SciELO - Scientific Electronic Library Online

 
vol.8 número7Comportamiento de maíz forrajero aplicando abonos de origen marino como alternativa a la fertilización sintéticaIncremento del tamaño y peso del bulbo de cebolla (Allium cepa L.) por translocación de nutrientes índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.8 no.7 Texcoco Set./Nov. 2017

 

Research notes

Diversity in the phenolic composition and antioxidant capacity of moringa collections in the state of Chiapas

Salvador Horacio Guzmán-Maldonado1  § 

Victor Hugo Díaz Fuentes2 

1Campo Experimental Bajío- INIFAP. Carretera Celaya-San Miguel Allende km 6.5. Celaya, Guanajuato.

2Campo Experimental Rosario Izapa-INIFAP. Carretera Tapachula-Cacahoatan km 18, Rosario Izapa, Tuxtla Chico, Tapachula, Chiapas, México. CP. 30870. (diaz.victor@inifap.gob.mx).


Abstract

Due to the importance that the moringa leaf has acquired, its production has increased significantly. Harvesting of the leaf is carried out without taking into account the possible variation in the chemical composition and biological activity of mixtures of leaves with different origin. The objective of the present work was to explore the possible variation in the phenolic composition and the antioxidant capacity of collections in the state of Chiapas. The collection and analysis were carried out in 2014. The total phenols, tannins, phenolics, and the antioxidant capacity of ORAC and TEAC were determined in the leaf. Extensive ranges were found in total phenol content (2436.3-3749.9 mg EAG/100 g), condensed tannins (3.04-39.57 mg EC/100 g), gallic acid, rutin, chlorogenic acid and coumaric acid and the antioxidant capacity TEAC. A variation so high, allows to predict that mixtures of leaves of this species will present little uniformity in its composition and therefore, caution should be exercised when promoting mixtures of moringa leaf as of high nutraceutical value.

Keywords: antioxidants; diversity; phenols; moringa

Resumen

Debido a la importancia que la hoja de moringa ha adquirido, su producción se ha incrementado de forma significativa. La cosecha de la hoja se realiza sin tener en cuenta la posible variación en la composición química y la actividad biológica de mezclas de hojas con origen diferente. El objetivo del presente trabajo fue explorar la posible variación en la composición fenólica y la capacidad antioxidante de colectas del estado de Chiapas. La colecta y los análisis se realizaron en 2014. Se determinó en la hoja los fenoles totales, taninos, fenólicos simples y la capacidad antioxidante ORAC y TEAC. Se detectaron amplios rangos en el contenido de fenoles totales (2436.3-3749.9 mg EAG/100 g), taninos condensados (3.04-39.57 mg EC/100 g), así como en el ácido gálico, la rutina, ácido clorogénico y ácido cumárico y la capacidad antioxidante TEAC. Una variación tan alta, permite pronosticar que mezclas de hojas de esta especie presentará poca uniformidad en su composición y por lo tanto, se debe tener precaución al promover mezclas de hoja de moringa como de alto valor nutracéutico.

Palabras clave: antioxidantes; diversidad; fenoles; moringa

Moringa (Moringa oleifera), belongs to the family Moringaceae, a small group of species of the order of Brassicales that includes cabbage and radish (Olson, 2002)). The leaf has attracted the attention of the general public due to the nutritional and medicinal properties attributed to it. From the nutritional point of view, the moringa leaf has a high protein content (30%) and has anti-inflammatory effects (Tangestani et al., 2015)) and is a protective hepate (Fakurazi et al., 2012)), among others effects. One of the possible reasons why this plant has these properties is the presence of flavonoids, vitamins and carotenoids, among other secondary metabolites it contains (Guzmán-Maldonado et al., 2015)).

Due to the boom that the moringa leaf has acquired, its production has increased significantly. Harvesting of the leaf is carried out without taking into account the possible variation in the chemical composition and biological activity of mixtures of leaves with different origin. The objective of the present work was to explore the possible variation in the phenolic composition and the antioxidant capacity of collections in the state of Chiapas. The means comparison was performed by the Tukey method (p< 0.05) using an ANOVA variance analysis and Fisher’s of LSD method to create confidence intervals to generate the least significant difference (DMS) (p< 0.05).

In all cases, the average is the average of three replicates. The leaves of 20 different trees were harvested from the moringa orchard of the Experimental Field of Izapa Chiapas-INIFAP. Each of the trees was collected from different localities of the state and planted with the intention of maintaining a representative collection of the species. The content of total phenols (Singlenton et al., 1999)), condensed tannins (Deshpande and Cheryan, 1985)), simple phenolics by (HPLC) (Ramamurthy et al., 1992)) and antioxidant capacity against oxygen radicals (ORAC) (Ou et al., 2001)) and against positive radicals (ABTS+) (TEAC) (Van den Berg et al., 1999)).

The range in total phenol content ranged from 2 436.3 to 3 749.9 mg EAG/100 g while that of condensed tannins was 3.04 to 39.57 mg EC/100 g (Table 1)). In both cases, the minimum significant difference (DMS) was 202.2 for total phenols and 4.8 for condensed tannins; it is obvious that there is greater variability in the collections in the content of condensed tannins and therefore the mixtures will present a greater variation in these compounds. However, the level of condensed tannins is very low in comparison with other species and therefore, a possible anti-nutrimental effect of tannins can be ruled out as they have the property of decreasing the bioavailability of minerals and proteins.

EAG= equivalentes de ácido gálico; EC= equivalentes de catequina; DMS= fenoles totales= 202.2; taninos condensados= 4.8.

Table 1 Content of total phenols and condensed tannins in the moringa collection leaf from the state of Chiapas. 

It has been reported in beans that levels above 2000 mg EC/100 g have a negative effect on the development of laboratory rats (Reynoso et al., 2007)). On the other hand, 13 of 20 collections have a high content of total phenols which can be reflected in a high antioxidant capacity.

Four simple phenolic compounds were identified: gallic acid, rutin, chlorogenic acid and cumaric acid in the leaves of the moringa collection (Table 2)); however, coumaric acid was only present in 25% of the samples, but with a wide range in its content from 89.3 to 805.2 mg/100 g. A similar situation was observed with rutin (83.3-1948.7 mg/100 g), gallic acid (24.08-110.22 mg/100 g) and chlorogenic acid (97-1315.2 mg/10 g).

Promedios con letras similares en la misma columna son estadísticamente iguales (Tukey, 0.05).

Table 2 Contents of simple phenolic compounds (mg/100 g, bs) in the moringa collection leaf from Chiapas.  

The levels in the antioxidant capacity of the collections presented a lower range (402.53-559.39 μmol ET/g) for ORAC than for TEAC (389.3-587.72 μmol ET/g) (Table 3)). This high variation allows predicting that leaf blends of this species will exhibit poor uniformity in the phenolic compounds content and antioxidant capacity.

ET = Equivalentes de Trolox; DMS: ORAC= 77.7; TEAC= 65.8.

Table 3 Antioxidant capacity of leaf extracts from moringa collections from the state of Chiapas. 

Conclusions

Caution should be exercised when promoting moringa leaf blends as high nutraceutical value.

Literatura citada

Deshpande, S. S. and Chetyan, M. 1985. Evaluation of vainillin assay for tannin analysis of dry beans. J. Food Sci. 50(4): 905-916. [ Links ]

Fakurazi, S.; Sharifudin, S. A. and Arulselvan, P. 2012. Moringa oleifera hydroehtanolic extracts effectively alleviate acetaminophen-induced hepatotoxicity in experimental rats though their anti-oxidant nature. Molecules.17(7):334-350. [ Links ]

Guzmán, M. S. H.; Zamarripa-Colmenares, A. y Hernández-Durán, L. G. 2015. Calidad nutrimental y nutracéutica de hoja de moringa proveniente de árboles de diferente altura. Rev. Mex. Cienc. Agríc. 6(2):317-330. [ Links ]

Olson, M. E. 2002. Intergeneric relationships within the Caricaceae-Moringaceae clade (Brassicales), and potential morphological synapomorphies of the clade and its families. Int. J. Plant Sci. 163(1):51-65. [ Links ]

Ou, B.; Hampsh-Woodill, M. and Prior, R. 2001. Development and validation of an improved oxygen radical absortion capacity assay using fluorescein as a fluorescent probe. J. Agric. Food Chem. 49(10):4619-4626. [ Links ]

Ramamurthy, M. S.; Maiti, B.; Thomas, P. and Nair, M. 1992. High performance liquid chromatography determination of phenolic acids in potato tubers (Solanum tuberosum) during wound healing. J. Agric. Food Chem. 40(4):569-572. [ Links ]

Reynoso, C. R.; Ríos, U. M. C.; Torres, P. I.; Acosta, G. J. A.; Palomino, S. A. C.; Ramos G. M.; González, J. E. y Guzmán, M. S. H. 2007. El consumo de frijol común (Phaseolus vulgaris L.) y su efecto sobre el cáncer de colon en ratas Sprague-Dawley. Revista Mexicana de Ciencias Agrícolas. 3(3):43-52. [ Links ]

Singlenton, V.; Orthofer, R. and Lamuela, R. R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants of Folin-Ciocalteu reagent. Methods Enzimol. 152-178 pp. [ Links ]

Tangestani, F. M.; Arulselvan, P.; Karthivashan, G.; Khadijah, A. S. and Fakurazi, S. 2015. Bioactive extract from Moringa oleifera inhigits the pro-inflammator mediators in lipopolysaccharide stimulated macrophages. Pharmac. Magazine. 11(Suppl 4):S556-S563. [ Links ]

Van den Berg, R.; Haenen, G. R. M.; Van den Berg, H. and Bast, A. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66(4)511-517. [ Links ]

Received: July 01, 2017; Accepted: August 01, 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons