SciELO - Scientific Electronic Library Online

 
vol.13 número1Rendimiento de grano, forraje y calidad forrajera de nuevos híbridos de maíz de Valles AltosEstimación de la huella hídrica de la producción de caña de azúcar para los ingenios de la cuenca del Papaloapan índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.13 no.1 Texcoco ene./feb. 2022  Epub 02-Mayo-2022

https://doi.org/10.29312/remexca.v13i1.2494 

Articles

Seasonal abundance of Diaphorina citri associated with the phenology of citrus crops

Ricardo Álvarez-Ramos1 

Ausencio Azuara-Domínguez1 

Jorge Homero Rodríguez-Castro1 

Vidal Zavala-Zapata1 

Maricarmen Sánchez-Borja2 

Jesús Armando Vargas-Tovar1  § 

1National Technology of Mexico-IT of Cd. Victoria. Boulevard Emilio Portes Gil no. 1301 west, Victoria City, Tamaulipas, Mexico. CP. 87017. Tel. 834 1532000, ext. 180. (rialra@yahoo.com; azuarad@gmail.com; rodriguezjh@hotmail.com; vidal.convergens@gmail.com).

2Northern Beneficial Insects. Interejido Highway, Camino Ejidal Libertad s/n, Ciudad Victoria, Tamaulipas. CP. 87260. Tel. 834 2755452. (sanborjam@gmail.com).


Abstract

In the present research, the participation of the phenology of the Valencia orange (Citrus sinensis L. Osbeck) and Italian lemon (Citrus limon L. Burn f.) crops in the seasonal abundance of Diaphorina citri Kuwayama was determined. The study was carried out during the years 2015 to 2018 in three regional control areas (ARCOs), located in the municipalities of Padilla, El Barretal, El Carmen, Estación Santa Engracia, Güémez and Victoria, Tamaulipas. In these areas, the abundance of D. citri in each phenological phase of the orange crop (ARCO 1 and 2) and lemon (ARCO 3) was recorded. The Italian lemon crop produced shoots all year round. Meanwhile, the Valencia orange crop presented a phase of dormancy. In the four years, the seasonal abundance of D. citri behaved differently in the three ARCOs. The greatest abundance of the insect occurred in the phase of shoot production in trees. The result obtained in the present work could be used to define the period of application of the insecticides recommended for the control of D. citri in the ARCOs.

Keywords Diaphorina citri; arco; HLB; shoots

Resumen

En la presente investigación se determinó la participación de la fenología del cultivo de naranja valencia (Citrus sinensis L. Osbeck) y limón italiano (Citrus limon L. Burn f.) en la abundancia estacional de Diaphorina citri Kuwayama. El estudio se realizó durante los años 2015 al 2018 en tres áreas regionales de control (ARCO’S), ubicadas en los municipios de Padilla, El Barretal, El Carmen, Estación Santa Engracia, Güémez y Victoria, Tamaulipas. En estas áreas se registró la abundancia de D. citri en cada fase fenológica del cultivo de naranja (ARCO 1 y 2) y limón (ARCO 3). El cultivo de limón italiano produjo brotes todo el año. Mientras que, el cultivo de naranja valencia presentó una fase de dormancia. En los cuatro años la abundancia estacional de D. citri se comportó de manera diferente en los tres ARCO’S. La mayor abundancia del insecto se presentó en la fase de producción de brotación en los árboles. El resultado obtenido en el presente trabajo podría servir para definir el periodo de aplicación de los insecticidas recomendados para el control de D. citri en los ARCOS.

Palabras clave Diaphorina citri; arco; brotes; HLB

Introduction

In Mexico, the first report of HLB or Huanglongbing occurred in July 2009 and by November 2015 the disease was recorded in 347 municipalities in 18 citrus-producing states in Mexico (Garza et al., 2017). The estimated economic and social impact of the presence of this disease, just three years after its arrival, was 1.7 million tonnes of fruit and 112.1 million lost wages (Díaz et al., 2014). To mitigate this, the phytosanitary campaign against HLB was designed and implemented. The activities carried out in the campaign against HLB were initially focused on the detection and search for symptoms caused by the causative agent of the disease, the bacterium Candidatus Liberibacter asiaticus Jagoueix (Rhizobiales: Rhizobiaceae).

Subsequently, they focused on monitoring the insect vector, Diaphorina citri, of the bacterium in order to know the population distribution of the pest insect in time and space (Flores et al., 2017), and measure the impact of the insecticides contemplated in the strategy against HLB in the regional populations of the insect. In Tamaulipas, D. citri was first recorded in 2003 (López-Arroyo, 2005). In 2014, the State Plant Health Committee of Tamaulipas (CESAVETAM, for its acronym in Spanish) established a monitoring program with yellow sticky traps under the scheme of regional control areas (ARCOs) in order to control the spread of the pest insect and bacterial disease in 33 272.12 ha of orange (Citrus sinensis L. Osbeck) (Sapindales: Rutaceae) and 3 339.31 ha of lemon (Citrus limon L. Burn f.) (Sapindales: Rutaceae) (SIAP, 2019), located in the municipalities of Padilla, El Barretal, El Carmen, Estación Santa Engracia, Güémez and Victoria (Mora et al., 2014).

Due to the economic importance of citrus production in these municipalities, it is necessary to analyze the seasonal abundance of D. citri in Valencia orange and Italian lemon trees in order to avoid the presence of HLB. Therefore, the objective of this research was to determine the seasonal abundance of D. citri associated with the phenology of the Valencia orange and Italian lemon crops.

Materials and methods

Study area

The experiment was established during the years 2015 to 2018 in three regional control areas (ARCOs) located in the municipality of Padilla, El Barretal, El Carmen, Estación Santa Engracia, Güémez and Victoria, Tamaulipas (Figure 1).

Figure 1 Geographical location of the regional control areas (ARCOs) in Tamaulipas, Mexico. 

ARCO 1 was made up of 5 402.38 ha, 65 commercial orchards (Table 1) sown with Valencia orange trees. The average age of the trees was 15 years, the separation between the trees and lines was four and seven meters. The trees were watered with a furrow irrigation system.

Table 1 Area and geographical location of the orchards of Valencia orange Citrus sinensis (L.) Osbeck of ARCO 1 located in the municipality of Padilla and El Barretal. 

Commercial orchard Area (ha) Latitude Longitude
Ejido La Soledad 6 57 24.086535 -99.057106
Ejido Mártir de Chinameca 2 125.75 24.113646 -99.09361
Ejido Conrado Castillo 4 14.5 24.08759 -99.02356
Ejido José López Portillo 7 4 24.04135 -99.00219
Ejido La Soledad 2 57 24.118633 -99.070244
Ejido La Soledad 9 64 24.104939 -99.054146
Ejido San Patricio 2 132 24.060936 -99.079445
Orchard El Tejón 2 50 24.03793 -98.886696
Ejido Conrado Castillo 3 14.5 24.070562 -99.03035
Ejido José López Portillo 6 34 24.048689 -99.0219
Ejido La Soledad 4 57 24.132109 -99.067894
Ejido Conrado Castillo 10 15.39 24.056007 -99.03695
Ejido Conrado Castillo 5 14.5 24.077688 -99.02941
Ejido Plan de Ayala 3 192.83 24.043032 -99.09813
Ejido Plan de Ayala 1 192.84 24.032415 -99.10381
Ejido Guadalupe Victoria 1 41 24.063482 -99.12173
Ejido La Soledad 5 57 24.134998 -99.06753
Ejido Guadalupe Victoria 5 41 24.064547 -99.14512
Ejido San Patricio 3 132 24.058231 -99.07481
Ejido La Soledad 7 57 24.09412 -99.055435
Ejido Guadalupe Victoria 9 41 24.072016 -99.15731
Ejido Conrado Castillo 7 14.5 24.050945 -99.03912
Ejido Marte R. Gómez 7 72.95 24.09832 -99.03486
Ejido José López Portillo 4 34 24.041721 -99.00998
Ejido San Patricio 1 132 24.042892 -99.085311
Ejido José López Portillo 5 34 24.041246 -99.02064
Ejido Mártir de Chinameca 1 125.75 24.104736 -99.11817
Ejido Marte R. Gómez 6 72.95 24.08675 -99.0412
Ejido Guadalupe Victoria 8 41 24.065233 -99.145355
Ejido La Soledad 8 57 24.08344 -99.0645
Ejido La Concepción 2 83 24.106049 -99.05002
Orchard El Paraíso 100 24.08466 -99.08274
Ejido Marte R. Gómez 5 72.95 24.082705 -99.04501
Ejido Marte R. Gómez 1 5 24.072016 -99.044785
Ejido La Concepción 1 83 24.09197 -99.04489
Ejido La Concepción 4 83 24.082035 -99.05381
Ejido Guadalupe Victoria 2 41 24.065823 -99.12232
Ejido Cruz y Cruz 1 382 24.09858 -99.18552
Ejido José López Portillo 2 34 24.0361 -99.0126
Ejido Conrado Castillo 8 14.5 24.050976 -99.01905
Ejido Guadalupe Victoria 3 41 24.067486 -99.131035
Ejido Guadalupe Victoria 6 41 24.054068 -99.13169
Ejido Guadalupe Victoria 4 41 24.06885 -99.13532
Ejido José López Portillo 1 34.13 24.035378 -99.01616
Ejido La Concepción 5 83 24.076841 -99.05645
Orchard Lote 47 45 24.057177 -98.88358
Ejido Guadalupe Victoria 10 41 24.070724 -99.15082
Ejido Nuevo San Juan 1 258 24.047245 -99.04309
Ejido Guadalupe Victoria 11 41.96 24.077404 -99.16936
Ejido Plan de Ayala 2 192.83 24.041084 -99.105446
Ejido La Soledad 3 57 24.127895 -99.07232
Ejido Marte R. Gómez 3 72.95 24.068739 -99.04935
Ejido Conrado Castillo 6 14.5 24.051632 -99.04219
Ejido Carmen Galindeño 1 681.7 24.094416 -99.141716
Ejido Conrado Castillo 1 14.5 24.075184 -99.02093
Ejido Conrado Castillo 9 14.5 24.056099 -99.02827
Orchard El Tejón 1 50 24.038193 -98.889534
Ejido Marte R. Gómez 2 72.95 24.06817 -99.0434
Ejido Marte R. Gómez 4 72.95 24.076044 -99.05218
Ejido Guadalupe Victoria 7 41 24.056377 -99.13623
Orchard El Lucero 100 24.096743 -98.98633
Ejido José López Portillo 3 34 24.041996 -99.01711
Ejido José Silva Sánchez 2 233 24.124647 -99.05361
Ejido José Silva Sánchez 1 233 24.08227 -99.07351
Ejido Conrado Castillo 2 14.5 24.06979 -99.02477

ARCO 2 was made up of 3 491.23 ha, 49 commercial orchards (Table 2) sown with Valencia orange. The average age of the trees was 15 years, the separation between the trees and rows was four and seven meters. The trees were watered with a furrow irrigation system.

Table 2 Area and geographical location of the orchards of Valencia orange Citrus sinensis (L.) Osbeck of ARCO 2 located in the El Carmen and Estación Santa Engracia. 

Commercial orchard Area (ha) Latitude Longitude
Ejido El Arco 8 22.65 23.99976 -99.25969
Ejido El Arco 1 22.65 24.009975 -99.256165
Ejido El Arco 4 22.65 24.011806 -99.26059
Ejido San Isidro 2 43 24.015835 -99.24684
Ejido El Arco 6 22.65 24.018017 -99.26326
Ejido El Arco 3 22.65 23.988935 -99.171196
Ejido El Porvenir 3 18.5 23.99402 -99.259415
Ejido El Porvenir 2 18 23.984842 -99.17778
Ejido El Arco 10 22.65 23.991343 -99.254845
Ejido San Isidro 1 43.28 24.008848 -99.24169
Ejido El Arco 9 22.65 24.020386 -99.25239
Ejido El Arco 7 22.65 24.008661 -99.248955
Ejido El Arco 2 22.65 24.012655 -99.24023
Ejido Guillermo Zúñiga 6 74.14 24.044983 -99.20357
Ejido El Arco 5 22.65 24.018524 -99.25535
Ejido Guillermo Zúñiga 3 74.14 24.019312 -99.19423
Ejido Vicente Guerrero 1 61 24.035128 -99.21106
Ejido Emiliano Zapata 3 90.51 24.035948 -99.23369
Ejido Guillermo Zúñiga 7 74.14 24.033747 -99.18054
Ejido Emiliano Zapata 1 90.51 24.037302 -99.22089
Ejido Emiliano Zapata 4 90.51 24.048454 -99.19514
Ejido Benito Juárez 3 94 24.04681 -99.220184
Ejido Guillermo Zúñiga 8 74.14 24.02302 -99.24403
Ejido Balconcitos 4 27.92 24.016384 -99.216675
Ejido San José de Santa Engracia 1 728.11 24.024101 -99.236465
Ejido Vicente Guerrero 2 61 24.044575 -99.211586
Ejido El Porvenir 1 18.5 23.984312 -99.181885
Ejido Vicente Guerrero 3 61 24.041195 -99.21406
Ejido La Diana 1 374.42 23.995256 -99.14137
Ejido Guillermo Zúñiga 5 74.14 24.033224 -99.19679
Ejido Benito Juárez 1 94 24.049835 -99.23015
Ejido Guillermo Zúñiga 9 74.14 24.050026 -99.20151
Ejido Guillermo Zúñiga 1 85.99 24.017195 -99.1816
Ejido Guillermo Zúñiga 2 74.18 24.025429 -99.1884
Ejido Balconcitos 6 27.92 24.018547 -99.2217
Ejido Balconcitos 3 27.92 24.015446 -99.229996
Orchard las Enramadas 50 24.023846 -99.21707
Ejido Benito Juárez 2 94 24.042488 -99.244865
Ejido La Rosita 1 43.07 24.0049 -99.2263
Ejido La Rosita 3 43.07 24.008351 -99.22203
Ejido Balconcitos 1 27.92 24.011097 -99.20382
Ejido Guillermo Zúñiga 4 74.14 24.027617 -99.198105
Ejido Balconcitos 5 27.92 24.016468 -99.23209
Ejido Balconcitos 2 27.92 24.013247 -99.21983
Ejido Emiliano Zapata 2 90.51 24.042408 -99.2314
Ejido La Rosita 2 43.07 24.004097 -99.232506
Ejido Ceylán 1 34 23.97847 -99.14093
Ejido Acatlán 100 23.96543 -99.13133
Ejido Ceylán 2 34 23.9817 -99.14491

ARCO 3 consisted of 1 575.75 ha; 18 commercial orchards (Table 3) sown with Italian lemon trees. The average age of the trees was five years, the separation between the trees and rows was four and seven meters. The trees were watered with a micro-sprinkler irrigation system.

Table 3 Area and geographical location of the orchards of Italian lemon Citrus limon (L.) Burn f. of ARCO 3 located in the municipality of Güémez and Ciudad Victoria. 

Commercial orchard Area (ha) Latitude Longitude
Orchard La Viuda 55 23.915712 -99.09632
Orchard La Providencia 3 50 23.914999 -99.07397
Orchard Tres Sabinos 30 23.900478 -99.05132
Orchard Macabeos 4 56 23.925621 -99.02932
Ejido Esfuerzo del Campesino 2 2 23.937151 -99.12753
Orchard El Filosofo 53.25 23.916235 -99.06931
Orchard Najita 116 23.922585 -99.046234
Orchard La Ilusión 127.4 23.928032 -99.05204
Orchard La Querencia 60 23.917574 -99.050766
Ejido La San Juana 3 3.4 23.924044 -99.133865
Orchard El Contador 21 23.929514 -99.24125
Orchard El Cuatro 19 23.936605 -99.23088
Orchard El Jericob 74.61 23.885063 -99.13875
Orchard La Pomarosa 40 23.889816 -99.04195
Orchard Nuevo Guadalupe 181 23.884377 -99.031525
Orchard El 12 101.45 23.821293 -99.0759
Orchard Teresitas 251 23.899931 -99.183525
Orchard Laborcitas 334.64 23.851086 -99.09927

Record of the phenology of citrus trees

The record of the phenology of the Valencia orange and Italian lemon crops was carried out every eight days taking as a reference what was published by Robles and Delgadillo (2010); Lozano and Jasso (2012).

Monitoring of D. citri adults in the ARCOs

The adults were captured with yellow traps of 7.5 cm by 12.5 cm, stamped with a black grid of 1.5 cm and accompanied by a base covered with the adherent Stick Bug 50%®. In the orchards, the traps were placed based on the HLB campaign operating manual. Ten traps were placed on the periphery (South-East) and 10 traps in a transverse line to it, at a distance between traps of 12 m and 1.20 m from ground level. The traps were replaced every eight days and the number of adults was quantified in the laboratory. In ARCO 1, ARCO 2 and ARCO 3, 1 300, 980 and 360 traps were installed.

Statistical analysis

The number of D. citri individuals were grouped into six categories with ranges from 0 to 100 individuals, taking as a reference that the lowest number of adults captured per month is 20 and the largest is 134 (Flores et al., 2017). The categories of the population densities of the insect were: pest 1 (0 individuals), pest 2 (1 to 100 individuals), pest 3 (100 to 200 individuals), pest 4 (200 to 300 individuals), pest 5 (300 to 400 individuals) and pest 6 (400 to 500 individuals). The categories were associated with the phases of shooting, shooting-fruiting, shooting-flowering, shooting-development and dormancy of commercial orchards of Valencia orange (ARCO 1 and 2) and Italian lemon (ARCO 3).

Finally, the categories were subjected to a multivariate analysis of multiple correspondence (Benzécri, 1973; Greenacre, 1983). The analysis considers the percentage of inertia of the X and Y axes, interpreting the one with the highest percentage of inertia. The interpretation of the results consists of associating the categories with greater proximity considering frequency data without losing the identity or origin of the sampled sites (Rencher, 2002).

Results and discussion

Phenology of the Valencia orange and Italian lemon crops

The Valencia orange trees presented the following phenology: shoot production, flowering, fruit development, dormancy and fruiting. The production of shoots occurred from January to July and from October to December, fruiting occurred in January and December. Flowering began in late March and ended in the third week of April, the development phase began in late April and ended in July and the dormancy phase occurred in late July and ended in the first week of October. On the other hand, the Italian lemon trees presented the following phenology: shoot production, flowering, fruit development and fruiting. The production of shoots occurred all year round, fruiting occurred in January and December, flowering began at the end of March and ended in the third week of April and the development phase began at the end of April and ended in July.

Seasonal abundance of D. citri associated with the phenological phases of citrus fruits in the ARCOs

In 2015, the D. citri population presented two significant associations with the phenological phases in the three ARCOs X2= 1664.78, d.f.= 121 (Figure 2). Populations of 1 to 100 individuals were associated with the shooting-development phase in ARCO 1 (A1). Whereas populations of 1 to 100 individuals were associated with the shooting-development, shooting-flowering and dormancy phases in ARCO 2 (A2) and population densities of 100 to 200 individuals were associated with the shooting phase in ARCO 3 (A3).

Figure 2 Analysis of the association of seasonal abundance of Diaphorina citri in the phenological phases of the Valencia orange and Italian lemon crops in three regional control areas in 2015. The categories of population densities of the insect were pest 1 (plaga 1) (0 individuals), pest 2 (plaga 2) (1 to 100 individuals), pest 3 (plaga 3) (100 to 200 individuals), pest 4 (plaga 4) (200 to 300 individuals), pest 5 (plaga 5) (300 to 400 individuals) and pest 6 (plaga 6) (400 to 500 individuals). 

In 2016, D. citri adults showed a significant association with the phenological phases in the three ARCOs X2= 1998.24, d.f.= 169 (Figure 3). Populations of 100 to 200 individuals were associated with the shooting-development phase in ARCO 1 (A1). Whereas populations of 400 to 500 individuals were associated with the shooting-development phase in ARCO 2 (A2). Similarly, densities of 400 to 500 individuals were associated with the shooting phase in ARCO 3 (A3).

Figure 3 Analysis of the association of the seasonal abundance of Diaphorina citri in the phenological phases of the Valencia orange and Italian lemon crops in three regional control areas in 2016. The categories of population densities of the insect were pest 1 (plaga 1) (0 individuals), pest 2 (plaga 2) (1 to 100 individuals), pest 3 (plaga 3) (100 to 200 individuals), pest 4 (plaga 4) (200 to 300 individuals), pest 5 (plaga 5) (300 to 400 individuals) and pest 6 (plaga 6) (400 to 500 individuals). 

In 2017, two associations occurred between the number of D. citri individuals with the phenological phases in the three ARCOs (X2= 2087.39, df= 169) (Figure 4). The first association was carried out with population densities of 1 to 200 individuals in the shooting phase in ARCO 3 (A3). For the second association, populations of 200 to 300 individuals were associated with the shooting-flowering and shooting-development phases in ARCOs 1 and 2 (A1, A2).

Figure 4 Analysis of the association of seasonal abundance of Diaphorina citri in the phenological phases of the Valencia orange and Italian lemon crops in three regional control areas in 2017. The categories of population densities of the insect were pest 1 (plaga 1) (0 individuals), pest 2 (plaga 2) (1 to 100 individuals), pest 3 (plaga 3) (100 to 200 individuals), pest 4 (plaga 4) (200 to 300 individuals), pest 5 (plaga 5) (300 to 400 individuals) and pest 6 (plaga 6) (400 to 500 individuals). 

In 2018, the population of D. citri presented significant associations with the phenological phases in the three ARCOs (X2=2313.21, df= 196) (Figure 5). Population densities of 1 to 100 individuals were associated with the shooting, shooting-flowering, shooting-fruiting and dormancy phases in ARCO 1 (A1). Population densities of 100 to 200 individuals were associated with the shooting-development phase in ARCO 2 (A2). Finally, densities of 200 to 300 individuals were associated with the shooting phase in ARCO 3 (A3).

Figure 5 Analysis of the association of the seasonal abundance of Diaphorina citri in the phenological phases of the Valencia orange and Italian lemon crops in three regional control areas in 2018. The categories of population densities of the insect were pest 1 (plaga 1) (0 individuals), pest 2 (plaga 2) (1 to 100 individuals), pest 3 (plaga 3) (100 to 200 individuals), pest 4 (plaga 4) (200 to 300 individuals), pest 5 (plaga 5) (300 to 400 individuals) and pest 6 (plaga 6) (400 to 500 individuals). 

The abundance of D. citri was different in the ARCOs and in the years of study. According to Razeto (2005), the variety of the cultivar and the production of shoots in citrus trees influences the abundance of D. citri. In the present work, the difference in the abundance of D. citri was possibly due to the amount and period of production of shoots in the Valencia orange and Italian lemon crops, since the orange crop produces fewer shoots (38.70 shoots/month) per year than the lemon crop (673.5 shoots/month) (Medina et al., 2007; Chávez et al., 2016).

In the ARCOs, the Valencia orange trees produced shoots from January to July and from October to December. Whereas the Italian lemon trees presented shoots all year round, possibly due to the micro-sprinkler irrigation system, use of fertilizers, pruning of the trees and because the lemon trees are younger (five years) than the orange trees (Pluke et al., 2008). While orange orchards do not have an irrigation system, fertilizer use is limited, and trees are on average 15 years old.

In the three years, the highest abundance of D. citri recorded in ARCO 3 was associated with the shooting phase of the Italian lemon crop. Whereas the greatest abundance recorded in ARCO 1 and ARCO 2 was associated with the shooting and shooting-development phases of the Valencia orange crop. In both crops, D. citri occurs in the phase of production and development of shoots, because adults and nymphs feed on them to mature their eggs and complete development (Ortega et al., 2013). Although adults also feed and survive for several months on fully developed leaves (Tsai et al., 2002; Fernández and Miranda, 2005; Stansly and Qureshi, 2007; Qureshi and Stansly, 2008). Hall et al. (2008) indicated that population peaks of D. citri occur when there are favorable environmental conditions and shoots availability.

In this regard, the Italian lemon crop produced shoots all year round (the greatest abundance of shoots was observed from December to March) and D. citri was present in the trees. Similarly, this has occurred in the Mexican lemon crop in the municipality of Apatzingán, Michoacán (Luna et al., 2018). D. citri is present throughout the year because the crop produces shoots constantly. However, the maximum population peak occurs in August because of the favorable environmental conditions for the insect. A similar result was determined in the Persian lemon (C. latifolia) in the municipality of Huimanguillo, Tabasco (García et al., 2013).

As in Mexican lemon orchards, this crop produces shoots constantly and the greatest abundance of D. citri occurs from March to July. Conversely, in the Mexican lemon in Acapulco, Guerrero, the smallest adult population of D. citri occurred in February, when the trees were in the shoot production stage. Whereas the greatest abundance occurred in April and November, in the stage of fruit set and fruit development, respectively. In this case, low rainfall (Botero et al., 2014) and optimal temperature played an important role in the occurrence of high population peaks of D. citri in trees (25 to 28 °C) (Liu and Tsai, 2000; Paris et al., 2017).

Contrary to the Italian lemon crop, the Valencia orange trees did not produce shoots all year round. However, the greatest abundance of D. citri occurred in the phase of production of shoots and in the development of these. A similar result was reported by Ortega et al. (2013) in Cazones, Veracruz. The authors recorded the periods of greatest abundance of D. citri in orange trees (C. sinensis cv Mars, C. sinensis cv Valencia) and sweet lime (C. limetta) from February to April and in July, which coincide with the phase of production and development of shoots.

Conclusions

During the years 2015 to 2018, the population size of D. citri was different in all three ARCOs. In this result, the phenology of the crop played an important role. Because the greatest abundance of the insect was recorded in the phase of production of vegetative shoots.

Acknowledgements

To the State Plant Health Committee of Tamaulipas (CESAVETAM, for its acronym in Spanish) for the support in carrying out this research and, to the National Council for Science and Technology (CONACYT, for its acronym in Spanish) for the scholarship granted to C. Ricardo Álvarez Ramos to carry out the Doctorate in Sciences in Biology at the Technological Institute of Ciudad Victoria, Tamaulipas.

REFERENCES

Benzécri, J. P. 1973. L’Analyse des données. l’analyse des correspondances. Ensieta. Paris. 119 p. [ Links ]

Botero, V.; Ochoa, A.; Gastón, J. Z.; Ortiz, R. A.; Fuel, T. S. M.; Moná, F. E.; Marcela, M. L.; Guarin, H. J.; Orduz, R. J. O.; Chaparro, Z. H. N. y Arévalo, P. E. 2014. Identificación de la dinámica poblacional de Diaphorina citri (Hemiptera: Liviidae) en los cultivos de cítricos de Colombia: una herramienta para implementar un sistema piloto de seguimiento de poblaciones del insecto vector del HLB. Universidad nacional de Colombia. Medellín, Colombia. 89 p. [ Links ]

Chávez, J. A.; Flores, G. L.; Góngora, A. M.; Gómez, R. L. y García, C. B. 2016. Distribución temporal de Diaphorina citri Kuwayama (Hemíptera: Psyllidae) en limón persa (Citrus latifolia Tanaka) en el municipio de Sinaloa, Sinaloa. Entomol. Mex. 3(1):324-329. [ Links ]

Díaz, G.; López, J. I.; Sánchez, I.; Guajardo, R. A.; Mora, G. y Quijano, J. A. 2014. Áreas de abundancia potencial en México del vector del Huanglongbing, Diaphorina citri (Hemiptera: Liviidae). Rev. Mex. Cienc. Agríc. 5(7):1137-1153. [ Links ]

Fernández, M. y Miranda, I. 2005. Comportamiento de Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Parte III. Relación entre el ciclo de vida y el brote vegetativo foliar. Rev. Protección Vegetal. 20(3):161-164. [ Links ]

Flores, J. C.; Aguilar, C.; Alcántara, J. A.; Ayvar, S. y Catalán, G. 2017. Fluctuación poblacional del psílido Diaphorina citri Kuwayama (Hemiptera: Liviidae) en limón mexicano en Acapulco, Guerrero. Acta Agrícola y Pecuaria. 3(2):58-60. [ Links ]

García, D.; Sánchez, S.; Romero, J. y Pérez, J. 2013. Fluctuación poblacional de Diaphorina citri (Hemiptera: Liviidae) en limón persa (Citrus latifolia), en Huimanguillo, Tabasco, México. Rev. Colomb. Entomol. 39(2):201-204. [ Links ]

Garza, J. J.; Varela, S. y Gómez, W. 2017. Métodos para la detección presuntiva de Huanglongbing (HLB) en cítricos. CienciaUAT. 2(2):93-104. [ Links ]

Greenacre, J. 1983. Theory and applications of correspondence analysis. London. Academic Press. 364 p. [ Links ]

Hall, D. G.; Hentz, M. G., and Aldair, R. C. 2008. Population ecology and phenology of Diaphorina citri (Hemiptera: Psyllidae) in two Florida citrus groves. Entomological Society of America. 37(4):914-924. [ Links ]

Liu, Y. H. and Tsai, J. H. 2000. Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Annals Appl. Biol. 137(3):201-206. [ Links ]

López-Arroyo, J. I.; Peña, M. A.; Rocha-Peña, M. A. y Loera, J. 2005. Ocurrencia en México del psílido asiático Diaphorina citri (Hemiptera: Psyllidae). In: Memorias del VII congreso internacional de fitopatología. Chihuahua, Chih. México. 86 p. [ Links ]

Lozano, M. G. y Jasso, J. 2012. Identificación de enemigos naturales de Diaphorina citri Kuwayama (Hemiptera: Psyllidae) en el estado de Yucatán, México. Fitosanidad. 16(1):5-11. [ Links ]

Luna, A.; Escamilla, J. L.; Barrera, S. I. y Loera, E. 2018. Fluctuación poblacional de Diaphorina citri Kuwayama (Hemiptera: Liviidae) en el Valle de Apatzingán, Michoacán. Acta Zoológica Mexicana (nueva serie). 34(1):1-4. [ Links ]

Medina, V. M.; Zapiaín, G.; Robles, M. M.; Pérez, O.; Orozco, M.; Williams, T. y Becerra, S. 2007. Fenología, eficiencia productiva y calidad de fruta de cultivares de naranjo en el trópico seco de México. Rev. Fitotec. Mex. 30(2):133-143. [ Links ]

Mora, G.; Robles, P.; López, J. I.; Flores, J.; Acevedo, G.; Domínguez, D. y González, R. 2014. Situación actual y perspectivas del manejo del HLB de los cítricos. Rev. Mex. Fitopatol. 32(2):108-119. [ Links ]

Ortega, L. D.; Ramírez, A. J.; Mendoza, E. E. y Villegas, A. 2013. Abundancia estacional de Diaphorina citri (Hemiptera: Liviidae) en plantaciones de cítricos en cazones, Veracruz, México. Acta Zoológica Mexicana. 29(2):317-333. [ Links ]

Paris, M. T.; Allan, S. A.; Hall, D. G.; Hentz, M. G.; Croxton, S. D.; Ainpudi, N. and Stansly, P. A. 2017. Effects of temperature, photoperiod, and rainfall on morphometric variation of Diaphorina citri (Hemiptera: Liviidae). Environ. Entomol. 46(1):143-158. [ Links ]

Pluke, R. W. H.; Qureshi, J. A. and Stansly, P. A. 2008. Citrus flushing patterns, Diaphorina citri (Hemiptera: psyllidae) populations and parasitism by Tamarixia radiata (Hymenoptera: Eulophidae) in Puerto Rico. Florida Entomologist. 91(1):36-42. [ Links ]

Qureshi, J. A. and Stansly, P. A. 2008. Rate, placement, and timing of aldicarb applications to control asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in oranges. Pest Manag. Sci. 64(11):1159-1169. [ Links ]

Razeto, B. 2005. El limonero. Santiago de chile. Fundación para la innovación agraria. 21-36 pp. [ Links ]

Rencher, A. 2002. Methods of multivariate analysis. New York. Wiley-Interscience A John & Sons, Inc. 727 p. [ Links ]

Robles, P. L. y Delgadillo, I. 2010. Protocolo de actuación para la detección del huanglongbing. Dirección de protección fitosanitaria. 39 p. [ Links ]

SIAP. 2019. Servicio de información agropecuaria y pesquera. SAGARPA. México. [ Links ]

Stansly, P. A. and Qureshi, J. A. 2007. Insecticidal control of Asian citrus psyllid through foliar applications on orange, 2006. Arthropod Management Tests. 29(1):14-23. [ Links ]

Tsai, J. H.; Wang, J. J. and Liu, Y. H. 2002. Seasonal abundance of the asian citrus psyllid, Diaphorina citri (Homoptera: Psyllidae) in southern florida. Florida Entomologist . 85(3):446-451. [ Links ]

Received: November 2021; Accepted: February 2022

§Corresponding author: armandoobiol@gmail.com.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons