SciELO - Scientific Electronic Library Online

vol.7 número8Evaluación de compost con presencia de metales pesados en el crecimiento de Azospirillum brasilense y Glomus intraradicesDeterminación de giberelina A4 y trans zeatina ribósido en diferentes órganos de Dasylirion cedrosanum índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 no.8 Texcoco nov./dic. 2016


Investigation note

Extraction of macronutrients in chile (Capsicum annuum L.) Hungarian type

Fredi I. Salazar-Jara1 

Porfirio Juárez-López2  § 

Rubén Bugarín-Montoya1 

Gelacio Alejo-Santiago1 

J. Diego García-Paredes1 

Elia Cruz-Crespo1 

1Universidad Autónoma de Nayarit- Unidad Académica de Agricultura. Carretera Tepic-Xalisco km 9. Xalisco, Nayarit, México. CP. 63780. (;;;

2Universidad Autónoma del estado de Morelos- Facultad de Ciencias Agropecuarias. Avenida Universidad 1001. CP. 62210. Cuernavaca, Morelos, México.


The Hungarian pepper type is prized for its yellow fruits and represents a horticultural crop of economic importance because it generally keeps high and stable prices throughout the year. There is little information regarding mineral nutrition management of this crop that favor the ultimate yield expression and rational use of fertilizers. The objective of this research was to quantify the extraction of macronutrients in growing Hungarian pepper type. Plants were grown in 14 L pots with tezontle as substrate, which were watered three times a day with Steiner solution at 75% equivalent to -0054 MPa osmotic potential. The concentration of leaf macronutrient, aerial dry biomass and nutrient extraction was quantified; furthermore, nutrient absorption and nutrient extraction index were estimated. It was concluded that the indices values of nutrient extraction can be used to determine nutrient requirements of Hungarian pepper according to a yield goal as follows (in kg t-1 product harvested): 3.1 N, 0.4 P, 4.2 K, 1.0 Ca and 0.2 Mg. Foliar nutrient concentrations in recently mature leaves of Hungarian pepper with osmotic potential of -0054 MPa in the nutrient solution provide reliable reference values for nutritional diagnostic purposes.

Keywords: crop nutrition; hydroponics; nutritional requirement; yield


El chile tipo húngaro es apreciado por sus frutos color amarillo y representa un cultivo hortícola de importancia económica ya que generalmente mantiene precios elevados y estables a través del año. Existe escasa información relacionada con el manejo de la nutrición mineral de este cultivo que favorezca la máxima expresión de rendimiento y el uso racional de fertilizantes. El objetivo de esta investigación fue cuantificar la extracción de macronutrimentos en el cultivo de chile tipo húngaro. Las plantas se cultivaron en macetas de polietileno de color negro de 14 L con tezontle como sustrato, las cuales se regaron tres veces al día con solución Steiner a 75% que equivale a -0.054 MPa de potencial osmótico. Se cuantificó la concentración de foliar de macronutrimentos, la biomasa seca aérea y la extracción nutrimental. Además, de estimó la absorción nutrimental y el índice de extracción nutrimental. Se concluyó que los valores de los índices de extracción nutrimental que pueden emplearse para determinar la demanda nutrimental del cultivo de chile húngaro de acuerdo a una meta de rendimiento son los siguientes (en kg t-1 de producto cosechado): 3.1 N, 0.4 P, 4.2 K, 1 Ca y 0.2 Mg. Las concentraciones nutrimentales foliares en hojas recientemente maduras de plantas de chile húngaro cultivadas con potencial osmótico de -0.054 MPa en la solución nutritiva proveen valores de referencia confiables con fines de diagnóstico nutrimental.

Palabras clave: hidroponía; nutrición de cultivos; requerimiento nutrimental; rendimiento

The Hungarian pepper type is also known as chile güero, in english is called Hungarian yellow wax pepper, whose fruits are prized for their bright yellow and bright waxy pericarp in commercial maturity, after this, pigmented red. In Mexico, the Hungarian pepper is grown in Sinaloa, Jalisco, Michoacán (SNIIM, 2015) and in the coastal area of Nayarit (Partida-Sandoval and QuezadaCamberos, 2012), and represents a crop of economic importance because it maintains high and stable prices throughout the year than jalapeno and serrano peppers (SNIIM, 2014).

Like other vegetables, yield and crop quality of Hungarian pepper depend on various factors such as genotype, weather conditions, soil or substrate characteristics, water quality, nutritional factors, production technique and biotic factors. Some of these factors to some extent can be controlled, as is the case of crop nutrition (Castro-Brindis et al., 2000; Marschner, 2012).

Nutritional requirement is the amount of nutrient required by the plant to meet their metabolic needs, and in turn achieve maximum yield in a production system (Sonneveld and Voogt, 2009). In this sense, there is little information related to management of mineral nutrition of Hungarian pepper favoring the expression of crop yield and to allow a more efficient use of fertilizers. Therefore, the objective of this research was to quantify macronutrients extraction in crop of Hungarian pepper.

The study was conducted at the Academic Unit of Agriculture from the Autonomous University of Nayarit, located in Xalisco, Nayarit at an altitude of 977 m; in a plastic greenhouse (21° 25’ 33’’ north latitude and 104° 53’ 31’’ west longitude), with overhead ventilation and anti-aphids mesh on the sides. The genetic material evaluated was the hybrid ‘Inferno’ (Seminis®). The seeds were sown on August 2, in polystyrene trays of 200 cavities and germination substrate Sunshine and transplantation was on September 7, 2012, in 14 L pots and red tezontle as substrate, granulometry of 1 to 7 mm. Plants were held with wooden sticks and raffia along the rows to keep the plants upright. Pots contained a plant and watered three times a day with Steiner nutrient solution at 75% corresponding to -0054 MPa of osmotic potential Steiner (1984).

Osmotic potential of -0.018, -0.036, -0054, -0072 and -0090 MPa were evaluated in the cultivation of Hungarian pepper but reported only the nutrient extraction of plants grown in the solution of -0054 MPa because with this osmotic potential was obtained the best behavior in cumulative total dry matter (426.3 g per plant), number of fruits per plant (95.8), production of fruits per plant (3511 g per plant) and harvest index (0.57 g g-1). A hydroponic substrate without recirculation was used and based on the phenological stage of the crop, irrigation ranged from 0.5 to 2 L per plant per day. Temperatures in the greenhouse were 15 and 34 °C (average minimum and maximum, respectively).

Assessed variables

Foliar concentration of macronutrient: foliar macronutrient content (%) was determined every 20 days to 140 ddt (seven samplings). Total N content was determined by the semi-microkjeldahl method, P by colorimetry, K by flame photometry, Ca and Mg by atomic absorption spectrophotometry (Alcantar-Gonzalez and Sandoval-Villa, 1999).

Accumulated dry biomass: weight of dry biomass for leaves, stems and commercial and noncommercial fruits were recorded. The plant material was dried in a forced air oven at 70 °C for 72 h until constant weight. Quantification was performed using a digital scale Escali model A115B, with capacity of 5 kg with approximation 0.01 g. It was expressed in g plant-1.

Nutrimental extraction: it is calculated from the nutrient content in dry biomass (fruit, leaf and stem). It was expressed in g plant-1.

Experimental design

A completely randomized design was used. The experimental unit consisted of a pot that contained a plant and all determinations were made with 5 replications. Extraction curves charts were performed using Microsoft Excel 2010 for Windows.

Foliar macronutrient concentration

A dilution effect of nutrients was observed from 20 to 140 ddt in all elements, except Ca (Table 1). It is inferred that because Ca is a bit variable component compared to N its concentration gradually increased, since one of its functions is to regulate the absorption, besides participating in storage and firmness of fruit (Alcántar-González and Trejo-Téllez, 2006). Also Cruz-Crespo et al. (2014) reported this upward trend of Ca in plant growth of serrano pepper (Capsicum annuum L.), as for N, the behavior is due to it is an essential mobile element in cell division and expansion, thus in the vegetative growth of structures in such as stems and leaves (Sonneveld and Voogt, 2009).

Table 1 Foliar macronutrient concentration in Hungarian pepper (Capsicum annuum L.) grown in hydroponics and nutrient solution with -0054 MPa osmotic potential. 

Nutrimento Días después del trasplante (ddt)
20 (%) 40 (%) 60 (%) 80 (%) 100 (%) 120 (%) 140 (%)
N 5.5 4.51 3.59 2.99 2.65 2.57 2.6
P 0.4 0.34 0.44 0.47 0.42 0.41 0.31
K 8.13 8.57 7.01 5.45 4.38 4.59 3.49
Ca 0.79 0.95 0.97 0.69 0.44 0.63 0.79
Mg 0.29 0.2 0.25 0.145 0.1 0.12 0.13

In P, K and Mg was also a dilution effect, this corresponds to an intense phase of growth, development and cell differentiation, which is when the crop development phases overlap; also, stems, young leaves and growing points are actively growing and contain high amounts of organic P in the form of nucleic acids and phospholipids (Mengel et al., 2001). Potassium works as an osmotic regulator and activator or cofactor of more than 50 enzymes (kinases and oxidoreductase) from carbohydrates and protein metabolism, which is why its importance in plant metabolism (Alcántar-González Trejo-Téllez, 2006).

Regarding Mg, the highest accumulation is in the leaves, as it is where great amount of chlorophyll and other pigments are synthesized. 15 to 30% of total magnesium in plants is associated with chlorophyll molecule, the other 70 or 85% is associated as a cofactor in different enzymatic processes of photosynthesis and respiration (Mengel et al., 2001; Taiz and Zeiger, 2010).

It is noteworthy that a factor influencing the reduction in concentration of elements in leaf tissue is that when fruits were harvested there were nutrients losses in the plant. In this regard, Terbe et al. (2006) reported that fruits represent 64 to 84% of total fresh weight in plants of green pepper (Capsicum annuum L.). Foliar nutrient content (Table 1), can be used as reference to establish critical levels and concentration ranges for diagnostic and nutritional monitoring (Sonneveld and Voogt, 2009; Marchner, 2012).

Nutrient extraction

N, P, K, Ca and Mg extraction in Hungarian pepper plants (Table 2), followed the trend of dry matter accumulation. These results are similar to those obtained by PinedaPineda et al. (2008), in red raspberry ‘Malling Autumn Bliss’, where nutrient absorption was proportional to dry matter values gained by the plant. Valentin-Miguel et al. (2013) also reported the same behavior when assessing nutritional extraction in water pepper plants (Capsicum annuum).

Table 2 Macronutrients extraction in Hungarian pepper (Capsicum annuum L.) grown in hydroponics and nutrient solution with -0054 MPa osmotic potential. 

Concepto Unidad de medida N P K Ca Mg
Índice de extracción nutrimental (kg t-1) 3.1 0.37 4.2 0.97 0.2
Absorción nutrimental (g planta-1) 11 1.3 14.9 3.4 0.6

In decreasing order of nutrient extraction was K>N> Ca>P>Mg (Table 2). These trends of nutrient extraction coincides with that reported by Terbe et al. (2006) who in green pepper (Capsicum annuum L.) indicate that the nutritional requirements are as follows:4 - 5.7 kg of K, 2.4-3.8 kg of N and 0.3- 0.5 kg of P per ton of harvested fruit. K was the nutriment extracted in greater extent due to formation processes and fruit growth, which constitute the main body of demand, with values of 70 to 80% of the total amount extracted by the plant (Bugarín-Montoya et al., 2002).

With the information nutrient content, fruit production per plant (3511 g) and amount of accumulated dry matter in fruits, the amount of nutrients needed to produce a ton of fruit was calculated, which were (in kg t-1 product harvested): 3.1 N, 0.4 P, 4.2 K, 1.0 Ca and 0.2 Mg (Table 2). To obtain these nutrimental extraction indices was taken as reference the amount of accumulated dry matter in commercial fruits, because if the total amounts of biomass in commercial and non-commercial fruits are taken as reference, nutrient extraction indices are underestimated. This information will allow to count with elements to design fertilization programs in open fields, since knowing the nutrient extraction index of the crop (Table 2), and the yield value expected, it will be possible to calculate nutrient demand of the crop; i.e. nutrient units (kg ha-1) that the plant must extract from the soil and incorporate into their tissues to achieve a given yield (Castro-Brindis et al., 2004). Extraction indices obtained in this investigation are lower than those obtained by Valentín-Miguel et al. (2013) who in water pepper (Capsicum annuum L.) reported (kg ha-1): 7.7 N, 0.5 P, 7.5 K, 1.6 Ca and 0.6 Mg; this indicates that Hungarian pepper is a crop with lower nutrient requirements compared to water pepper.

Nutrimental extraction curves

Figure 1 presents the macronutrient extraction curves in Hungarian pepper plants (Capsicum annuum L.). These curves clearly shows that K and N were the most extracted macronutrients, which coincides with the results from Terbe et al. (2006) who indicated that for green pepper (Capsicum annuum L.) nutrient requirements are as follows: 4- 5.7 kg of K and 2.4-3.8 kg of N per ton of harvested fruits. The results of this study also agree with those reported by Azofeifa and Moreira (2008), who in jalapeno pepper (Capsicum annuum L.) quantified extractions of 79.3 and 60 kg ha-1 of K and N, respectively; with 20 833 plants ha-1 and a yield of 15 t ha-1 of fresh commercial fruits. In this sense, Azofeifa and Moreira (2005), in chili pepper (Capsicum annuum L.) reported 180 and 139 kg ha-1 of K and N, respectively; with 20 833 plants per hectare and a yield of 46.3 t ha-1 of fresh commercial fruits.

Figure 1 Macronutrient extraction curves in Hungarian pepper plants (Capsicum annuum L.). 

According to nutrient extraction curves of Hungarian pepper it is observed that it is not recommended to apply large amounts of nutrients in the initial stage of crop development, because a significant proportion of nutrients would be out of reach from the root system of the plant.


The indices values of nutrient extraction can be used to determine nutrient demand of Hungarian peppers according to a yield goal, as follows (kg t-1 product harvested): 3.1 N, 0.4 P, 4.2 K, 1 Ca and 0.2 Mg.

Foliar nutrient concentrations in recently mature leaves of Hungarian pepper plants grown with -0054 MPa osmotic potential in the nutrient solution, provide reference values for nutritional diagnostic purposes.

Literatura citada

Alcántar, G. G. y Trejo, T. L. I. 2006. Nutrición de cultivos. MundiPrensa. 462 p. [ Links ]

Alcántar, G. G. y Sandoval, V. M. 1999. Manual de análisis químico de tejido vegetal. Publicación Especial 10. Sociedad Mexicana de la Ciencia del Suelo, A. C. Chapingo, México. 155 p. [ Links ]

Azofeifa, A. y Moreira, M. 2008. Absorción y distribución de nutrimentos en plantas de chile jalapeño (Capsicum annuum L. cv. Hot) en Alajuela, Costa Rica, Agronomía Costarricense. 32:19-29. [ Links ]

Azofeifa, A. y Moreira, M. 2005. Absorción y distribución de nutrimentos en plantas de chile dulce (Capsicum annuum cv. UCR 589) en Alajuela, Costa Rica Agronomía Costarricense. 29:77-84. [ Links ]

Barker, A. V. y Pilbeam, D. J. 2006. Handbook of plant nutrition. CRC Press. Boca Raton, FL, USA. 613 p. [ Links ]

Bugarín, M. R.; Galvis, S. A.; Sánchez, G. P. y García, P. D. 2002. Demanda de potasio del tomate tipo saladette. Terra. 20: 391-399. [ Links ]

Castro, B. R; Galvis, S. A.; Sánchez, G. P.; Peña, L. A.; Sandoval, V. M. y Alcántar, G. G. 2004. Demanda de nitrógeno en tomate de cáscara (Physalis ixocarpa Brot.). Rev. Chapingo Ser. Hortic. 10:147-152. [ Links ]

Castro, B. R.; Sánchez, G. P.: Peña, L. A.; Alcántar, G. G.; Baca, C. G. A. y López, R. R. M. 2000. Niveles críticos, de suficiencia y toxicidad de N-NO3 en el extracto celular de peciolos de tomate de cáscara. Terra Latinoam. 18:141-145. [ Links ]

Cruz, C. E.; Can, Ch. A.; Bugarín, M. R.; Pineda, P. J.; Flores, C. R.; Juárez, L. P. y Alejo, S. G. 2014. Concentración nutrimental foliar y crecimiento de chile serrano en función de la solución nutritiva y el sustrato. Rev. Fitotec. Mex. 37: 289-295. [ Links ]

Marschner, P. 2012. Mineral nutrition of higher plants. Third edition. Elsevier Academic Press. San Diego, CA, USA. 651 p. [ Links ]

Mengel, K.; Kirkby, E. A.; Kosegarten, H. and Appel, T. 2001. Principles of plant nutrition. 5th (Ed.). Kluwer Academic Publishers. Dordrecht, The Netherlands. 635 p. [ Links ]

Partida, S. A. A. y Quezada, C. S. M. 2012. De los nombres del chile y sus variedades principales en tierras nayaritas. Rev. Fuente. 4:50-55. [ Links ]

Pineda, P. J.; Avitia, G. E.; Castillo, G. A. M.; Corona, T. T.; Valdez, A. L. A. y Gómez, H. J. 2008. Extracción de macronutrimentos en frambueso rojo. Terra Latinoam. 26:333-340. [ Links ]

Steiner, A. A. 1984.The universal nutrient solution. In: Sixth International Congress on Soilless Culture. Proceedings International Society for Soilless Culture. Lunteren, The Netherlands 633-650 pp. [ Links ]

SNIIM. 2014. [ Links ]

Sonneveld C. and Voogt W. 2009. Plant nutrition of greenhouse crops. Springer Netherlands. The Netherlands. 431 p. [ Links ]

Terbe, I.; Szabó, Z. and Kappel, N. 2006. Macronutrient accumulation in green pepper (Capsicum annuum L.) as affected by different production Technologies. Inter. J. Hortic. Sci. 12:13-19. [ Links ]

Taiz, L. and Zeiger E. 2010. Plant Physiology. Fifth Edition. Sinauer Associates Publishers, Sunderland, MA, USA. 782 p. [ Links ]

Valentín, M. M. C.; Castro, B. R.; Rodríguez, P. J. E. y Pérez, G. M. 2013. Extracción de macronutrimentos en chile de agua (Capsicum annuum L.). Rev. Chapingo Ser. Hortic. 19:71-78. [ Links ]

Received: August 2016; Accepted: October 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons