon and Urochloa for the same seasons in Brazil.

Table 1 Physiological indicators TA, Gs, E and Ci in forage species, altitudes, and seasons. 

Species (Spe) TA (μmol CO2 m-2 s-1) Gs (mol m-2 s-1) E (mmol m-2 s-1) Ci (μmolmol-1)
Centrosema molle 15.13a 0.99c 7.53cd 272.81d
Kikuyu 28.69b 0.82ab 4.95a 199.46c
Humidicola 28.97b 0.78a 7.89d 184.44b
Tanzania 32.67c 1.00c 5.95b 182.72b
Toledo 3.74d 0.95c 6.08b 172.11a
Mulato II 35.12d 0.99c 7.02c 172.85a
Star 35.95d 0.93c 7.93d 171.39a
SE 2.43 0.20 0.95 14.46
Season (Se)
Drought 1 28.97a 0.87a 5.49a 201.00c
Drought 2 30.46b 0.90a 8.36c 183.78a
Rain 1 30.94b 0.95a 5.62a 193.60b
Rain 2 30.35b 0.96a 7.60b 193.36b
SE 3.21 0.26 1.26 19.13
Altitude masl (Alt)
1 000 32.75a 1.09a 9.06c 209.22c
1 500 28.12a 0.89b 5.95b 192.24b
2 000 29.67a 0.78c 5.30a 179.59a
SE 3.71 0.30 1.45 22.09
p-value
Spe ˂ 0.0001 0.0008 ˂ 0.0001 ˂ 0.0001
Se 0.0042 0.2418 ˂ 0.0001 ˂ 0.0001
Alt ˂ 0.0001 ˂ 0.0001 ˂ 0.0001 ˂ 0.0001
Spe * Se ˂ 0.0001 ˂ 0.0001 ˂ 0.0001 ˂ 0.0001
Spe * Alt ˂ 0.0001 ˂ 0.0001 ˂ 0.0001 ˂ 0.0001
Spe * Se * Alt ˂ 0.0001 ˂ 0.0001 ˂ 0.0001 ˂ 0.0001

TA= photosynthesis rate; Gs= stomatal conductance; E= transpiration, Ci= intercellular CO2. abcd different literals on the same column differ significantly (Duncan ≤ 0.05).

These cultivars would have a better capacity to withstand long periods of drought and rain, in addition to being more efficient to intercept the incident energy available in these seasons by developing adaptation mechanisms by modifying the physical nature of their roots and leaves in order to regulate the entry and exit of water and CO2 (Peters et al., 2011; Silva et al., 2012). The TA for Kikuyu grass was similar in the two seasons evaluated (Table 1), which would indicate its adaptability to tropical climates and its ability to photosynthesize in temperature ranges different from the one in which it is commonly found (Álvarez et al., 2008).

The legume of the species Centrosema molle presented the lowest TA with 15.13 μmol CO2 m-2 s-1 in both seasons. This value is above that reported by Xiong et al. (2017), in leguminous forages of Trifolium repens, where the observed value was 11.65 and 6.55 μmol CO2 m-2 s-1 in the same seasons. The differences between these two legume species are possibly due to the environmental conditions in which they were established, allowing Centrosema molle to develop adaptation mechanisms conducive to the tropics.

Grasses have specific physiological and morphological characteristics that provide specific adaptation for their growth and quality. However, these undergo modifications in morphology, in yield and quality when there are changes in the climatic conditions, where temperature, solar radiation (quantity and quality), rainfall and its distribution are the components that most determine tropical conditions (Del Pozo, 2002).

The species of Star and Centrosema molle presented the highest and lowest TA, respectively (Table 1). This is due to the fact that Star, by having a C4 photosynthetic pathway, presents a better adaptation to high temperatures and a low concentration of atmospheric CO2 compared to grasses of C3 photosynthetic pathway (Loomis and Amthor, 1999; Taylor et al., 2012). The physiological explanation for this adaptation mechanism is that the C4 photosynthetic pathway requires less Rubisco, so consequently and importantly, less foliar nitrogen (N) per leaf area unit for rapid photosynthesis.

In addition, they have a water distribution structurally different from that of C3 plants. Allowing C4 grasses to use water and nitrogen efficiently to achieve high growth rates, provided temperatures are adequate (Sierra, 2005; Crush and Rowarth, 2007). On the other hand, temperate grasses and tropical and temperate legumes, such as the species Centrosema, use the C3 pathway to perform photosynthesis. This pathway has a highly sophisticated enzyme complex called ribulose 1,5-bisphosphate carboxylase (Rubisco), which has an affinity for oxygen (Taiz and Zeiger, 2010).

This leads to a lower rate of photosynthesis because the plant has to expend a reasonable amount of energy and nutrients to eliminate O2. It is considered that the losses resulting from photorespiration, observed in C3-type plants, cause a decrease between 20 and 70% of photosynthesis (Machado, 1988, Bonan, 2015).

The evaluated grasses presented different TAs between them (Table 1). This is possibly due to the fact that there are structural and biochemical variations in CO2 fixation among C4-pathway plants (Coombs, 1988, Crush and Rowarth, 2007). Stitt et al. (2010) indicate that there are three types of C4 systems, one of them is represented by plants that present Kranz-type anatomy, characterized by mesophyll parenchymal cells organized around the vascular bundle cells.

The other system is monomorphic, which occurs in a single cell and has chloroplasts with decarboxylases, as well as the enzyme Rubisco. The third C4 system is the dimorphic system, characterized by having two types of chloroplasts, with different functionalities and biochemical processes, which allow spatial compartmentalization within a single cell (Offermann et al., 2011). As for Gs and E, the highest values were observed for Centrosema molle, Star, Toledo, Tanzania, Mulato II and Humidicola (Table 1). Atencio et al. (2014) reported a higher Gs and E in Urochloa Humidicola, Mulato II, Toledo and Mombaza as well as a high value in the TA of these species, which presents similarity with what was reported in this work.

This would indicate that these species would have a full activity of photosynthetic processes and a better hydration condition. On the other hand, this type of results in C4-type plants would demonstrate that an increase in atmospheric CO2 would be beneficial to increase biomass production, as well as to reduce stomatal conductance and transpiration even when no effect on the instantaneous rate of photosynthesis is observed (Sánchez et al., 2000; Pritchard and Amthor, 2005). The species Centrosema molle, which is a C3-type plant, presented high values for Gs and E (Table 1).

These results can be compared with those of Guenni et al. (2018), which report a Gs of 0.8 mol m-2 s-1 and E of 7.2 mmol m-2 s-1 with a TA of 14.9 μmol CO2 m-2 s-1. This may indicate that this species grew in the midst of a high concentration of atmospheric CO2, causing an effect on the increase of the stomatal opening as an adaptation to these high levels of CO2 (Sánchez et al., 2000). The lowest values of Gs and E were observed in the species Kikuyu with 0.82 mol m-2 s-1 and 4.95 mmol m-2 s-1 respectively. According to Pereira et al. (2012), reduction in CO2 assimilation rates and stomatal conductance are associated with low water potential in leaves or the reduction in water content in soil.

In addition, plants when subjected to water stress conditions reduce the efficiency of solar radiation use, which also affects photosynthesis (Taylor et al., 2012; Gonçalves et al., 2015). The variable Ci showed a wide variation between the species evaluated (Table 1). Centrosema molle and Kikuyu presented the highest value with 272.81 and 199.46 μmolmol-1 respectively. This would indicate that these two forage species have a lower fixation of Ci at the time of photosynthesis due to the photorespiration process (Tolbert, 1980; Ogren, 1984), especially Centrosema molle which, by having a C3 metabolism, is favored with the increase of this gas in the active site of Rubisco (Simões et al., 2009).

The high Ci in Kikuyu, which has a C4 metabolism, is possibly due to the fact that it has developed adaptation mechanisms for environments of warm climate (Taiz and Zeiger, 2010). The other species evaluated presented relatively low Ci values, confirming their condition as C4 plants, Table 1 (Sierra, 2005; Da Matta et al., 2001; Dias, 2002). Recent comparative studies of grasses have indicated that photosynthesis of C4 species is an adaptation to low atmospheric CO2 and open habitats, evolving at high temperatures and allowing the colonization of drier and seasonal subtropical environments with which they would have a greater efficiency in water use compared to C3 species (Taylor et al., 2012; Osborne and Freckleton, 2009).

Photosynthesis and temperature (leaf, chamber and environment) by species and altitude

Table 2 shows the general averages of TA, leaf temperature (LT), chamber temperature (CT) and air temperature (AT) for each species according to altitude.

Table 2 Average of photosynthesis rates, leaf, chamber and air temperature for each species and altitude. 

Species Altitude TA T (ºC)
masl (μmol CO2 m-2 s-1) L C A
Star 1 000 44.5a 45.0a 39.4a 24ª
1 490 33.1b 35.2b 32.8b 24ª
2 000 29.4b 29.5c 27.2b 22ª
Mulato II 1 000 37.1a 39.1ª 36.6ª 24ª
1 490 31.6b 32.5b 30.9b 24ª
2 000 36.7a 32.1b 29.6b 22ª
Toledo 1 000 36.1a 38.1ª 35.7ª 24ª
1 490 29.4b 31.1b 28.8b 24ª
2 000 37.0a 33.3b 30.9b 22ª
Tanzania 1 000 31.8a 37.7ª 35.4ª 24ª
1 490 34.2a 33.9b 31.9b 24ª
2 000 34.1a 28.9b 26.7b 22ª
Humidicola 1 000 34.9a 44.4ª 41.7a 24a
1 490 26.9b 33.1b 30.8b 24ª
2 000 22.8c 29.9b 27.5b 22ª
Kikuyu 1 000 27.4b 36.9ª 34.7ª 24ª
1 490 25.6b 29.5b 27.1b 24ª
2 000 31.6a 30.2b 28.0b 22ª
Centrosema 1 000 14.2a 42.3ª 39.7ª 24ª
1 490 14.6a 34.5b 31.9b 24ª
2 000 15.6a 31.2b 28.9b 22ª

TA= photosynthesis rate; T= temperature; L= leaf; C= chamber; A= environment. Different literals on the same column differ significantly (Duncan ≤ 0.05), Pr>f 0.001.

It was observed that the Star grass presented the highest TA at 1000 masl, when LT was 45 °C (Table 2). This is possibly because plants with C4 photosynthetic pathways better adapt to higher temperatures, which induce higher phosphoenolpyruvate carboxylase (PEPC) activity in this type of species (Tolbert, 1980; Ogren, 1984). Labate et al. (1990) indicate that photosynthetic rates in some grasses increase as temperatures increase. The cultivars Mulato II, Toledo and Humidicola obtained similar TA and temperatures, at the three altitudes.

This would indicate that they respond to an increase in temperature by increasing TA. An important aspect of temperature refers to its fluctuation, both throughout the day and throughout the year since each time it varies, the plant must adapt (Vieira and Mochel, 2010). In a study conducted by Dias (2002) in Urochloa sp., he observed that TA increased as temperature increased. Tanzania had a TA between 31 and 34 μmol CO2 m-2 s-1 with temperatures ≥28 °C at the three altitudes (Table 2).

This is similar to what was reported by Mello et al. (2001) in the genus Megathyrsus, where they observed a high TA with 34.57 μmoles CO2 m-2 s-1 at an optimal temperature around 35 °C. The TA of Kikuyu grass varied between 31.6 and 27.4 μmoles CO2 m-2 s-1 with temperatures between 36.9 °C and 29.5 °C. This coincides with what was reported by Wilen and Holt (1996) in the species Pennisetum clandestinum, in sub-warm environments, where the TA increased between 25 °C and 40 °C.

The authors indicate that this species can continue with photosynthesis at higher rates than other C4 species as temperatures decrease in autumn and winter, demonstrating its adaptability in different environments In Centrosema molle no differences in TA were observed between altitudes, although temperatures were different in each (Table 2). A small reduction in TA occurred when the temperature was greater than 40 °C, this could be due to the deactivation of the enzyme Rubisco that controls photosynthesis (Crafts and Salvucci, 2000). Slight decreases in TA above 35 °C suggest that this species better adapts to warm climates (Baligar et al., 2010).

Conclusions

The physiological indicators observed in the species Star demonstrate the adaptability of this forage at different altitudes and seasons that occur in the Colombian tropics. Kikuyu and the legume Centrosema molle have the ability to develop adaptive mechanisms in adverse environments in which they are commonly established.

Acknowledgements

To Professor Carlos Vicente Duran Castro† for all the knowledge and support provided in the development of this project.

REFERENCES

Álvarez, E.; Rodríguez, J.; Rodríguez, R. E.; Carrillo, G.; Zinn, R.; Plascencia, A.; Montaño, M.; González, V.; Espinoza, S.. y Aguilar, U. 2008. Valor alimenticio comparativo del pasto Kikuyo (Pennisetum clandestinum, Var. Whittet) en dos estaciones de crecimiento con Ryegrass (Lolium multiflorum) y Sudán (Sorgum sudanense) ofrecido a novillos Holstein. Interciencia. Rev. Cienc. Tecnol. Am. 33(2):135-139. [ Links ]

Atencio, L. M.; Tapia, J. J.; Mejía, S. L. y Cadena, J. 2014. Comportamiento fisiológico de gramíneas forrajeras bajo tres niveles de humedad en condiciones de casa malla. Temas Agrarios. 19(2):244-258. [ Links ]

Baligar, V. C.; Bunce, J. A.; Elson, M. K. and Fageria, N. K. 2010. Irradiance, external carbon dioxide concentration and temperature influence photosynthesis in tropical cover crop legumes. Tropical Grasslands. 44:24-32. [ Links ]

Baruch, Z. y Fisher, M. J. 1991. Factores climáticos de competencia que afectan el desarrollo de la planta en el crecimiento. In: establecimiento y renovación de pasturas. Conceptos, experiencia y enfoques de la investigación. Lascano, C. E. y Spain, J. M. Ed. Red de investigación y evaluación de pastos tropicales. CIAT. Colombia. 103-142 pp. [ Links ]

Bernardes, M. S. 1987. Fotossíntese no dossel de plantas cultivadas. In: ecofisiologia da produção agrícola. Ed. Associação brasileira de potassa e de fosfato. Piracicaba. 13-48 pp. [ Links ]

Bonan, G. 2015. Ecological climatology: concepts and applications. Cambridge University Press. 3th Ed. Cambridge. 1-49. pp. [ Links ]

Buxton, D. R. and Fales, S. L. 1994. Plant environment and quality. In: forage quality evaluation and utilization. Ed. American society agronomy crop science soc. of American. Madison (USA). 155-199 pp. [ Links ]

Coombs, J. 1988. Metabolismo del carbono. In: técnicas en fotosíntesis y bioproductividad. Ed. Colegio de Postgraduados Ed. Chapingo, Estado de México. 116-130 pp. [ Links ]

Costa, N. L.; Magalhães, J. A.; Pereira, R. G. A.; Ramalho, T. C. and Cruz, O. J. R. 2007. Considerações sobre o manejo de pastagens na amazônia ocidental. Rev. Do Conselho Federal de Medicina Veterinária, Brasília. 13(40):37-56. [ Links ]

Crafts, B. S. J. and Salvucci, M. E. 2000. Rubisco activated constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Science. 97:13430-13435. [ Links ]

Crush, J. R. and Rowarth J. S . 2007. The role of C4 grasses in New Zealand pastoral systems, New Zealand. J. Agric. Res. 50(2):125-137. [ Links ]

Da Matta, F. M.; Loos, R. A.; Rodrigues, R. and Barros, R. S. 2001. Actual and potential photosynthetic rates of tropical crop species. R. Bras. Fisiol. Veg. 13(1):24-32. [ Links ]

Del Pozo, P. P. 2002. Bases ecofisiológicas para el manejo de los pastos tropicales. Pastos. 32(2):109-137. [ Links ]

Dias, F. M. B. 2002. Photosynthetic light response of the c4 grasses Brachiaria brizantha and B. humidicola under shade. Sci. Agric. 59(1):65-68. [ Links ]

Gonçalves, J. G. R.; Chiorato, A. F.; Silva, D. A.; Esteves, J. A. F.; Bosetti, F. y Carbonell, S. A. M. 2015. Análise da capacidade combinatória em feijoeiro comum submetido ao déficit hídrico. Bragantia. 74(2):149-155. [ Links ]

González-González, G. 2011. El enfoque energético en la producción de la hierba. Pastos. 23(1):3-44. [ Links ]

Guenni, O.; Romero, E.; Guédez, Y.; Bravo, G. L. and Pittermann, J. 2018. Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass Forage Sci. 73(4):1-12. [ Links ]

Henríquez, D. M.; Saavedra, U. H. A.; Moreno, H. G.; Montealegre, B. J. E.; González, O. C.; León, A. G. E.; Ruiz, J. F.; Zea, M. J. A.; Mayorga, M. R.; Benavides, H.; Barreto, L.; Melo, J. Y y Montaña, P. J. A. 2005. Atlas climatológico de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Bogotá, DC. Cundinamarca, Colombia. 12- [ Links ]

Labate, C. A.; Adcock, M. D. and Leegood, R. C. 1990 Effects of temperature on the regulation of photosynthetic carbon assimilation in leaves of maize and barley. Planta. 181:547-554. [ Links ]

Lara, M. A. S. and Pedreira, C. G. S. 2011. Estimativa da assimilação potencial de carbono em dosséis de espécies de Braquiaria. Pesquisa Agropecuária Brasileira. 46(7):743-750. [ Links ]

Loomis, R. S. and Amthor, J. S. 1999. Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci. 39:1584-1596. [ Links ]

Machado, E. C. 1988. Metabolismo fotossintético do carbono: plantas tipo C3, C4 e CAM. O Agronômico, Campinas. 40:5-13. [ Links ]

Mello, A. C. L.; Santos, P. M.; Pedreira, C. G. S.; Corsi, M. and Dias, C. T. 2001. Phothosynthetic light response of Tanzania grass under four levels of leaf temperature. In: proceedings of the international grassland congress. Ed. Fealq. São Pedro, Brazil. 1-6 pp. [ Links ]

Offermann, S.; Okita, T. W. and Edwards, G. E. 2011. How do single cell C4 species form dimorphic chloroplasts. Plant Signaling & Behavior. 6(5):762-765. [ Links ]

Ogren, W. L. 1984. Photorespiration: pathways, regulation, and modification. Annual review of plant physiology. 35:415-442. [ Links ]

Oliveira, A. S.; Gaio, D. C.; Wyrepkowski, C. C.; Junior, C. J. H.; Lobo, A. F.; Nogueira, S. J.; Sanches, L.; Palú, L. A. E. and Rodrigues, V. 2007. Eficiência de utilização da radiação fotossinteticamente ativa na produção de matéria seca de uma pastagem mista no cerrado de mato grosso. Rev. Bras. Agrometeorol. 15(3):299-303. [ Links ]

Osborne, C. P and Freckleton, R. P. 2009. Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of The Royal Society B. Biol. Sci. 276:1753-1760. [ Links ]

Pereira, J. W. L.; Melo, F. P. A.; Albuquerque, M. B.; Nogueira, R. J. M. C. y Santos, R. C. 2012. Mudanças bioquímicas em genótipos de amendoim submetidos a déficit hídrico moderado. Rev. Ciênc. Agron. 43(4):766-773. [ Links ]

Peters, M.; Franco, L. H.; Schmidt, A. y Hincapié, B. 2011. Especies forrajeras multipropósito: opciones para productores del trópico americano. Red de investigación y evaluación de pastos Tropicales. CIAT. Colombia. 212. [ Links ]

Pollock, C. J. 1990. The response of plant to temperature change. J. Agric. Sci. 115:1-5. [ Links ]

Pritchard, S. G. and Amthor, J. S. 2005. Crops and environmental change: an introduction to effects of global warming, increasing atmospheric CO2 and O3 concentrations, and soil salinization on crop physiology and yield. Food products press. Binghampton, New York. 421 [ Links ]

Sánchez, E. P.; Larqué, S. A.; Nava, S. T. y Trejo, C. 2000. Respuesta de plantas de maíz y frijol al enriquecimiento de dióxido de carbono. Agrociencia. 34(3):311-320. [ Links ]

Statistical Analysis Sistem. 2011. SAS® Analytics, versión 9.3. [ Links ]

Sierra, P. J. O. 2005. Fundamentos para el establecimiento de pasturas y cultivos forrajeros. Universidad de Antioquia 2ª Ed. Medellín. 239 p. [ Links ]

Silva, E. A.; Silva, W. J.; Barreto, A. C.; Oliveira, J. A. B.; Paes, V. J. M.; Mendes, R. J. R. and Sávio, Q. D. 2012. Chemical composition and photosynthetically active radiation of forage grasses under irrigation. Rev. Bras. Zoot. 41(3):583-591. [ Links ]

Simões, V. J. L. P.; Leite, M. L. M. V.; Izidro, J. L. P. S.; Júnior, G. N. A. and Teixeira, V. I. 2009. Assimilação de carbono em plantas forrageiras. Pesquisa Aplicada & Agrotecnologia. 12(01):125-134. [ Links ]

Stitt, M.; Lunn, J. and Usadel, B. 2010. Arabidopsis and primary photosynthetic metabolism more than the icing on the cake. Plant J. 61(6):1067-1091. [ Links ]

Taiz, L. and Zeiger, E. 2010. Plant physiology. Sinauer Associates. 5a Ed. USA. 800 p. [ Links ]

Taylor, S. H.; Franks, P. J.; Hulme, S. P.; Spriggs, E.; Christin, P. A.; Edwards, E. J.; Woodward, F. I and Osborne, C. P. 2012. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist. 193:387-396. [ Links ]

Tolbert, N. E. 1980. Glycolate metabolism by higher plants and algae. In: encyclopedie of plant physiology photosynthesis. Ed. Springer Verlag. Berlin. 338-352 pp. [ Links ]

Toledo, J. M. y Schultze, K. R. 1982. Metodología para la evaluación de pastos tropicales. In: manual para la evaluación agronómica. Ed. Red internacional de evaluación de pastos tropicales (RIEPT). Centro Internacional de Agricultura Tropical (CIAT), Calí, Colombia. 91-110 pp. [ Links ]

Vieira, M. M. M. and Mochel F. W. J. E . 2010. Influência dos fatores abióticos no fluxo de biomassa e na estrutura do dossel. Arch. Zootec. 59:15-24. [ Links ]

Wilen, C. A. and Holt, J. S. 1996. Physiological mechanisms for the rapid growth of Pennisetum clandestinum in Mediterranean climates. Weed Res. 36:213-225 [ Links ]

Xiong, K.; Chi, Y. and Shen, X. 2017. Research on photosynthetic leguminous forage in the karst rocky desertification regions of Southwestern China. Pol. J. Environ. Stud. 26(5):2319-2329. [ Links ]

Received: April 01, 2023; Accepted: May 01, 2023

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons