SciELO - Scientific Electronic Library Online

 
vol.8 número3Simulación del impacto del impuesto al refresco en economías rurales de México: aplicación en un caso de estudio índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.8 no.3 Texcoco Abr./Mai. 2017

https://doi.org/10.29312/remexca.v8i3.47 

Investigation notes

Potential electric energy and financial feasibility biodigestor-generator in pig farms from Puebla

José Apolonio Venegas Venegas1 

Anastacio Espejel García2 

Alberto Pérez Fernández4 

José Alfredo Castellanos Suárez3  §  

Gaudencio Sedano Castro2 

1Universidad Autónoma de Chiapas-Facultad de Ciencias Agronómicas. Carretera Villaflores-Ocozocoautla, km 7.5. Villaflores, Chiapas. CP. 30470. (javenegasve@conacyt.mx; francisco.guevara@unach.mx).

2Universidad Autónoma Chapingo. Carretera México-Texcoco, km 38.5. Chapingo, Texcoco, Estado de México. CP. 56230. (aespejelga@conacyt.mx; gsedan3@hotmail.com).

3Universidad de Guanajuato-Departamento de Arte y Empresa. Carretera Salamanca-Valle de Santiago, km 3.5 + 1.8. Salamanca, Guanajuato, México. CP. 36885.

4Universidad Autónoma del Carmen-Facultad de Ciencias Económico-Administrativas. Calle 56 núm. 4 Esquina Avenida Concordia. Col. Benito Juárez, Cd. del Carmen, Campeche. CP. 24180. (apfernandez@pampano.unacar.mx).


Abstract

The growing worldwide energy demand from fossil fuels has caused severe damage to the environment, renewable energy, particularly biogas is an option to counteract the problem, in addition it can generate electricity by means of a motor-generator and reduce production costs of pig farms. The potential of electric power was estimated in 19 municipalities of Puebla on farms with more than 500 pigs, these farms could generate 17 875 MW of electric power per year, a financial analysis was also carried out for five farm sizes proposed with biodigester-power generator system where indicators were positive in all cases.

Keywords: farm size; financial analysis; power generator

Resumen

La creciente demanda de energía a nivel mundial a base de combustibles de origen fósil ha ocasionado severos daños al medio ambiente, la energía renovable, en particular el biogás es una opción para contrarrestar el problema, además se puede generar electricidad por medio de un motogenerador y reducir costos de producción de granjas porcinas. Se estimó el potencial de energía eléctrica en 19 municipios de Puebla en granjas de más de 500 cerdos, dichas granjas podrían generar 17 875 MW de energía eléctrica al año, también se realizó un análisis financiero para cinco tamaños de granja propuesto con sistema biodigestor-motogenerador donde los indicadores resultaron positivos en todos los casos.

Palabras clave: análisis financiero; motogenerador; tamaño de granja

The world population is currently of more than 7 billion and it is estimated that by 2030, there will be 8 billion people, population growth is closely related to the growth in world energy demand (Estrada, 2013). The primary energy sources currently used are natural gas, coal, oil, nuclear energy and renewable sources (Blanco, 2004). In the last decades the energy generation has been one of the great worries worldwide, since for its generation, great amounts of fossil origin fuels are used which has repercussions in severe damages to the environment by the emission of greenhouse gases (GHG). Renewable energies are characterized because, in their processes of transformation and use in useful energy, they are not consumed or depleted in a human scale of time (Jara, 2006). In anaerobic decomposition processes high-energy compounds are obtained and have the potential to be used for producing power and heat energy (Magaña et al., 2006).

The produced biogas can be burned in a gas turbine or internal combustion engines, which generate electricity and heat; the four-stroke engines were originally developed for natural gas and therefore are well adapted to the special characteristics of biogas (Alexopoulos, 2012; Deublein and Steinhauser, 2008; Meggyes and Nagy, 2012). Several researchers have made adaptations to conventional motors to operate them with biogas to generate electricity, however, biogas power generators are more expensive today; energy is generated locally and is not centralized, it also plays an important role in accelerating socio-economic activities (Siripornakarachai and Sucharitakul, 2007; Nindhia et al., 2013; Ga et al., 2013; Sosa et al., 2014; Alam et al., 2015).

In 2006, the Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), through the Shared Risk Trust (FIRCO), in collaboration with the Autonomous University of Mexico City, implemented a biogas project in 9 pig farms, with the installation of 60 kW capacity power generators operated with biogas for the generation of electric power (SAGARPA, 2007). From 2008 to 2012, SAGARPA supported the acquisition of 137 power generators from biogas, to generate electric and thermal energy which is used for various productive purposes within the agricultural farms. Secretaría de Energía (SENER), 2012). Vera et al. (2014) estimated the generation potential of biogas and electric energy, through the management of excreta of cattle and pigs in the Ciénega region of Michoacán state. The financial feasibility studies of power generation with biogas in livestock activities demonstrates the energy self-sufficiency of farms, also it helps producers to make the decision to incorporate into their farms a power generator to produce electricity (Cervi et al., 2011; Escalera et al., 2014).

The study was conducted in three stages, the first consisting of the analysis of 18 projects supported by the Shared Risk Trust (FIRCO) from 2008 to 2012 on pig farms in Puebla. In a second phase, an estimate was made to determine the potential for power generation with the formula of United States Environmental Protection Agency (EPA, 2006), in 19 municipalities with farms with more than 500 pigs, this formula was used by Casas et al. (2009), for dairy stables. The third phase consisted of a proposal for five farm sizes, where a financial feasibility analysis for each proposed size was carried out with an integral biodigestor-power-generator system. The financial feasibility analysis was based on Baca’s project evaluation methodology (2013), which analyzed indicators such as net present value (NPV), internal rate of return (IRR) and cost benefit ratio (B/C).

Escalera et al. (2014), evaluated clean development mechanism (CDM) projects of pig farms in Mexico, the financial assessment contemplated the acquisition, installation and maintenance costs of a 60 kW power generator with 15 hours of operation during 365 days, this study showed that the biogas power generator is profitable for the farms to generate their own energy. They obtained very high financial indicators, for example IRR with values between 30.34 and 152.58%, considering a update rate of 12%.

The FIRCO supported 18 projects from 2008 to 2012 with power generators, from 2012 the total savings derived from FIRCO projects is 6 590 163 pesos per year. Farms are saving an average of 71.99% of their electricity costs, farms can cover 100% of their electricity needs, but power generators are not operating at full capacity. On the other hand in Puebla there are 37 farms with great potential to implement complete biodigestor-power generator systems distributed in 19 municipalities. The estimates obtained for 37 farms distributed in 19 municipalities in Puebla represent a potential of 17 875 MW of electricity per year (Figure 1).

Figure 1 Potential power generation in 19 municipalities Puebla (MW year-1). Elaboration based on methodology EPA (2006).  

Electricity consumption per capita in Mexico increased 1.5% compared to 2013, reaching 2 015.28 kW in 2014 (SENER, 2015). Considering this data as a reference, the 37 farms of Puebla could supply the consumption of 8 869 people per year.

The financial analysis provided for a farm size of 500 pigs a power-generator of 10 kW, for farms of 1 000 and 2 000 pigs a power-generator of 30 kW and for farms of 3 000 and 5 000 pigs a power-generator of 60 kW, for the five proposed farm sizes, 312 days of operation were considered, with a variation in number of hours of operation. The analysis contemplates the acquisition, installation, maintenance of the biodigestor-power generador system and as income, the saving in electric energy payment and fertilizer sale. The evaluation was carried out with an update rate of 12%.

The results indicate that there is a direct relationship between size and profitability, the larger the size of the farm the better the financial indicator would be, the five proposed farm sizes showed favorable financial indicators, so that producers with similar size farms can make an investment to generate their own energy and make their production unit more efficient with cost savings, as well as contribute to environmental care (Table 1).

Table 1 Financial analysis for different farm sizes (heads). 

¥= Elaboración con base en la metodología de evaluación de proyectos de Baca (2013).

Conclusions

Each farm has different needs for electric power. The power generators can cover up to 100% of the needs of each farm and the surplus of electric power can be used to incorporate new activities inside the production units, for example, the installation of a balanced foods plant. Farm sizes of 500 and 1 000 pigs would not have enough biogas for other activities, but farm sizes of 2 000, 3 000 and 5 000 pigs have enough biogas to even operate another power-generator.

Puebla state has great potential for its farms with more than 500 pigs to be self-sufficient in electrical energy when using their waste. The five farm sizes analyzed in this paper showed favorable financial indicators and therefore it is recommended to implement these renewable energy systems. The different farm sizes proposed allow producers to implement a biodigester-power generator system according to the farm’s needs, in that way the system will be more efficient in the generation of energy and would avoid unnecessary expenses. The use of biodigesters in pig farms is economically, socially and environmentally profitable.

Literatura citada

Alexopoulos, S. 2012. Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure. Greece. J. Eng. Sci. Technol. 4(5):48 -55. [ Links ]

Alam, R. Z.; Hussien, M. E.; Siwar, C. and Ludin, N. A. 2015. The potential of renewable energy sources for sustainable energy demand of Malaysia: a review. Res. J. Appl. Sci. 6(10):212-220. [ Links ]

Baca, U. G. 2013. Evaluación de proyectos. McGraw-Hill. Séptima edición. México. 371 p. [ Links ]

Blanco, S. F. 2004. Aumento de la demanda de empleo en energías renovables. España. Rev. Galega de Economía. 1-2(13):1-11. [ Links ]

Casas, P. M. A.; Rivas, L. B. A.; Soto, Z. M.; Segovia, L. A.; Morales, M. H. A.; Cuevas, G. M. I. y Keissling, D. C. M. 2009. Estudio de factibilidad para la puesta en marcha de los digestores anaeróbicos en establos lecheros en la cuenca de Delicias, Chihuahua. México. Rev. Mex. Agron. 24(13):745-756. [ Links ]

Cervi, G. R.; Esperancini, T. S. M. y Bueno, C. O. 2011. Viabilidad económica de la utilización de biogás para la conversión en energía eléctrica. Brasil. Información Tecnológica. 4(22):3-14. [ Links ]

Deublein, D. and Steinhauser, A. 2008. Biogas from waste and renewable resources. Wiley-Vch. Germany. 443 p. [ Links ]

Escalera, C. M. E.; Gallegos, F. G. and Leal, V. J. C. 2014. Clean energy a CDM project option. Eur. Sci. J. 15(10):326-338. [ Links ]

Estrada, G. C. A. 2013. Transición energética, energías renovables y energía solar de potencia. México. Rev. Mex. Física. 2(59):75-84. [ Links ]

Ga , B. V.; Nam, T. V. and Hai, T. T. T. 2013. A simulation of effects of compression ratios on the combustion in engines fueled with biogas with variable CO2 Concentrations. Int. J. Eng. Res. Appl. 5(3):516-523. [ Links ]

Jara, T. W. 2006. Introducción a las energías renovables no convencionales. Fyrma gráfica. Primera edición.Chile, Chile. 84 p. [ Links ]

Magaña, R. J. L.; Torres, R. E.; Martínez, G. M. T.; Sandoval, J. C. y Hernández, C. R. 2006. Producción de biogás a nivel laboratorio utilizando estiércol de cabra. México. Acta Universitaria. 2(16):27-37. [ Links ]

Meggyes, A. and Nagy, V. 2012. Biogas and energy production by utilization of different agricultural Wastes. Hungary. Acta Polytechnica Hungarica. 6(9):65-80. [ Links ]

Nindhia, T. G. T.; Surata, I. W.; Atmika, I. K. A.; Negara, D. N. K. P. and Wardana, A. 2013. Method on conversion of gasoline to biogas fueled single cylinder of four stroke engine of electric Generator. Int. J. Env. Sci. Development. 3(4):300-303. [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2007. Aprovechamiento de biogás para la generación de energía eléctrica en el sector agropecuario. México. Claridades Agropecuarias. 168:3-40. [ Links ]

SENER (Secretaria de Energía). 2012. Prospectivas de energías renovables 2012-2026. México. 156 p. [ Links ]

Siripornakarachai, S. y Sucharitakul, T. 2007. Modification and tuning of diesel bus engine for biogas electricity production. Thailand. Maejo Int. J. Sci. Technol. 1(2):194-207. [ Links ]

Sosa, R.; Díaz, Y. M.; Cruz, T. and Fuente, J. L. 2014. Diversification and overviews of anaerobic digestion of Cuban pig breeding. Cuba. Cuban J. Agric. Sci. 1(48):67-72. [ Links ]

SENER (Secretaría de Energía). 2015. Balance nacional de energía 2014. Primera edición. México. 136 p. [ Links ]

United States Environmental Protection Agency (EPA). 2006. AgSTAR Digest. EPA. Washington D.C. 14 p. [ Links ]

Vera, R. I.; Martínez, R. J.; Estrada, J. M. y Ortiz, S. A. 2014. Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino. México. Ingeniería Investigación y Tecnología. 3(15):429-436. [ Links ]

Received: February 2017; Accepted: April 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons