SciELO - Scientific Electronic Library Online

 
vol.8 número2Hongos asociados a la mancha de asfalto en el cultivo de maíz en México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.8 no.2 Texcoco feb./mar. 2017

https://doi.org/10.29312/remexca.v8i2.66 

Investigation note

Evaluation of biofertilizers and hormonal rooting in jatropha (Jatropha curcas L.)

Antolin Silvestre Martiñón Martínez1  § 

Rodolfo Figueroa Brito2 

Jesús Piña Guillén1 

Conrado Castro Bravo1 

José Luís Leana Acevedo1 

Daniel Aguilar Jiménez1 

1Ingeniería en Biotecnología Agrícola, Universidad Tecnológica de Izúcar de Matamoros. Prolongación Reforma Núm. 168. Barrio de Santiago Mihuacán, Izúcar de Matamoros, Puebla. CP. 74420. Tel. (01) 243 4363894, ext. 301. (c-castrobravo@hotmail.com; fejepigu@hotmail.com; jl-leana@hotmail.com; yolot777@hotmail.com).

2Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional. Carretera Yautepec-Jojutla, km 6. Calle CEPROBI Núm. 8. Col. San Isidro, Yautepec, Morelos, México. CP. 62731. Tel. (01) 735 3942020, ext. 82500. (rfigueria@ipn.mx).


Abstract

The J. curcas is a plant that is cultivated worldwide conventionally, using artificial inputs, in this situation, it is necessary to generate sustainable production technology. The objective of this research was to evaluate the effect of commercial biofertilizers and chemical rooting, on morphological and performance variables in jatropha. The experiment was carried out in june-december 2013, in the experimental field of the Technological University of Izucar of Matamoros (UTIM); the products tested were: Azofer® (Azospirillum), Micorrizafer® (mycorrhiza Glomus genus), Tricovel® (Trichoderma) and rooting chemical Rooting® (auxins and cytokinins). We used a randomized complete block design with 12 replicates. It turned out that rooting Rooting® was the most active, to generate the highest number of lateral branches, higher number of bunches with ripe fruit, ripe fruits per plant and seed weight per plant; of biofertilizers, the mixture of Azospirillum + Trichoderma, generated higher yield (number of mature fruits per plant and seed weight per plant), so this mixture is an alternative in the sustainable production of jatropha.

Keywords: auxin; mycorrhiza; leaves

Resumen

La J. curcas es una planta que se cultiva a nivel mundial de forma convencional, utilizando insumos artificiales, ante esta situación, es necesario generar tecnología de producción sustentable. El objetivo de esta investigación fue evaluar el efecto de biofertilizantes comerciales y enraizador químico, en variables morfológicas y de rendimiento en jatropha. El experimento se llevó a cabo en junio-diciembre de 2013, en el campo experimental de la Universidad Tecnológica de Izúcar de Matamoros (UTIM); los productos evaluados fueron: Azofer® (Azospirillum), Micorrizafer® (micorriza del género Glomus), Tricovel® (Trichoderma) y enraizador químico Rooting® (auxinas y citocininas). Se utilizó un diseño bloques completos al azar con 12 repeticiones. Resultó que el enraizador Rooting® fue el más activo, por generar el mayor número de ramas laterales, mayor número de racimos con fruto maduro, frutos maduros por planta y el peso de las semillas por planta; de los biofertilizantes, la mezcla de Azospirillum + Trichoderma, generó mayor rendimiento (número de frutos maduros por planta y peso de semilla por planta), por lo que dicha mezcla es una alternativa en la producción sustentable de jatropha.

Palabras clave: auxinas; hojas; micorriza

In Mexico, the plant J. curcas is distributed in 20 states, including the state of Puebla (Martínez, 2009). The jatropha has a variety of uses among which are: the production of biodiesel, as living fences to control erosion, medicinal products, cosmetic products such as soap (Oyuela et al., 2012); however, only in Mexico are edible genotypes noted for their high nutritional value (Makkar et al., 1998); it should be noted that Puebla is one of the states with the greatest potential (mainly in the Mixteca Poblana), as shown by studies conducted by the London based Global Exchange for Social Investment (GEXSI) (Renner et al., 2008).

There are few investigations to reduce chemical fertilizers in jatropha production, so it is important to generate sustainable technology for their production. Regarding biological fertilizers, Ravikumar et al. (2011), evaluated inoculating soil several species Azospirillum subsequently jatropha seeds were sown, the results showed that Azospirullum brasilense increase stem length 39.14%, 19.2% root length biomass stem 10.3%, 20% leaf area and 7.8% root biomass.

Neyra et al. (2013), cultivation of chili, inoculated with 5 ml of a suspension of 108 spores ml-1 of Trichodema viride, found an increase in length of stem and root ten days after inoculation and increased dry weight of root and stem At 20 days after inoculation.

In research, assessed chemical fertilization (based on nitrogen and phosphorus) and organic fertilization based on mycorrhizae gender Glomus and A. brasilense in J. curcas, they found similar results in both types of fertilization, in assessing: number of branches, number of inflorescences and seed production, which suggest biological fertilization (Teniente et al., 2011).

Several studies have shown excellent results in morphological variables by applying Azospirillum + Trichoderma combination: tomato (El-Katany, 2010), pomegranate (Patil et al., 2004), corn and wheat (Fadl-Allah et al., 2012) and sugar cane (Serna et al., 2011).

Based on the above, the objective of this research was to evaluate bio-fertilizers and chemical hormonal rooting in Jatropha curcas L., in the field.

The research was carried out in the experimental field of the Technological University of Izucar of Matamoros, located to the south of the state of Puebla and geographically in the coordinates 18º 36’ north latitude, and 98º 28’ west longitude, at an altitude near 1 300 m (INEGI, 2009).

In the research were used seeds of a jatropha genotype collected in Huaquechula, Puebla (on average 19 mm in length). The experiment was carried out in June-December 2012. Previously the seeds were germinated in September 2011 and transplanted in black polyethylene bags in a greenhouse, where they remained until the end of April, 212, when they were transplanted in the field. The treatments were applied in early June 2012 (Table 1). Commercial products applied were: Azofer® (Azospirillum), Tricovel® (Trichoderma) and Micorrizafer® (mycorrhiza Glomus genus), and rooting hormonal Rooting® (based on auxins, cytokinins and phosphorus). A chemical fertilization was applied in early june with 50 g tree of Triple 16® (16% N, 16%P and 16% K). The experimental unit consisted of four plants with three replicates and a complete random block design was used.

Table 1 Treatments generated from research bio-fertilizers and hormonal rooting in J. curcas of field.  

At the beginning of december 2013, the following variables were evaluated: plant height, number of lateral branches, number of flower clusters, number of clusters with green fruit, number of clusters with mature fruit, number of total clusters (floral, ripe fruit), number of ripe fruit per plant and seed weight per plant (the weight recorded with a Ohaus® balance of 2610 g ± 0.1 g capacity).

For the statistical analysis was used the statistical package Statistical Analysis System (SAS) for Windows 9. An analysis of variance was performed to establish significance of variables, and were performed comparison tests of means by Tukey (p≤ 0.05).

All the variables evaluated showed significant statistical differences. Variable plant height, with the application of Azospirillum (1 g of Azospirillum plant-1), the highest plant height were obtained (with 1.78 m) followed by Trichoderma (1 g of Trichoderma planta-1) and mycorrhiza (2 g of mycorrhiza plant-1) when forming plants of 1.7 m (Table 2). About Teniente et al. (2011), recommend inoculate jatropha plants with mycorrhiza Glomus intraradices and A. brasilense, with a dose of one gram of commercial material per plant in the nursery or transplantation.

Table 2 Effect of biofertilizers and hormonal rooting in morphological variables and performance in J. curcas.  

ALT= altura de planta (m); NRAM= número de ramas laterales; NRF= número de racimos florales; NRFV= número de racimos con fruto verde; NRFM= número de racimos con fruto maduro; NRT= número de racimos totales; NMP= número de frutos maduros por planta; PSP= peso de semilla por planta (g); DMS= diferencia mínima significativa, CV= coeficiente de variación en porcentaje(%). Medias en la misma columna con diferente letra son estadísticamente diferentes (p< 0.05).

The number of lateral branches, rooting Rooting® (0.5 plant-1) and Trichoderma (1 g of Trichoderma plant-1) promoted the highest number of branches with 5.2 and 4.3 branches per plant jatropha, respectively (Table 2). Similarly, Kannan and Kannan (2013), in an experiment with bioinoculants, farmyard manure and chemical fertilizers (NPK), found that mixtures containing Azospirillum + Trichoderma + mycorrhiza arbuscular, generated greater number of branches per plant J. curcas (27 to 36 branches).

Regarding number of flower clusters Azospirillum (1 g of Azospirillum plant-1) and mycorrhiza (2 g of mycorrhiza plant-1), 8.8 and 8.3 formed flower clusters per plant jatropha (Table 2). These results contrast with those obtained by Teniente (2011), using Azospirillum barsilense and mycorrhiza Glomus genus getting 19 flower clusters per plant.

In the number of bunches with green fruits, Trichoderma (1 g of Trichoderma plant-1) as the rooting Rooting® (0.5 ml plant-1) formed the same number of clusters (6.2) followed by mycorrhizal (2 g of mycorrhiza plant-1) 6 clusters with green fruits (Table 2). Likewise, the rooting hormone Rooting® as mycorrhizae (2 g of mycorrhiza plant-1 = Glomus) formed 3.7 and 3.2 with ripe fruit bunches per plant (Table 2). In this sense, Ranjan et al. (2013), characterized mycorrhizal strains associated rhizosphere J. curcas, found 15 strains of the mycorrhizae genus Glomus, indicating the compatibility of this strain applied mycorrhiza in jatropha, which is shown in green fruit bunches or mature of the present study.

The number of total clusters, mycorrhiza and Azospirillum produced 17.2 and 16.7 total bunches per plant (Table 2). The application of multifunctional microbial formulation SumaGrow-F2 (14 bacteria and 7 strains of Trichoderma, 1 x 1010 pot-1) or mixed with chemical fertilizers (NPK 20-20-20), increased the number of ears of corn, the number of sorghum pods and the number of peanuts, as well as increasing the total yield of each of these crops (Janarthanam, 2013). In the present study, the application of mycorrhizae (Glomus) increase the number of flower clusters, the number of bunches of green fruits, number of bunches ripe fruits and the number of total clusters of jatropha, so its application turned out to be very important from the formation of the inflorescence until obtaining the total clusters of this plant.

Regarding plant performance, the rooting hormone Rooting® (0.5 ml plant-1) followed by Azospirillum + Trichoderma (1 g plant-1 (Athos)), 1 g plangt-1 (Trichoderma) mixture formed 45.8 and 38.7 ripe fruits per plant and the same treatments showed the highest seed weight per jatropha plant with 68.4 and 53.8 g seeds per plant (Table 2).

The analysis results indicated that the application of mycorrhizae (2 g of mycorrhiza plant-1 = Glomus) increase the height of the plant and from the formation of the inflorescence to the formation of the total clusters. Diaz et al. (2013) by applying 40 g of mycorrhizae G. intraradices alone or mixed with 1 kg of compost cane increased the number of fruits and seed weight per plant of J. curcas. The Chemical rooting hormonal Rooting® (0.5 ml plant-1) was the most active by increasing the number of lateral branches, the number of bunches of green fruit, the number of clusters of ripe fruit, the number of ripe fruits per plant and the Seed weight; while the single application of Azospirillum (1 g Azospirillum plant-1) increased plant height, number of flower clusters and the number of total clusters, while Trichoderma (1 g Trichoderma plant-1) increased plant height, the number of clusters with green fruits, as well as the rooting Rooting® (0.5 ml plant-1) increased the number of clusters with green fruits and the number of bunches with ripe fruits. But by applying the mixture of Azospirillum + Trichoderma (1 g plant-1 (Athos)), 1 g plant-1 (Trichoderma) like the rooting Rooting® increased the greater number of mature fruits per plant and the greater weight of seed per plant of jatropha. With all this biological fertilization it is a sustainable alternative for the production of jatropha.

Conclusions

The rooting Rooting® was the most active by generating the highest number of lateral branches, number of bunches with ripe fruit per plant, number of ripe fruits per plant and seed weight per plant. The application of Azospirillum generated greater plant height and number of flower clusters.

Of the biofertilizers, the mixture of Azospirillum + Trichoderma, generated higher yield (number of mature fruits per plant and seed weight per plant).

Literatura citada

Díaz, H. B. G.; Aguirre, M. J. y Díaz, F. V. 2013. Rendimiento de Jatropha curcas L. inoculada con micorriza y aplicación de composta de caña. Rev. Mex. Cienc. Agríc. 4(4):599-610. [ Links ]

El-Katatny, M. H. 2010. Enzyme production and nitrogen fixation by free, immobilized and immobilized inoculants of Trichoderma harzianum and Azospirillum brasilense and their possible role in growth promotion of tomato. Food Technol. Biotechnol. 48(2):161-174. [ Links ]

Fadl, A. E. M.; El-Katatny, M. H.; Moustafa, Y. M. and Idres, M. M. 2012. Single and double inoculation, with Azospirillum brasilense and Trichoderma harzianum: Effects on seedling growth and/or wheat (Tristicum aestivum) and corn (Zea mays). Minia International Conference for Agriculture and Irrigation in the Nile Basin Countries, 26th -29th March 2012, El-Minia, Egypt. [ Links ]

INEGI. 2009. Anuario Estadístico de Puebla. Tomo 1. 238 p. [ Links ]

Kannan, R. S. and Kannan, S. G. 2013. Influence of bioinoculants on growth parameters of Jatropha curcas. Inter. J. Sci. Res. 2(8):5-6. [ Links ]

Martínez, H. J. 2009. La Jatropha curcas como un nuevo cultivo en México para la producción de biodiesel. In: Jornada sobre producción de biocombustibles y sus perspectivas para Sinaloa. Memoria. Fundación Produce Sinaloa, SAGARPA y Gobierno del Estado. 7-17 pp. [ Links ]

Makkar, H. P.; Becker, K. and Schmook, B. 1998. Edible provenances of Jatropha curcas of Quintana Roo state of México and effect of roasting on antinutrient and toxic factors on seeds. Plant Foods for Human Nutrition. 208(52):31-36. [ Links ]

Neyra, V. S.; Terrones, R. L.; Toro, C. L.; Zárate, G. B. y Soriano, B. B. 2013. Efecto de la inoculación de Rhizobium etli y Trichoderma viride sobre el crecimiento aéreo y radicular de Capsicum annum var. longum. Revista Científica de Estudiantes. Facultad de Ciencias Biológicas. Universidad Nacional de Trujillo, Perú. 1:11- 21. [ Links ]

Oyuela, S. D.; Hernández, E.; Samayoa, S.; Bueso, C. y Ponce, O. 2012. Guía técnica-ambiental, para el cultivo de la Jatropha curcas (piñón). Secretaría de Recursos Naturales y Ambiente. Tegucigalpa Honduras. 90 p. [ Links ]

Patil, A. B.; Nirmalnat, P. J. and Patil, S. R. 2004. Studies on promotion of rooting in air layers of pomegranate as influenced by microbial inoculants. J. Agric. Sci. 17(4):861-863. [ Links ]

Ranjan, M. S.; Kollah, B.; Banerjee, K.; Dubey G.; Kumar G. V.; Sharma, J. and Rao, S. 2013. Rhizospheric microbes associated with bioenergy crops with special reference to Jatropha curcas: acritical review on the prospects and future challenges for sustainable bio-energy production. Scientific Research and Essays. 8(15):615-622. [ Links ]

Ravikumar, S.; Syed, A. M.; Villiammal, N. 2011. Biofertilizer effect of halophilic Azospirilium on the growth of Jatropha curcas L. seedlings. Ann. Biol. Res. 2(2):153-157. [ Links ]

Renner, A.; Zelt, T. and Gerteiser, S. 2008. Global market study on Jatropha. Project inventory: Latin America. Prepared for the world wide fund for nature (WWF). London/Berlin, May 8th. 31 p. [ Links ]

Serna, C. L.; Arias, G. C. y Valencia, H. L. 2011. Biofertilización, una alternativa al uso de fertilización química de caña de azúcar (Saccharum officinarum). Rev. Alim. Hoy. 20 (24):69- 82. [ Links ]

Teniente, O. R.; Tapia, V. L.; Zamarripa, C. A.; González, A. A.; Bonilla, S. J.; Martínez, V. B. y Hernández, M. M. 2011. Guía técnica para la producción de piñón mexicano (Jatropha curcas L.) en Michoacán. Folleto técnico Núm. 2 SAGARPA. Campo Experimental Valle de Apatzingan-INIFAP. Apatzingan, Michoacán, México. 52 p. [ Links ]

Received: February 2017; Accepted: March 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons