SciELO - Scientific Electronic Library Online

vol.9 número1El huerto familiar y la cultura un espacio destinado a las plantas medicinales en Xochipala, GuerreroPrácticas colaborativas y costos de transacción en el sector cafetalero en México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.9 no.1 Texcoco ene./feb. 2018 

Investigation note

Nutritional quality of silage apple bagasse with organic and inorganic nitrogenous sources

Mauro Enrique Mora de Alba1 

Deli Nazmín Tirado-González2 

Teódulo Quezada-Tristán3 

Fidel Guevara-Lara1 

Juan Jáuregui-Rincón1 

Rubén Larios-González4 

Gustavo Tirado-Estrada2  § 

1Universidad Autónoma de Aguascalientes-Centro de Ciencias Básicas. Av. Universidad núm. 940, Aguascalientes, México. C. P. 20131. (;;

2Instituto Tecnológico El Llano Aguascalientes-Departamento de Ingenierías y División de Estudios de Investigación y Posgrado. Carretera Aguascalientes-SLP km 18.5, El Llano, Aguascalientes, México. CP. 20330. (

3Universidad Autónoma de Aguascalientes-Centro de Ciencias Agropecuarias. Jesús María s/n, Aguascalientes, México. (

4Centro de Bachillerato Tecnológico Agropecuario (CBETA) núm. 61. Calle Guillermo Prieto núm. 225, Col. Libertad, Calvillo, Aguascalientes, México. CP. 20800. (


The nutritional quality and potential use of apple bagasse (BM) in diets for ruminants when silage (microsilos) with two nitrogenous sources (FN) [urea (U), sow (C)], a commercial inoculant (I) was evaluated and Chloris gayana as moisture adherent [80/20 w/w, dry matter (MS)]. The study was conducted in Aguascalientes, Mexico (2014-2016). The treatments: a) BM; b) BM+I; c) BM+U; d) BM+U+I; e) BM+C and f) BM+C+I were analyzed in a completely randomized design (DCA) with factorial arrangement [3 FN (U, C, without FN) × 2 I (with I, without I)]. At 45, the MS of silage was similar between treatments, and lactic and acetic acids increased in greater proportion to propionic and butyric acids. The addition of C (BM+C and BM+C+I) increased the final crude protein (PC) (increments of 8 and 7.44 g 100 g-1 MS) although the pH increased (4.33 and 3.91 vs. 3.41 ±0.03) of the ensilage. Considering the content of PC and fermentation standards, the BM silage with C has the stability and sufficient quality to be used in the feeding of ruminants.

Keywords: apple bagasse; bacterial inocula; nitrogen sources; ruminants; silage


Se evaluó la calidad nutricional y potencial uso del bagazo de manzana (BM) en dietas para rumiantes al ser ensilado (microsilos) con dos fuentes nitrogenadas (FN) [urea (U), cerdaza (C)], un inoculante comercial (I) y Chloris gayana como adherente de humedad [80/20 peso/peso, materia seca (MS)]. El estudio se realizó en Aguascalientes, México (2014-2016). Los tratamientos: a) BM; b) BM+I; c) BM+U; d) BM+U+I; e) BM+C y f) BM+C+I se analizaron en un diseño completamente al azar (DCA) con arreglo factorial [3 FN (U, C, sin FN) × 2 I (con I, sin I)]. A los 45 días, la MS del ensilado fue similar entre tratamientos, y los ácidos láctico y acético se incrementaron en mayor proporción a los ácidos propiónico y butírico. La adición de C (BM+C y BM+C+I) incrementó la proteína cruda (PC) final (incrementos de 8 y 7.44 g 100 g-1 MS) aunque aumentó el pH (4.33 y 3.91 vs 3.41 ±0.03) del ensilado. Considerando el contenido de PC y patrones de fermentación, el BM ensilado con C tiene la estabilidad y calidad suficiente para ser empleado en la alimentación de rumiantes.

Palabras clave: bagazo de manzana; ensilado; fuentes de nitrógeno; inóculos bacterianos; rumiantes

The potential use of by-products has the purpose of increasing the avoidance of loss of milk and meat production and improving the cost-benefit ratio in extensive production systems, especially at times of the year when there is a low availability of good quality food. The apple bagasse (BM) is a by-product of the juice extraction process (5-19 kg of BM 100 kg-1 of apple) composed of husks, seeds, pulp fibrous remains and juice depleted in sugars; the state of maturity and differences in the processing of the apple affect its composition of dry matter (MS, 14-26%), crude fiber (FC, 14-23%) and crude protein (PC, 4-8%) (Mirzaei-Aghsaghali et al., 2011). In Mexico, approximately 661 tons of BM are produced per year (SIAP, 2014) and can be considered as an important resource for the feeding of cattle, sheep and goats (Tiwari et al., 2008; Mirzaei-Aghsaghali et al., 2011; Ajila et al., 2015).

The silage process is a viable alternative to prolong the use of BM throughout the year (Skladanka et al., 2012; Ajila et al., 2015) and the addition of inocula and sources of non-protein nitrogen can improve lactic acid formation , the profile of volatile fatty acids (AGV) (Skládanka et al., 2012; Schroeder, 2013), the content of crude protein (PC) (Ajila et al., 2015), the aerobic stability at the moment of opening the silo (Barrena and Jiménez, 2013) and the nutritional quality of the BM (Rodríguez-Muela et al., 2006; Becerra et al., 2008).

The present study evaluated the effect of the addition of nitrogenous sources (organic and inorganic in nature) and of an inoculant during the BM silage process on the variables of nutritional quality PC, MS, pH, lactic acid and AGV (acetic, propionic and butyric).

Location of the experiment

The work was carried out between 2014-2016, at the facilities of the Autonomous University of Aguascalientes, the Llano Aguascalientes Technological Institute and the Agricultural Technological Baccalaureate Center num. 61 [Aguascalientes, Mexico (Central-North Region)].

Experimental material

The BM was used, by-product of the juice extraction of the company “Juice extractor Valle Redondo SA of CV de Aguascalientes”. The BM silage lasted 45 d, for which: a base mixture was prepared containing a proportion of 80 g 100 g-1 MS of BM (with 18% MS) and 20 g 100 g-1 MS of Chloris gayana hay (with 90% MS) as moisture adherent material. Nitrogenous sources (FN) were added to the base mixture: 1) urea, 3.75% of the total MS of the mixture, and 2) sowing, with 23.5% of PC (from fattening animals) in proportion equivalent to the nitrogen contributed for urea. In addition, were included 10 g t-1 MS of a commercial inoculum (Sil-All 4x4®) containing lactic acid bacteria (Streptococcus faecium, Lactobacillus plantarum, Pediococcus acidilactici and Lactobacillus salivarius) and exogenous enzymes (cellulases, hemicellulases, pentosanas and amylase).

An electromechanical mixer was used. The mixtures were deposited in microsilos of polyvinyl chloride (PVC) pipe 5.08 cm in diameter and 30 cm long, compacting with a metallic tamper to eliminate oxygen and closing with a bell-type plug reinforced on both sides; the microsomes were stored at room temperature of 20 °C.

Treatments and response variables

The treatments were: apple bagasse (BM), apple bagasse with inoculum (BM+I), apple bagasse with urea (BM+U), apple bagasse with urea and inoculum (BM+U+I), bagasse apple with sowing (BM+C), and apple bagasse with sowing and inoculum (BM+C+I). Samples collected at 0 and 45 d were dried at 60 °C in a forced air oven until constant weight was obtained and processed in a Thomas Wiley mill with a 1 mm sieve. The MS was obtained by difference between the initial and final weight [ AOAC (1999) protocol 930.15-1930], the PC was determined through protocol 990.03-2002 of the AOAC (2002), the pH was measured in a homogeneous aqueous solution composed of 10 g of silage and 100 ml of distilled water (one hour after its preparation) using a digital pH-meter (Cherney and Cherney, 2003), lactic acid was determined by the colorimetric method (Madrid et al., 1999) and AGV by gas chromatography (Perkin Elmer® Co., Clarus 560 D Gas Chromatograph) (Erwin et al., 1961).

Statistical analysis

We used a completely randomized design (DCA) with a factorial arrangement (3×2) and four repetitions per treatment according to the model (1). The treatment means were compared with the Tukey test (p< 0.05). In addition, a test of orthogonal contrasts was applied to compare: 1) BM vs. BM with FN o/e I; 2) BM vs. BM with FN; 3) BM vs. BM with I;4) FN vs. treatments without FN; 5) I vs. treatments without I. The general linear procedure (Proc GLM) of the SAS package (Statistics Analysis System V. 9.2) was used.

Yij = μ + FNi + Ij + (FN*I)ij + Eij 1)

Where: Yij= response variable; FNi= effect of the ith nitrogen source; Ij= effect of the jth inoculant; (FN*I)ij = interaction between the ith nitrogen source and the jth inoculant; Eij= random error.

The MS content was similar in all the treatments (p> 0.05, Table 1) and adequate for the release of lactic acid and pH decrease during silage fermentation (Schroeder, 2013).

Table 1 Contents of dry matter, crude protein and hydrogen potential of silage apple bagasse with nitrogenous sources or an inoculum at the beginning and end of fermentation. 

Treatment Dry material (g 100 g-1) Crude protein (g 100 g-1 de MS Potential hydrogen (pH)
Initial± Final Initial Final Initial Final
BM * 22.03 a 22.67 a 4.82 f 5.75 f 3.11 c 3.4 b
BM+I 22.23 bc 22.43 a 5.08 e 7.1 d 3.43 b 3.44 b
BM+U 21.58 ab 22.47 a 7.42 d 9.04 e 3.34 b 3.38 b
BM+U+I 20.89 c 21.22 a 7.65 c 10.85 c 3.41 b 3.42 b
BM+C 21.54 abc 21.96 a 12.88 a 20.89 a 4.55 a 3.91 a
BM+C+I 22.18 a 22.57 a 11.87 b 19.31 b 4.96 a 4.33 a
CV (%) 1.14 6.92 1.028 0.987 33.25 12.92
Contrast by nitrogen source (P of F)
N vsU y C 0.006 >0.932 < 0.001 <0.001 <0.001 <0.001
UvsC >0.229 >0.751 < 0.001 <0.001 <0.001 <0.001
Contrast by inoculum (P of F)
Con Ivs sin I >0.055 >0.695 <0.001 <0.001 0.002 0.002

*= control (apple bagasse without nitrogenous source or inoculum); BM= apple bagasse; I= inoculum; U= urea; C= sowing; abcde= treatments with different letters represent statistically different means (Tukey p< 0.05); CV= coefficient of variation; P of F = probability value; ±= Start and end, 0 and 45 d after fermentation.

There was FN×I interaction for PC content (p< 0.001). The treatments with C had better PC increases (BM+C without I and BM+C + I: 8.00 and 7.44 g 100 g-1 MS) than the treatments with urea (BM+U without I and BM+U + I: 3.2 and 1.6 g 100 g-1 MS) or with BM without FN (BM and BM+I: 0.92 and 2.02 g 100 g-1 MS), the final PC contents of some treatments were comparable to those of corn silage (8-10 g 100 g-1 of MS, Guedes et al., 2012). Considering the PC, the silage BM could be used to replace some types of grain and reduce feed costs. Mirzaei-Aghsaghali et al. (2011) analyzed in vitro gas production (contents of FDN, FDA and non-fibrous carbohydrates of 61.2, 46.7 and 23.8%, respectively) of BM with PC similar to that found in the present study and considered it viable to be used in the feeding of ruminants. Tiwari et al. (2008) found no negative effects on the production of milk and its fat and protein contents by supplying up to 33% of corn grain with BM (per 300 d).

Silages with I or some FN had higher initial and final pH values than the rest of the treatments (p< 0.002), although at the end of the fermentation all the treatments had pH values within the desirable ranges for the variations of microorganisms and production of fatty acids (Weinberg and Ashbell, 2003; Skladanka et al., 2012). The treatments with C recorded the highest pH (3.91-4.33 vs 3.38-3.44), but similar to those desirable in corn silage whit pH= 3.8-4.5 (Kolver et al., 2001; Skladanka et al., 2012; Schroeder, 2013).

The treatments with C had higher final concentration of lactic acid (p< 0.0001, Table 2), which represents better fermentation and stability of the silage and lower probability of contamination and degradation of the proteins (Bautista et al., 2007; Nkosi et al., 2011; Huntanen et al., 2013). Although the proportions of lactic acid of all the treatments of the present study were within the minimum and optimum ranges for the high-quality silages (Kolver et al., 2001; Guedes et al., 2012).

Table 2 Proportions of lactic, acetic, propionic and butyric acids of silage apple bagasse with nitrogenous sources or an inoculum at the beginning and end of fermentation. 

Treatment Lactic acid (mol 100 mol-1) Acetic acid (mol 100 mol-1) Propionic acid (mol 100 mol-1) Butyric acid (mol 100 mol-1)
Initial± Final Initial Final Initial Final Initial Final
BM * 1.36 ab 4.83 b 0.87 e 1.68 d 0 c 0 d 0 c 0 c
BM+I 1.28 b 3.22 c 0.87 e 1.93 d 0 c 0.44 c 0 c 0.63 b
BM+U 1.6 a 4.58 b 1.37 b 2.74 c 0 c 0 d 0 c 0 c
BM+U+I 1.19 b 5.64 a 1.46 a 2.97 c 0 c 0.97 a 0 c 0.6 b
BM+C 1.47 ab 5.78 a 1.29 c 5.04 a 0.38 a 0.67 b 1.31 a 1.32 a
BM+C+I 1.18 b 5.47 a 1.19 d 4.16 b 0.34 b 0.48 c 1.22 b 1.29 a
CV (%) 8.53 2.36 8.53 2.87 3.91 4.15 5.21 3.63
Contrast by nitrogen source (P of F)
T vsU y C >0.5639 <0.0001 <0.001 <. 0.001 <0.001 <0.001 <0.001 <0.001
UvsC >0.9413 < 0.0001 <0.001 < 0.001 <0.001 <0.001 <0.001 <0.001
Contrast by inoculum (P of F)
Con Ivs sin I <0.0005 0.0002 >0.811 < 0.021 0.001 <0.001 0.013 <0.001

*= control (apple bagasse without nitrogenous source or inoculum); BM= apple bagasse; I= inoculum; U= urea; C= sowing; a, b, c, d y e= treatments with different letters represent statistically different means (Tukey p< 0.05); CV= coefficient of variation; P of F = probability value; ± Start and end, 0 and 45 d after fermentation.

During fermentation, the increase in acetic acid was greater than that of the butyric and propionic acids (p< 0.05), which could help reduce the aerobic deterioration of the silage at the time of opening the silo (Weinberg et al., 2002) since acetic and propionic acid concentrations are indicators of silage stability (Huntanen et al., 2013). The increase in acetic acid in the treatments of the present study was greater than that published by Guedes et al. (2012) and Skladanka et al. (2012), especially in the BM+C treatment, followed by the other treatments with C (p< 0.0001). In addition, treatments with C and I had propionic acid at the end of fermentation (p< 0.001).

On the other hand, the increase of butyric acid in BM+U+I and BM+I during fermentation (of 0.60 and 0.63 mol/100 mol), could represent some contamination by bacteria Clostridium spp. in these treatments (Leupp et al., 2006; Bautista et al., 2007). On the contrary, the proportions of butyric acid of BM, BM+U, BM+C and BM+C+I did not change through the fermentation time, suggesting that the final contents of butyric acid of BM+C and BM+C+I higher than desirable, Guedes et al. (2012), were related to the initial content of the acid in C more than to the growth of Clostridium spp.


In the present study the BM silage process increased the PC and in some cases the pH decreased to values comparable to those of other more conventional silage types such as maize, in addition, the increases of lactic acid and acetic acid of silage BM indicate which has the necessary stability to be included as an ingredient in ruminant diets. Mainly, adding C to the ensile BM could be an alternative to improve its quality, in order to be used in diets without adversely affecting the health or productive behavior of dairy cattle and meat.

Literatura citada

Ajila, C. M.; Sarma, S. J.; Brar, S. K.; Godbout, S.; Cote, M.; Guay, F.; Verma, M. and Valéro, J. R. 2015. Fermented apple pomace as a feed additive to enhance growth performance of growing pigs and its effects on emissions. Agriculture. 5(2):313-329. [ Links ]

Association of Official Agricultural Chemists. 2002. AOAC 990.03-2002. Protein (crude) in animal feed. Combustion met. AOAC Official Method Official Methods and Recommended Practices. [ Links ]

Association of Official Agricultural Chemists. 1999. AOAC 930.15-1930. Loss on drying (Moisture) for feeds. AOAC Official Method Official Methods and Recommended Practices. [ Links ]

Barrena, G. y Jiménez, J. 2013. Mezclado de alimento balanceado con inclusión de ensilado de cerdaza. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Publicación impresa en los talleres gráficos CMYK. Desplegable para productores núm. 45. 2 p. [ Links ]

Bautista, T. G. U.; Oliva, L. M. A.; Ruiz, S. B.; Mendoza, N. P.; Cobos, P. M. A.; Pérez, S. M. y Gutiérrez, M. F. 2007. Ensilado de maíz (Zea mays L.) usando bacterias productoras de ácido láctico aisladas de la propia planta. Quehacer científico. 4:18-22. [ Links ]

Becerra, A.; Rodríguez, C.; Jiménez, J.; Ruiz, O.; Elías, A. y Ramírez, A. 2008. Urea y maíz en la fermentación aeróbica de bagazo de manzana para la producción de proteína. Tecnoci. Chih. 1(2):7-14. [ Links ]

Cherney, J. H. and Cherney, D. J. R. 2003. Assessing silage quality. In: Buxton, D. R.; Muck, R. E.; Harrison, J. H. (Eds.) Silage Science and Technology. Madison: American Society of Agronomy; Wisconsin: Crop Sci. Society of America. 141-198 pp. [ Links ]

Erwin, E. S.; Marco, G. J. and Emery, E. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. [ Links ]

Guedes, K. A.; Junqueira, V. S. D.; De Paula, L. F.; Monteiro, C. P.; Oliveira, F. L.; Pessanha, T. W. and Raimundi A. V. 2012. Yield and quality of silage of maize hybrids. Rev. Bras. Zoot. 41(6):1539-1544. [ Links ]

Huntanen, P.; Jaakkola, S. and Nousiainen J. 2013. An overview of silage research in Finland: from ensiling innovation to advances in dairy cow feeding. Agric. Food Sci. 22:35-56. [ Links ]

Kolver, E. S.; Roche, J. R.; Miller, D. and Densley, R. 2001. Maize silage for dairy cows. Proc. New Zealand Grassl. Assn. 63:195-201. [ Links ]

Leupp J. L.; Encinias, A. M.; Bauer, M. L.; Caton, J. S.; Gilbery, T. C.; Carlson, J. and Lardy, G. P. 2006. Ensiling properties of wet sugarbeet pulp and the addition of liquid feedstuffs or urea. J. Sugar Beet Res. 3(43):85-97. [ Links ]

Madrid, J.; Martínez, T. A.; Hernández, F. and Megías, M. D. 1999. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. J. Sci. Food Agric. 79:1722-1726. [ Links ]

Mirzaei, A. A.; Maheri, S. N.; Mansouri, H.; Razeghi, M. E.; Shayegh, J. and Aghajanzadeh, G. A. 2011. Evaluating nutritional value of apple pomace for ruminants using in vitro gas production technique. Ann. Biol. Res. 2(1):100-106. [ Links ]

Nkosi, B. D.; Meeske, R.; Langa, T. and Thomas, R. S. 2011. Effects of bacterial silage inoculant on whole-crop maize silage fermentation and silage digestibility in rams. South Afr. J. Anim. Sci. 41:350-359. [ Links ]

Rodríguez, M. C.; Díaz, D.; Salvador, F.; Alarcón, A.; Ruiz, O.; Arzola, C. and Jiménez, J. 2006. Effect of level of urea and soybean meal at solid state fermentation of apple by-products. Proceedings, Western Section. American Society of Anim. Sci. 57:328-330. [ Links ]

Schroeder, J. W. 2013. Silage fermentation and preservation. NDSU Extension Service: AS1254. [ Links ]

SIAP (Sistema de Información de Agentes Promotores). 2014. Cierre de la producción por estado. Revisado el 03 de marzo del 2016. Servicio de Información Agroalimentaria y Pesquera: Servicio de Información Agroalimentaria y Pesquera: . [ Links ]

Skládanka, J.; Mikyska, F.; Dolezal, P.; Seda, J.; Havlícek, Z.; Mikel, O. and Hosková, S. 2012. Effect of the technology of the additional sowing of drought-resistant clover-grass mixture and silage additives on fermentation process quality and nutritive value of baled grass silages. Afr. J. Agric. Res. 7(2):325-333. [ Links ]

SAS (Statistical Analysis System). 2002. SAS version 9.0. Institute, Inc., Cary, N. C. USA. [ Links ]

Tiwari, S. P.; Narag, M. P. and Dubey, M. 2008. Effect of feeding apple pomace on milk yield and milk composition in crossbred (Red Sindhi x Jersey) cow. Liv. Res. for Rural Dev. 4(29):293-297. [ Links ]

Weinberg, Z. G. and Ashbel, G. 2003. Engineering aspects of ensiling. Biochem. Eng. J. 13:181-188. [ Links ]

Weinberg, Z. G.; Ashbell, G.; Hen, Y.; Azrieli, A.; Szakacs, G. and Filya, I. 2002. Ensiling whole-crop wheat and corn in large containers with Lactobacillus plantarum and Lactobacillus buchneri. J. Ind. Microbiol. Biotechnol. 28:7-11. [ Links ]

Received: December 00, 2017; Accepted: January 00, 2018

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons