SciELO - Scientific Electronic Library Online

 
vol.9 número5Análisis de competitividad y rentabilidad de producción de biodiesel de granos de moringa en Chiapas y Yucatán, MéxicoIncompatibilidad del capulín (Prunus serotina ssp. capuli (Cav.) McVaugh) como portainjerto del cerezo dulce (Prunus avium L.) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.9 no.5 Texcoco Jun./Ago. 2018

https://doi.org/10.29312/remexca.v9i5.1507 

Articles

Base temperatures and degrees days development of 10 Mexican corn accessions

Juan Arista-Cortes1 

Abel Quevedo Nolasco2  § 

Bertha Patricia Zamora Morales3 

Ricardo Bauer Mengelberg2 

Kai Sonder1 

Oziel Lugo Espinosa4 

1International Maize and Wheat Improvement Center. Highway Mexico-Veracruz km 45, El Batán, Texcoco, State of Mexico, Mexico. Tel. 01(595) 9521900, ext. 2149 and 1342.

2Postgraduate College-Campus Montecillo, Texcoco, Mexico. (jbauer@colpos.mx).

3CENID-COMEF-INIFAP. Av. Progreso núm. 5, Barrio de Santa Catarina, Delegación Coyoacán. CP. 04010. Tel. 01(55) 36268700, ext. 70555 and 01(55) 38718700, ext. 80605. (zamora.patricia@inifap.gob.mx).

4Autonomous University of the State of Mexico, Av. Jardín Zumpango s/n Fractionation the Tejocote, Texcoco, State of Mexico. CP. 56159. Tel. 01(595) 9523488. (ozieluz@gmail.com).


Abstract

The temperature variation of a place is a function of the elements and factors of the climate, which are altered to a greater or lesser extent by climate change, which is a challenge to determine the periods of thermal growth, optimum sowing for various crops by region. Based on the above, the objective of this study was to determine the base temperature (Tb) and the degree days development (GDD) of the sowing to flowering (male and female) for 10 accessions of corn that are protected in the Germplasm Bank of CIMMYT. The information was collected and analyzed (duration in days (t) of the periods of Sowing to Flowering and its respective average temperature) of different field experiments of the field stations (Agua Fria, Puebla and Tlaltizapan, Morelos) of the years 2008, 2009, 2011, 2012 and 2013. Which was adjusted to a linear model by linear regression between the development rate (1/t) and the average temperature of the period. The GDD were estimated by accession with the ratio 1/α where α is the parameter of the regression and Tb. The results indicate that Tb varied from 7.1 to 13 °C for male flowering and 5.4 to 12.1 °C for female flowering with an accumulation of GDD between 880 and 1696 male flowering and 1115 to 1860 female flowering, which allows to characterize the accessions evaluated in order of highest to lowest precocity: Chis337, Yuca91, Vera617, Yuca158, Yuca47, Vera616, Vera64, Vera623, Snlp277, Hida275, confirming that knowing the agroclimatic requirements of crops allows selecting regions that favor growth , development, reduction of losses and increase yields as well as preserving the genetic variability of the species.

Keywords: base temperature; degree days development; linear model

Resumen

La variación de temperaturas de un lugar es función de los elementos y factores del clima, mismos que son alterados en mayor o menor grado por el cambio climático, lo que es un reto el determinar los periodos de crecimiento térmico, más óptimos de siembra para diversos cultivos por región. Con base en lo anterior el objetivo de este estudio fue determinar la temperatura base (Tb) y los grados días desarrollo (GDD) de la siembra a floración (femenina y masculina) para 10 accesiones de maíz que están resguardadas en el banco de germoplasma del CIMMYT. Se recolectó y analizó la información (duración en días (t) de los periodos de siembra a floración y su respectiva temperatura media) de diferentes experimentos de campo de las estaciones de campo (Agua Fría, Puebla y Tlaltizapan, Morelos) de los años 2008, 2009, 2011, 2012 y 2013. La cuál se ajustó a un modelo lineal por regresión lineal entre la tasa de desarrollo (1/t) y la temperatura promedio del periodo. Se estimaron los GDD por accesión con el cociente 1/α donde α es el parámetro de la regresión y Tb. Lo resultados señalan que Tb vario de 7.1 a 13 °C para floración masculina y 5.4 a 12.1 °C para floración femenina con acumulación de GDD entre 880 y 1696 floración masculina y 1115 a 1860 floración femenina, que permite caracterizar a las accesiones evaluadas en orden de mayor a menor precocidad: Chis337, Yuca91, Vera617, Yuca158, Yuca47, Vera616, Vera64, Vera623, Snlp277, Hida275 y se confirma que el conocer los requerimientos agroclimáticos de los cultivos permite seleccionar regiones que favorezcan el crecimiento, desarrollo, reducción de pérdidas e incrementar rendimientos así como preservar la variabilidad genética de las especies.

Palabras clave: grados días desarrollo; modelo lineal; temperatura base

Introduction

Several studies have shown the effect of temperature on the growth and development of crops as they influence different phenological stages, such as seed germination (Butler et al., 2014; Fowler et al., 2014); likewise, temperature variations can modify the length of the emergence-anthesis or before-filling period of grain (Shim and Lee, 2017), flowering is also affected by high temperatures (Noriega et al., 2011), which can un-synchronize female flowering and anthesis (Cicchino et al., 2010).

High temperatures affect the pollen viability during pollination (Hatfield and Prueger, 2015), which can generate abortions in grains (Cantarero et al., 1999) and will reflect a lower number of grains per ear and therefore less accumulation of biomass (Rincón et al., 2006; Hatfield and Prueger, 2015), the rate of leaf production and spread is also affected (García and López, 2002) as well as the duration of the different phenological stages (Soto et al., 2009; Liu et al., 2013).

Therefore, it is important to determine the temperature range and thus be able to measure the growth by means of the daily integration of the thermal energy or day degree of growth (D°) within said range, which is known as days of development (GDD). There are several thermal models to estimate the GDD in the corn crop, these can be linear and non-linear (Cross and Zuber, 1972; Bonhomme et al., 1994; McMaster and Wilhelm, 1997; Kumudini et al., 2014; Archontoulis and Miguez, 2015).

Non-linear models are better suited to temperature variations, however, they need to be calibrated by crop and region and the accuracy depends on the temperature range at which they were calibrated, as is the case with the CHU (Crop Heat Units) model that is used mainly in Canada, this model calculates the daily CHU by means of two functions: a linear one for the night and another polynomial for the day (Brown, 1975). Cutforth and Shaykewich (1989) found that the CHU model overestimates the rate of development at low temperatures, which generates a higher value of CHU in the sowing-flowering period (SF).

On the other hand, linear models are based on the linear relationship between the rate of development and temperature, within a minimum temperature range (base temperature Tb) from which the crop develops at a maximum temperature (temperature optimal To) where the greatest development occurs; few degrees above the optimum temperature is the threshold temperature (Tu) from which the growth decreases considerably (Monteith, 1977). The thermal models require the Tb and To of each crop to estimate the GDD, the values most used in the corn crop are: Tb= 10 °C and To= 30 °C (Hou et al., 2014).

From this, several researchers have evaluated the accuracy of thermal models for corn cultivation in different environments (Cross and Zuber, 1972, Cutforth and Shaykewich, 1989, Bonhomme et al., 1994, Archontoulis and Miguez, 2015). In some models temperature values were used for Tb= 10 °C and To= 30 °C, the differences found in the results suggest variations in the Tb by crop.

Authors such as Singh et al. (1976) found values of Tb= 10 °C and To= 35 °C for the pioneer hybrid 3388; likewise, Warrington and Kanemasu (1983) obtained Tb= 11 °C and To= 28 °C, on the other hand, Hernández and Carballo (1984) estimated Tb= 7 °C and To= 27 °C for High Valley in Mexico and whose Tb matches that found by Narwal et al. (1986) for winter in the North-West of India. Other researchers such as García and López (2002) found Tb= 7.5 °C for foliar extension and Ruiz et al. (1998) obtained Tb between 2 °C and 10 °C for 49 Mexican corn races.

In Mexico, there is a great diversity of races and varieties of corn, adapted to different altitudes and climates and with different environmental requirements, which is why to preserve this genetic variability of corn, CIMMYT has a germplasm bank with seed samples (corn accessions) taken in different parts of the country. In the present study, sowing-flowering data from 10 accessions of said bank were used and a linear model was applied to calculate the value of Tb and GDD.

Materials and methods

The present study was carried out from the use of agroclimatic data recorded during the establishment of experimental plots of corn from the CIMMYT Germplasm Bank, which were obtained in the autumn-winter and spring-summer agricultural cycles during the years: 2008, 2009, 2011, 2012 and 2013. The experimental corn plots were located in two CIMMYT field stations: Agua Fria and Tlaltizapan (Figure 1), which have meteorological stations and a historical record of climate data.

Figure 1 Location of CIMMYT stations and collection sites. 

The Agua Fria station is located in the municipality of Venustiano Carranza in Puebla at coordinates latitude 20° 27’ north latitude and longitude west 97° 38.4’ at an altitude of 102 m. The Tlaltizapan station is located in Morelos at coordinates North latitude 18° 40.8’ and longitude West 99° 7.2’ with an altitude 943 m.

To maintain the seed inventory, the germplasm bank follows the considerations proposed by Cutforth et al. (1994), for the conservation of the accessions of corn, for this reason it carries out sowings every year according to the demand of the same one by researchers. For the management of the plot, it is divided into lots of 5 meters in length with separation between rows of 70 cm and with two seeds per bush between 5 and 10 cm deep. During the agricultural cycle the dates of sowing and number of days elapsed were recorded when 50% of the plants reached the male flowering, the feminine flowering and the senescence, for all the sowings irrigation, fertilizer and herbicides were applied.

The sowing records of 3 142 corn accessions were consulted and analyzed, from which the Tb of the sowing-male flowering and sowing-female flowering periods was calculated for 41 accessions for having the highest number of sowing repetitions (from 3 to 5, where each point represents an experiment). Finally, 10 were selected (Table 1 and 2) because they had the highest coefficient of determination and correlation, so for each sowing-flowering period the average temperature was calculated (Table 3) and sowing with unreliable data was ruled out. The origins of the accessions are: Chiapas, Hidalgo, Veracruz and Yucatan (Figure 1).

Table 1 Origin of corn accessions. 

Accession Latitude, longitude Altitude (m) Municipality Location Collection
CHIS337 16.33 N, 91.94 W 1494 The Margaritas Margaritas 01/ene/72
HIDA275 21.27 N, 98.55 W 140 San Felipe O. Piedra Hincada 05/jun/07
SNLP277 21.25 N, 98.76 W 125 Tamazunchale Guaxcuaco 17/ago/07
VERA64 20.43 N, 97.38 W 109 Papantla The Tajin 01/ene/48
VERA616 19.35 N, 96.59 W 262 Emiliano Zap. Rafael Lucio 01/ene/77
VERA617 19.35 N, 96.59 W 262 Emiliano Zap. Rafael Lucio 01/ene/77
VERA623 19.4 N, 97 W 1221 Tlacolulan Tlacolulan 01/ene/77
YUCA47 21.017 N, 88.28 W 23 Espita Espita 01/ene/48
YUCA91 21.017 N, 88.28 W 23 Espita Espita 01/ene/48
YUCA158 21.017 N, 88.28 W 23 Espita Espita 01/ene/48

Table 2 Breeds of corn accessions. 

Accession Race Sub-race Common name
CHIS337 Comiteco Oloton Yellow
HIDA275 Ancho Olotil Broad corn
SNLP277 Olotillo Tuxpen Large white corn
VERA64 Small
VERA616 Coscomatepec
VERA617 Creole Pinto
VERA623 Pinto
YUCA47 DZIT-BACAL XNUC-NAL
YUCA158 DZIT-BACAL

Table 3 Planting dates, male flowering (date FM) and female (Date FF); average temperature for sowing-flowering male (TM-FM) and sowing-flowering female (TM-FF). 

Planting site Accession Planting date Date FM Date FF TM-FM (oC) TM-FF (oC)
Tlaltizapan CHIS337 16-jun-11 3-sep-11 14-sep-11 24.75 24.53
Tlaltizapan CHIS337 19-jun-12 5-sep-12 14-sep-11 23.49 24.26
Tlaltizapan CHIS337 14-nov-12 14-mar-13 2-mar-13 20.87 20.99
Tlaltizapan CHIS337 28-nov-13 11-mar-14 25-mar-14 21.28 21.96
Tlaltizapan HIDA275 20-apr-13 13-jul-13 17-jul-13 25.73 25.61
Agua Fria HIDA275 4-jun-09 24-ago-09 27-ago-09 29.54 29.43
Tlaltizapan HIDA275 14-nov-12 19-mar-13 14-mar-13 20.84 21.12
Tlaltizapan HIDA275 28-nov-08 4-abr-09 7-abr-09 21.49 21.64
Agua Fria HIDA275 8-jul-14 26-sep-14 29-sep-14 27.83 27.79
Tlaltizapan SNLP277 28-nov-13 10-mar-14 15-mar-14 21.25 21.48
Tlaltizapan SNLP277 14-nov-12 10-mar-13 1-mar-13 20.76 20.98
Agua Fria SNLP277 4-jun-09 11-ago-09 14-ago-09 29.61 29.59
Tlaltizapan SNLP277 28-nov-08 20-mar-09 21-mar-09 21.09 21.13
Tlaltizapan VERA616 16-jun-11 2-sep-11 8-sep-11 24.79 24.66
Tlaltizapan VERA616 19-jun-12 1-sep-12 5-sep-12 23.49 24.27
Tlaltizapan VERA616 14-nov-12 28-feb-13 19-feb-13 20.63 20.77
Tlaltizapan VERA616 28-nov-13 7-mar-14 15-mar-14 21.17 21.48
Tlaltizapan VERA617 16-jun-11 29-aug-11 2-sep-11 24.81 24.75
Tlaltizapan VERA617 17-jul-12 29-sep-12 9-oct-12 23.34 23.93
Tlaltizapan VERA617 14-nov-12 25-feb-13 16-feb-13 20.57 20.72
Tlaltizapan VERA617 28-nov-13 4-mar-14 12-mar-14 21.07 21.36
Tlaltizapan VERA623 16-jun-11 2-sep-11 9-sep-11 24.79 24.63
Tlaltizapan VERA623 14-nov-12 3-mar-13 26-feb-13 20.74 20.87
Tlaltizapan VERA623 28-nov-13 8-mar-14 19-mar-14 21.21 21.61
Agua Fria VERA64 8-jun-11 5-aug-11 7-ago-11 28.76 28.76
Tlaltizapan VERA64 14-nov-12 21-feb-13 17-feb-13 20.5 20.72
Tlaltizapan VERA64 28-nov-13 4-mar-14 10-mar-14 21.07 21.32
Agua Fria YUCA158 31-may-12 14-aug-12 16-ago-12 26.41 26.44
Tlaltizapan YUCA158 14-nov-12 22-mar-13 10-mar-13 20.9 21.03
Tlaltizapan YUCA158 28-nov-13 18-mar-14 27-mar-14 21.51 22.05
Agua Fria YUCA47 31-may-12 13-aug-12 16-ago-12 26.44 26.44
Tlaltizapan YUCA47 14-nov-12 15-mar-13 11-mar-13 20.89 21.05
Tlaltizapan YUCA47 28-nov-13 20-mar-14 28-mar-14 21.59 22.09
Agua Fria YUCA91 31-may-12 11-aug-12 7-ago-12 26.47 26.41
Tlaltizapan YUCA91 14-nov-12 14-mar-13 3-mar-13 20.87 20.97
Tlaltizapan YUCA91 28-nov-13 18-mar-14 2-abr-14 21.51 22.32

Yes, the corn cultivar is not sensitive to the photoperiod (Gouesnard et al., 2002), or does not require vernalization, the development of the sowing-flowering period follows a positive linear behavior of the temperature in a range of base temperature and optimum temperature (Ruiz et al., 2002).

Within the interval between Tb and To (Figure 2), it is possible to use the following linear model (Monteith, 1977):

Figure 2 Crop development between base and optimum temperature. 

1t=αT+β 1)

Where: t is the duration in days of the sowing-flowering period, T is the average temperature of the period, α and β are parameters obtained by a simple linear regression. To know the temperature from which the growth begins (1/t = 0), equate equation 1 to zero and express it as a function of T to obtain Tb:

Tb=-βα 2)

For the calculation of GDD, the following quotient was used (Mullens and Rutz, 1983):

1/α 3)

Results and discussion

The values of Tb obtained for the 10 accessions, as well as the parameters of linear regression, the coefficient of determination and correlation and the GDD are shown in Table 4 and 5. The values of Tb and GDD for male and female flowering were plotted for analyze their behavior (Figure 3).

Table 4 Regression parameters, coefficients of determination and correlation, base temperatures and GDD, for maize accessions, male flowering. 

Accession α β r2 ρ Tb GDD
CHIS337 0.00113526 -0.014775 0.88 0.939 13.01 880.85
HIDA275 0.0005896 -0.0042653 0.91 0.953 7.23 1696.05
SNLP277 0.0006552 -0.0046727 0.98 0.99 7.13 1526.24
VERA64 0.0008743 -0.0079089 0.99 0.909 9.05 1143.78
VERA616 0.00093642 -0.0096216 0.84 0.914 10.27 1067.89
VERA617 0.00096652 -0.009908 0.91 0.952 10.25 1034.64
VERA623 0.00085814 -0.0084257 0.99 0.90 9.82 1165.3
YUCA47 0.00094535 -0.01148306 0.99 0.646 12.15 1057.81
YUCA91 0.00098333 -0.01213178 0.99 0.642 12.34 1016.95
YUCA158 0.00094939 -0.0117027 0.98 0.621 12.33 1053.31

Table 5 Regression parameters, coefficients of determination and correlation, base temperatures and GDD, for maize accessions, female flowering. 

Accession α β r2 ρ Tb GDD
CHIS337 0.00073418 -0.00673683 0.796 0.892 9.17 1362.05
HIDA275 0.00053737 -0.00322956 0.895 0.946 6 1860.89
SNLP277 0.00058353 -0.00318764 0.99 0.995 5.46 1713.68
VERA616 0.00069075 -0.00465105 0.751 0.866 6.73 1447.7
VERA617 0.00064908 -0.00348244 0.811 0.9 5.36 1540.63
VERA623 0.00067007 -0.00486002 0.848 0.921 7.25 1492.37
VERA64 0.00083059 -0.00726978 0.973 0.987 8.75 1203.96
YUCA158 0.00087787 -0.01033777 0.951 0.975 11.77 1139.12
YUCA47 0.00089663 -0.01083809 0.951 0.975 12.09 1115.28
YUCA91 0.00078849 -0.00832139 0.788 0.888 10.55 1268.25

Figure 3 Relationship between Tb and GDD from sowing to flowering (female and male) for different accessions of corn. 

High values were obtained in the coefficients of determination, which can be by the number of repetitions of sowing-flowering, since the germplasm bank performs sowing only to maintain seed stocks.

On the other hand, great correlation coefficients were obtained in most of the accessions, which gives greater certainty to the linear models developed, except for the accessions Yuca47, Yuca91 and Yuca158, which presented correlations between 0.6 and 0.7 (Table 4), which suggests collecting more data from future plantings, to improve the model.

For the accessions Vera64, Vera616, Vera617 and Vera623 Tb values close to 10 °C were obtained (Table 4), these values coincide with those used by various authors (Cross and Zuber, 1972; Kumudini et al., 2014). The Accessions Hida275 and SLP277 presented a Tb close to 7 °C (Table 4), similar to that found by Hernández and Carballo (1984) for High Valley and the one reported by Ruiz (1998) for the Ancho, Jala, Coscomatepec, Reventador, Onaveño and Dulcillo races; as well as the average calculated by Sánchez et al. (2014) for male flowering. The accessions Yuca47, Yuca91, Yuca158, Chis337 presented Tb between 12.3 °C and 13 °C, values close to 12.6 °C average calculated by Sánchez et al (2014) for the development of roots. On the other hand, the accession Yuca158, has a value of Tb= 11.7 °C, for female flowering (Table 5), this value is close to 11 °C reported by Warrington and Kanemasu (1983) for anthesis.

In Figure 3, it is observed that male flowering requires higher Tb than female flowering (Tables 4 and 5); however, it requires less thermal energy (GDD), which corresponds to the flowering dates, since the masculine one appears before.

Regarding altitude and temperature, no direct relationship was found between elevation and GDD, which suggests the existence of errors in the geographic coordinates during the collection of the accessions, which, not having a more detailed record of the location, there is no way to correct these coordinates.

Conclusions

The importance of the evaluation of the bioclimatic requirements, in this case thermal (Tb and GDD) of the maize accessions, allows to evaluate the periods of thermal growth for different sites, independent of a civil calendar, since it is determined based on the thermal offer of the place.

With the thermal requirements obtained for the sowing-flowering periods, the sowing dates can be planned to tune the flowering and thus make crosses.

Knowing the thermal supply of a place allows selecting actions that can complete their agricultural cycle and thus preserve the genetic variability of these; It is also possible to change the current crop for another equivalent in its thermal demand.

Of the different accessions, Tb ranged between 7.13 and 13.01 with requirements varying between 800 and 1 696 GDD, from sowing to male flowering; similarly, Tb ranged between 5.36 and 12.09 with requirements that vary between 1 115 and 1 540 GDD from sowing to female flowering. The above values correspond to the climate, being the accessions of warm climates those that demand more Tb and those of High Valley those of lower thermal requirement.

In the ten accessions studied, there is a variability in the requirements of Tb and GDD, which expresses a broad spectrum of adaptation of these materials that have been collected by CIMMYT.

Acknowledgments

We thank Dr. Denise Costich, Manager of the Maize Germplasm Bank of CIMMYT and the Ing. Marcial Rivas, associate research assistant of the Maize Germplasm Bank of CIMMYT for the information provided in the field logs of corn accessions.

REFERENCES

Archontoulis, S. V. and Miguez, F. E. 2015. Nonlinear regression models and applications in agricultural research. Agron. J. 107(2):786-798. [ Links ]

Bonhomme, R.; Derieux, M. and Edmeades, G. O. 1994. Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Sci. 34(1):156-164 [ Links ]

Brown, D. M. 1975. Heat units for corn in Southern Ontario. Factsheet Ministry of Agriculture and Food Ontario. Canada. 111/31. [ Links ]

Butler, T. J.; Celen, A. E.; Webb, S. L.; Krstic, D. and Interrante, S. M. 2014. Temperature affects the germination of forage legume seeds. Crop Sci. 54(6):2846-2853. [ Links ]

Cantarero, M. G.; Cirilo, A. G. and Andrade, F. H. 1999. Night temperature at silking affects set in maize. Crop Sci . 39(3):703-710. [ Links ]

Cicchino, M.; Edreira, J. I. and Otegui, M. E. 2010. Heat stress during late vegetative growth of maize: effects on phenology and assessment of optimum temperature. Crop Sci . 50(4):1431-1437. [ Links ]

Cross, H. Z. and Zuber, M. S. 1972. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J . 64(3):351-355. [ Links ]

Cutforth, J.; Taba, S.; Eberhart, S. A.; Bretting, P. and Vencovsky, R. 1994. Practical considerations for maintaining germplasm in maize. Theor. Appl. Gen. 89(1):89-95. [ Links ]

Cutforth, H. W. and Shaykewich, C. F. 1989. Relationship of development rates of corn from planting to silking to air and soil temperature and to accumulated thermal units in a prairie environment. Can. J. Plant Sci. 69:121-132. [ Links ]

Fowler, D. B.; Byrns, B. M. and Greer, K. J. 2014. Overwinter low-temperature responses of cereals: analyses and simulation. Crop Sci . 54(6):2395-2405. [ Links ]

García, P. A. D. y López, C. C. 2002. Temperatura base y tasa de extensión foliar del maíz. Rev. Fitotec. Mex. 25(4):381-386. [ Links ]

Gouesnard, B.; Rebourg, C., Welcker, C. and Charcosset, A. 2002. Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Res. Crop Evol. 49(5):471-481. [ Links ]

Hatfield, J. L. and Prueger, J. H. 2015. Temperature extremes: effect on plant growth and development. Weather and climate extremes. 10:4-10. [ Links ]

Hernández, L. A. y Carballo, C. A. 1984. Caracterización de genotipos de maíz de Valles Altos por sus requerimientos de unidades calor. Rev. Chapingo Ser. Hort. 44:42-48. [ Links ]

Hou, P.; Liu, Y.; Xie, R.; Ming, B.; Ma, D.; Li, S. and Mei, X. 2014. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Res. 158:55-64. [ Links ]

Kumudini S.; Andrade, F. H.; Boote, K. J.; Brown, G. A.; Dzotsi, K. A.; Edmeades, G. O.; Gocken, T.; Goodwin, M.; Halter, A. L.; Hammer, G. L.; Hatfield, J. L.; Jones, J. W.; Kemanian, A. R. ; Kim, S. H.; Kiniry, J.; Lizaso, J. I.; Nendel, C. ; Nielsen, R. L.; Parent, B.; Stӧckle, C. O.; Tardieu, F. ; Thomison, P. R.; Timlin, D. J.; Vyn, T. J.; Wallach, D.; Yang, H. S. and Tollenaar, M. 2014. Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agron. J . 106(6):2087-2097. [ Links ]

Liu, Y.; Xie, R.; Hou, P.; Li, S.; Zhang, H.; Ming, B. and Liang, S. 2013. Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res . 144:192-199. [ Links ]

McMaster, G. S. and Wilhelm, W. W. 1997. Growing degree-days: one equation, two interpretations. Agric. Forest Meteorol. 87(4):291-300. [ Links ]

Monteith, J. L. 1977. Climate. In: ecophysiology of tropical crops. Alvim, T. and Kozlowski, T. T. (Eds.). Academic Press. New York. 1-25 pp. [ Links ]

Mullens, B. A. and Rutz, D. A. 1983. Development of immature Culicoides variipennis (Diptera: Ceratopogonidae) at constant laboratory temperatures. Ann. Entomol. Soc. Am. 76(4):747-751. [ Links ]

Narwal, S. S.; Poonia, S.; Singh, G. and Malik, D. S. 1986. Influence of sowing dates on the growing degree days and phenology of winter maize (Zea mays L.). Agric. For. Meteorol. 38(1):47-57. [ Links ]

Noriega, L. A.; Preciado, R. E.; Andrio, E.; Terrón Ibarra, A. D. y Covarrubias Prieto, J. 2011. Fenología, crecimiento y sincronía floral de los progenitores del híbrido de maíz QPM H-374C. Rev. Mex. Cienc. Agríc. 2(4):489-500. [ Links ]

Rincón, J. A.; Castro, S.; López, J. A.; Huerta, A. J.; Trejo, C. y Briones, F. 2006. Temperatura alta y estrés hídrico durante la floración en poblaciones de maíz tropical. Phyton. Buenos Aires. 75:31-40. [ Links ]

Ruiz, J. A.; Flores, H. E.; Ramírez; L. y González, D. R. 2002. Temperaturas cardinales y duración del ciclo de madurez del híbrido de maíz H-311 en condiciones de temporal. Agrociencia. 36(5):569-577. [ Links ]

Ruiz, J. A.; Sánchez, J. J. and Goodman, M. M. 1998. Base temperature and heat unit requirement of 49 mexican maize races. Maydica. 43(4):277-282. [ Links ]

Sánchez, B.; Rasmussen, A. and Porter, J. R. 2014. Temperatures and the growth and development of maize and rice: a review. Global Change Biol. 20(2):408-417. [ Links ]

Shim, D.; Lee, K. J. and Lee, B. W. 2017. Response of phenology and yield related traits of maize to elevated temperature in a temperate region. The Crop J. 5:305-3016. [ Links ]

Singh, P. M., Gilley, J. R. and Splinter, W. E. 1976. Temperature thresholds for corn growth in a controlled environment. Transactions of the ASAE. 19(6):1152-1155. [ Links ]

Soto, F.; Hernández, N. y Plana, R. 2009. Influencia de la temperatura en la duración de las fases fenológicas del trigo harinero (Triticum aestivum ssp. Aestivum) y triticale (X Triticum secale Wittmack) y su relación con el rendimiento. Cultivos Trop. 30(3):32-36. [ Links ]

Warrington, I. J. and Kanemasu, E. T. 1983. Corn growth response to temperature and photoperiod. I. Seeding emergence, tassel initiation, and anthesis. Agron. J . 75(5):749-754. [ Links ]

Received: March 2018; Accepted: June 2018

§Corresponding author: anolasco@colpox.mx.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons