SciELO - Scientific Electronic Library Online

vol.8 número4Percepción de la problemática del Huanglongbing por agentes relevantes en zonas urbanas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.8 no.4 Texcoco Jun./Jul. 2017 

Investigation notes

Biogas: current situation, generation potential in pig farms and environmental benefits in Puebla

José Apolonio Venegas Venegas1 

Sergio Ernesto Medina Cuéllar2  § 

Francisco Guevara Hernández3 

José Alfredo Castellanos Suárez3 

1Universidad Autónoma de Chiapas-CONACYT-Facultad de Ciencias Agronómicas. Carretera Villaflores-Ocozocoautla, km 7.5. Villaflores, Chiapas. CP. 30470. (;

2Universidad de Guanajuato-Departamento de Arte y Empresa. Carretera Salamanca-Valle de Santiago, km 3.5 + 1.8. Salamanca, Guanajuato, México. CP. 36885.

3Universidad Autónoma Chapingo. Carretera México-Texcoco, km 38.5. Chapingo, Texcoco, Estado de México. CP. 56230. (


Puebla is the third largest pork producer in Mexico, several farms in that state are transforming their waste into renewable energy by using biodigesters. The potential for biogas generation and the reduction of carbon dioxide equivalent (CO2e) was analyzed in 37 pig farms with more than 500 pigs each, located in 19 municipalities of Puebla, which showed the capacity to generate 12 669 642 m3 year-1 of biogas, with a potential to stop emitting 69 702 t CO2e.

Keywords: baseline; biogas; methane; renewable energy


Puebla es el tercer productor de carne de cerdo en canal en México, diversas granjas de ese estado están transformando sus desechos en energía renovable al emplear biodigestores. Se analizó el potencial de generación de biogás y la reducción de dióxido de carbono equivalente (CO2e) en 37 granjas porcinas con más de 500 cerdos cada una, ubicadas en 19 municipios de Puebla, las cuales mostraron la capacidad de generar 12 669 642 m3 año-1 de biogás, con un potencial para dejar de emitir 69 702 t CO2e.

Palabras clave: biogás; energía renovable; línea base; metano

The use of fossil fuels and anthropogenic activity have caused a global problem called climate change. In that context, the CO2 concentration for the year 2100 is predicted to be 490 ppm Intergovernmental Panel on Climate Change (IPCC, 2001). In order of the amount of greenhouse gas (GHG) emissions to the atmosphere in Mexico are carbon dioxide (CO2), with 65.95% of total GHG, second is methane (CH4), with 22.28% and thirdly nitrous oxide (N2O); 9.24%.

Agriculture recently contributed 12.32% of the total GHG in Mexico, within the subcategories of this sector the enteric fermentation of domestic cattle accounted for 41.18% of the CO2e emissions, the agricultural soils accounted for 50.42% and the manure management emissions of the cattle subsector accounted for 8.19% (SEMARNAT, 2012). A large amount of produced manure does not have an adequate treatment for its final disposal, which causes an infection source (Vera et al., 2014). The use of cost-effective sources of renewable energy such as biogas is important both for the cost of energy due to uncertainty in oil prices and for the need to mitigate the causes of the greenhouse effect through better waste management (Kunatsa et al., 2013; Nnaji and Ugwu, 2014; Wang, 2014), and energy supply composed mainly of methane, carbon dioxide and traces of other gases (Deublein and Steinhauser, 2008).

Biogas is an important part of the biogeochemical carbon cycle, methane produced by bacteria is the last stage in the organic material degradation chain (Rivera et al., 2008; Lungkhimba et al., 2010), consisting of hydrolysis, acidogenesis, acetogenesis and methanogenesis (Mantilla et al., 2007). The most used biodigestors designs for dairy stables and pig farms are: complete mix digester, fixed film, plug flow digester and covered lagoon, the latter has shown greater efficiency in production and a lower investment cost (United States Environmental Protection Agency (PA), 2004; Magaña,2006; United States Department of Agriculture (USDA), 2007).

The most relevant factor in the design of a biodigester is the stable operating temperature (Varnero, 2011), finding optimum methane production in the range of 30-35 °C (Boyles, 1984). On the other hand, volatile solids are the most important variable in methane generation (Koudache and Yala, 2008), since the volume of produced gas depends on its concentration (Hashimoto, 1981; 1984). In addition to this, the third relevant variable involved in the operation of a biodigester is the hydraulic retention time (HRT); the degradation period of organic material by microorganisms (Ferreira et al., 2003; Abbasi et al., 2012).

From 2004 to 2014 Puebla showed an annual growth rate of 7.51%, highlighting the six main pork producers in Mexico, Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA, 2016). In a set of 10 pig farms in Puebla, supported from 2008 to 2011 by SAGARPA; through the Shared Risk Trust (FIRCO) with lagoon-type biodigestion systems, 31 904 t CO2e per year were stop from being discharged to the atmosphere with the burning of around 5 856 355 m3 year-1 of biogas produced by a pig population of 74 942 heads, and in the same state from 2008 to 2012, eighteen motor generators projects were supported, where the total electric energy used in the benefited farms was 4 018 010 kW year-1, with the operation of these systems 2 901 974 kW year-1 were generated, covering 72.22% of its total electric power requirements.

With data provided by FIRCO’s management in Puebla, an analysis of energy consumption was made, CO2e reductions and biogas generated by the supported farms from 2008 to 2012 with biogas generators. Biogas production and CO2e reduction were also estimated for 37 farms with more than 500 pigs distributed in Tecamachalco, Tepanco de López, Tehuacan, Oriental, Teziutlan and 14 other municipalities of the entity. The model of Contois (1959) on kinetics of anaerobic digestion of pig residues was used to calculate the methane production. This model is based on the formula developed by Chen (1983), which was used for the estimation of methane:


Where: VCH4= methane volume produced in the biodigester (m3 day-1); BoV= methane production potential (m3 kg-1) in accordance with the IPCC (2006); θ= hydraulic retention time of 30 days according to specifications of Lagrange (1979); K and μm represent respectively the kinetic parameter and the maximum specific growth rate per day (%), determined by Hashimoto (1984).

In order to determine the emission reduction potential, the environmental baseline was established, using the methodology established by the United Nations Convention on Climate Change (UNFCCC, 2013), taking into account the values established by the IPCC (2006).

In the state of Puebla there are 37 farms with biogas generation potential distributed in 19 municipalities, together they had a pig population of 163 033 heads with a generation potential of 12 669 642 m3 year-1 of biogas, considering a concentration of CH4 of 60% in its composition (Figure 1).

Figure 1 Potential of biogas in farms of population with more than 500 pigs (m3 year-1). Source: elaboration based on formulas of Chen (1983); (Hashimoto, 1981; 1984). 

Of particular note are the municipalities of Tehuacan with five farms and a total of 71 707 pigs; Tepanco de López with seven farms and a total of 35 430 pigs; Oriental with two farms and a total of 12 100 pigs; Tecamachalco with three farms totaling 8 000 pigs and Teziutlan with four farms and a total of 4 462 pigs. These five municipalities account for 80.78% of the total biogas generation potential in the entity, among which the municipality of Tehuacán stands out with 43.98%. In addition to biogas production, biodigestion systems reduce pollution problems by decreasing CO2e emissions into the atmosphere (Figure 2).

Figure 2.  Baseline and emission reduction potential on farms with more than 500 pigs (t CO2e year-1). Source: own elaboration based on the methodology established by the UNFCCC (2013)


In the 19 municipalities that concentrated the 37 farms, there would be a manure emission baseline of 89 628 t CO2e and a reduction potential of 69 702 t CO2e. Government support has been key to biogas production and CO2e emissions reduction. In addition to producing biogas, biodigestors inhibit bad odors, generate biofertilizer, and prevent the proliferation of harmful flora and fauna around farms, benefiting nearby inhabited areas. The generation of biogas depends on the quality of the organic matter, volatile solids, temperature and retention time, and the number of heads in the farm.

Literatura citada

Abbasi, T.; Tauseef, S. M. and Abbasi, S. A. 2012. Biogas energy. Springer. New York, USA. 169 p. [ Links ]

Boyles, D. T. 1984. Bio-energy: technology, thermodynamics and costs, Ellis Horwood Ltd. Chichester, England. 158 p. [ Links ]

Chen, Y. R. 1983. Kinetic analysis of anaerobic digestion of pig manure and its design implications. J. Agric. Wastes. 8:65-81. [ Links ]

Contois, D. E. 1959. Kinetics of microbial growth: Relationship between population density and specific growth rate of continuous culture. USA. J. General Microbiol. 21:40-54. [ Links ]

Deublein, D. and Steinhauser, A. 2008. Biogas from waste and renewable resources. Wiley-VCH. Germany. 443 p. [ Links ]

Ferreira, F. L. A.; Lucas, J. J. and Amaral, L. A. 2003. Partial characterization of the polluting load swine wastewater treated with an integrated biodigestion system. Brazil. Bio. Technol. 90:101-108. [ Links ]

Hashimoto, A. G.; Chen, Y. R. and Varel, V. H. 1981. Theoretical aspects of methane production: state of the art in Livestock Wastes: a renewable resource. ASAE. St. Joseph, Michigan, USA. 86-91 pp. [ Links ]

Hashimoto, A. G. 1984. Methane from swine manure: effect of temperature and influent substrate concentration on kinetic parameter (K). J. Agric. Wastes. 9:299-308. [ Links ]

IPCC (Intergovernmental Panel on Climate Change). 2001. Climate Change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; Van der Linden, P. J.; Dai, X.; Maskell, K. and Johnson, C. A. (Eds.). New York, USA. 881 p. [ Links ]

IPCC. 2006. Agriculture, forestry and other land use. In: IPCC guidelines for national greenhouse gas inventories. Eggleston, H. S.; Buendia, L.; Miwa, K.; Ngara, T. and Tanabe K. (Eds). Published IGES. Japan. 4:549. [ Links ]

Koudache, F. and Yala, A. A. 2008. Contribution to the optimisation of biogas digesters with the design of experiments method. J. Inter. Environ. Appl. Sci. 3(3):195-200. [ Links ]

Kunatsa, T.; Madiye, L.; Chikuku, T.; Shonhiwa, C. and Musademba, D. 2013. Feasibility study of biogas production from water hyacinth a case of Lake Chivero-Harare, Zimbabwe. Inter. J. Eng. Technol. 2(3):119-128. [ Links ]

Lagrange, B. 1979. Biomethane 2: principes-techniques utilization. Edisud. La Calade, France. 249 p. [ Links ]

Lungkhimba, H. M.; Karki, A. B. andShrestha, J. N. 2010. Biogas production from anaerobic digestion of biodegradable household Wastes. Nepal. J. Sci. Technol. 11:167-172. [ Links ]

Magaña, R. J. L.; Torres, R. E.; Martínez, G. M. T.; Sandoval, J. C. y Hernández, C. R. 2006. Producción de biogás a nivel laboratorio utilizando estiércol de cabra. México. Acta Universitaria. 2(16):27-37. [ Links ]

Mantilla, G. J. M.; Duque, D. C. A. y Galeano U. C. H. 2007. Diseño y estudio económico preliminar de una planta productora de biogás utilizando residuos orgánicos de ganado vacuno. Colombia. Ingeniería e Investigación. 3(27):133-142. [ Links ]

Nnaji, J. C. and Ugwu, B. I. 2014. Use of polyethylene tube biodigester for fish production and processing-a review. Res. J. Chem. Sci. 11(4):76-79. [ Links ]

Rivera, D. A.; Méndez, J. F. y Herrera, L. 2008. Estudio de factibilidad para la implementación de una planta generadora de energía eléctrica en la UNAH, utilizando celdas de combustible a base de gas metano. Honduras. Ciencia y Tecnología. 3:37-52. [ Links ]

SEMARNAT-INECC (Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología y Cambio Climático). 2012. In: México Quinta Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. SEPRIM. 1rª Edición. D. F., México. 400 p. [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). SIAP (Sistema de Información Agroalimentaria y Pesquera). 2016. Información de la producción de carne de cerdo en canal por entidad Federativa de los años 2004 a 2014. [ Links ]

UNFCCC (United Nations Framework Convention on Climate Change). 2013. ACM0010 Large-scale Consolidated Methodology: GHG emission reductions from manure management systems V. 8.0. 54 p. [ Links ]

USDA (United States Department of Agriculture). 2007. An analysis of energy production cost from anaerobic digestion systems on U.S. Livestock producction facilities. Technical Note No. 1. Washington, D. C. 27 p. [ Links ]

EPA (United States Environmental Protection Agency). 2004. Technical and economic feasibility assessment. In: a manual for developing biogas systems at commercial farms in the United States. Ross, K. F.; Martin, Jr. J. B. and Moser, M. A. (Eds). Second edition. EPA. USA. Capter 4. [ Links ]

Varnero, M. M. T. 2011. Manual de biogás. FAO. Santiago, Chile. 120 p. [ Links ]

Vera, R. I.; Martínez, R. J.; Estrada, J. M. y Ortiz, S. A. 2014. Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino. México. Ingeniería Investigación y Tecnología. 3(15):429-436. [ Links ]

Wang, J. 2014. Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Switzerland. Frontiers in Energy Research. 10(2):1-12. [ Links ]

Received: February 2017; Accepted: April 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons