SciELO - Scientific Electronic Library Online

 
vol.7 issue6Incidence and severity of ear rot on genetically modified and conventional maize in Sinaloa, Mexico author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias agrícolas

Print version ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 n.6 Texcoco Aug./Sep. 2016

 

Description of cultivars

Sangre Maya, red bean variety for the state of Chiapas

Bernardo Villar Sánchez1 

Oscar Hugo Tosquy-Valle2 

Ernesto López-Salinas2  § 

Jorge Alberto Acosta-Gallegos3 

1Campo Experimental Centro de Chiapas-INIFAP. Carretera Ocozocoautla- Cintalapa km 3.0. C. P. 29140, Ocozocoautla, Chis.

2Campo Experimental Cotaxtla-INIFAP. Carretera Veracruz-Córdoba, km 34, municipio, Medellín de Bravo, Ver. A. P. 429, C. P. 91700, Veracruz, Veracruz, México. Tel: 01 229 2622232 y 33.

3Campo Experimental Bajío-INIFAP. Carretera Celaya-San Miguel de Allende, km 6.5, C. P. 38000, Celaya, Guanajuato.


Abstract

In Chiapas, Mexico there is a demand of more than 8 000 t of red bean, mainly to meet the needs of local consumption of a population close to 1 000 000, including one of the most important population of temporary or permanent immigrants from Central America. In response to this demand, in 2013, the Bean Program from the National Institute of Forestry, Agriculture and Livestock (INIFAP), in the state of Chiapas, generated the Sangre Maya variety developed by hybridization from a triple cross at the International Center for Tropical Agriculture (CIAT) and several cycles of selection in different environments and locations. In Chiapas, this variety was evaluated in nine environments from the center of the state, from 2010 to 2012, to determine its yield, disease tolerance and response to acid soils. Sangre Maya exceded in 9 and 40.4% the yield from control Bribri and Creole Coloradito, respectively. Also, the new variety had the lowest incidence (10%) of the golden yellow mosaic virus from bean, while Bribri and Creole Coloradito showed incidences of 30 and 64%, respectively. Additionally, the new variety was evaluated in acid soil with and without lime and showed the best response of grain yield in both conditions of soil management. In 2014, Sangre Maya was registered in SNICS with the final number FRI-088-060314 for commercial use.

Keywords: Phaseolus vulgaris L.; acid soil; crop; disease; yield

Resumen

En Chiapas, México existe una demanda de más de 8 000 t de frijol de grano rojo, principalmente para cubrir las necesidades de consumo locales de una población aproximada de 1 000 000, incluyendo las de una importante población temporal y/o permanente de inmigrantes centroamericanos. En respuesta a esta demanda, en 2013, el Programa de Frijol del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), en el estado de Chiapas, generó la variedad Sangre Maya originada por hibridación a partir de una cruza triple en el Centro Internacional de Agricultura Tropical (CIAT) y varios ciclos de selección en diferentes ambientes y localidades. En Chiapas, esta variedad se evaluó en nueve ambientes del centro del estado, durante 2010 a 2012, para determinar su respuesta en rendimiento, tolerancia a enfermedades y a suelos ácidos. Sangre Maya superó en 9 y 40.4% el rendimiento de los testigos Bribri y criollo Coloradito, respectivamente. Asimismo, la nueva variedad presentó la menor incidencia (10%) del virus del mosaico amarillo dorado del frijol, en tanto que Bribri y el criollo Coloradito mostraron incidencias de 30 y 64%, respectivamente. Adicionalmente, la nueva variedad se evaluó en suelo ácido con y sin aplicación de cal y mostró la mejor respuesta en el rendimiento de grano en ambas condiciones de manejo de suelo. En 2014, Sangre Maya fue registrada en el SNICS con el número definitivo FRI-088-060314 para su uso comercial.

Palabras clave: Phaseolus vulgaris L.; cultivar; rendimiento; enfermedades; suelo ácido

In Mexico, bean is a crop of great importance as a basic food grain and an excellent source of protein (containing 20 to 25%, of which 3% are tryptophan of high quality), vitamins such as thiamin, niacin and folic acid and minerals such as iron (Guzmán-Maldonado et al., 2002; Ulloa et al., 2011). During 2014, 1 773 996 has of this legume were sown, obtaining 1 273 957 t grain from different commercial classes (SAGARPA, 2015).

In the same year, in the state of Chiapas were established 116 575 ha, producing 61 412 t, being 85% black bean, 10% red bean and the rest other types of beans (SAGARPA, 2015). The red bean red is sown in production units of one hectare or less, located in areas with climate Aw, warm humid with rain in summer (García, 1981), located mainly in the municipalities of la meseta comiteca and la Frailesca, and whose production it is mainly used to meet the needs of local consumers (Rodríguez-Licea, 2010; Villar et al., 2011). In recent years, the demand for this type of grain has increased from 6 248 t currently produced to over 8 000 t to meet it must grow about 15 000 ha, for the temporary or permanent establishment of an increasing number of Central American immigrants in the entity, with consumption preference for red bean (Villar et al., 2010); this represents an opportunity to increase acreage, and even to export to Honduras, Nicaragua and El Salvador, and to the United States of America, where inhabitants from these Central American countries live (Paz et al., 2007).

Currently, red vean sowings are made with creole materials of low yield potential, very specific adaptation and susceptible to diseases like yellow golden mosaic and poor adaptation in acid soils of low fertility from the state of Chiapas (Villar et al., 2011). In the Bean Program from the National Institute of Forestry, Agriculture and Livestock (INIFAP) for the southeast of Mexico, have been performing studies to evaluate lines introduced from Central America, red bean lines, which has allowed to identify outstanding materials in terms of yield, adaptation and grain type that consumers demand; in this way Sangre Maya variety was generated for tropical areas from the state of Chiapas (Villar- Sánchez et al., 2013).

This variety originated from a triple cross (NCB 228 x RCB 224) F1 x SXB 244, performed at the International Center for Tropical Agriculture (CIAT) in Cali, Colombia and obtained by gametic selection (individual plant) in F1, to create only one family derived from F1 and then continued with F2 selection under drought conditions at CIAT-Palmira, Colombia. The F3 was established in Popayan, Colombia, where plants were inoculated with the fungus (Colletotrichum lindemutianum) (Sacc. & Magn.) Scrib., which causes anthracnose disease and resistant individual plants were collected. F4 was sown in Santander de Quilichao, Colombia, in acidic soil, with moderate stress of low phosphorus and inoculated with the fungus (Phaeoisariopsis griseola) (Sacc.) Ferraris, causing angular leaf spot disease. F5 was planted in Palmira, Colombia, to quantify yield under drought, and a single plant was selected to obtain a uniform F6. The line from which the variety Sangre Maya was generated, was introduced to Mexico in 2009 and to the state of Chiapas in 2010, with the code RCB 592 through a uniform trial of yield, which was conducted in different locations in Chiapas from 2010 to 2012, in order to determine their yield response, disease resistance and adaptation to acid soils of low fertility (Villar et al., 2013).

Among the main agricultural characteristics of Sangre Maya are the following: indeterminate growth habit, with intermediate length vines and shrubs, erect and compact type II (Singh, 1982), with small leaves and a height of its average canopy of 48.5 cm. Flowering occurs on average at 38 days after sowing and physiological maturity at 70 days. Its flowers are white, the stem is green and pods are white in physiological maturity and creamy white to harvest, with small grains, red, opaque and ovoid. Among the most outstanding characteristics of this variety are its resistance to disease bean golden yellow mosaic virus (BGYMV), adaptation to acid soils from the humid tropics of Chiapas and its earliness, which allows it to adapt to intermittent drought under rainfed cicle and ends in the residual moisture cycle (Villar- Sánchez et al., 2013).

From 2010 to 2012, Sangre Maya was compared with the variety Bribri and Creole Coloradito in a uniform yield trial conducted in nine environments from the state of Chiapas, under rainfed, residual moisture and irrigation conditions. The new variety outperformed the commercial controls. Under rainfed conditions, Sangre Maya exceeded 12.9% the yield from Bribri and by 56.2% to Creole Coloradito. Under residual moisture the percentages of superiority of the new variety were 3.2 and 19.8%, while under irrigation, were 5.6 and 28.8%, respectively. The overall average yield of Sangre Maya was 9.0 and 40.4% higher than Bribri and Creole Coloradito (Table 1). These results show the higher yield potential, that the new variety has regarding to Creole coloradito, commonly used by farmers in the state of Chiapas (Villar-Sánchez et al., 2013).

Table 1. Yield (kg ha-1) of Sangre Maya and two comercial controls of red bean under nine environments from the state of Chiapas. Period 2010 to 2012. 

Condición/Localidad/Municipio Año Sangre Maya Bribri Criollo Coloradito
Temporal
Ocozocoautla 2010 594 643 482
Ocozocoautla 2011 1 816 1 427 1 221
Ocozocoautla 1 2012 1 472 1 400 730
Ocozocoautla 2 2012 1 481 1 457 998
Emiliano Zapata 2012 501 267 322
Promedio 1 173 1 039 751
Humedad residual
Ocozocoautla 2011 1 349 927 1216
Ocozocoautla 1 2012 836 1 050 650
Ocozocoautla 2 2012 731 849 566
Promedio 972 942 811
Riego
Ocozocoautla 2011 1 100 1 042 854
Promedio general 1 097.8 1 006.9 782.1
Incremento respecto a testigos (%) 9 40.4
DMS 220
CV 34.19

Under the rainfed cycle from 2012 in the town of Emiliano Zapata, municipality of Villaflores, Chiapas, intermittent drought conditions and temperatures above 30 °C, favored the presence of high populations of whitefly (Bemisia tabaco Gennadius) causing bean golden yellow mosaic virus (BGYMV). During the beginning of the reproductive stage of the crop (35 days after planting), the reaction of Sangre Maya, Creole Coloradito and Bribri were evaluated to meausere the incidence of this disease (CIAT, 1987), which reduces significantly grain yield, especially when it occurs during the vegetative stage of the crop (López et al., 2003; Villar et al., 2003).

The new variety had a lower incidence to 10% and grain yield of 521 kg ha-1, while Bribri and Creole Coloradito showed incidence of 30 and 64%, with grain yields of 267 and 322 kg ha-1, respectively. These results indicate that Sangre Maya is a good alternative to reduce production risks by BGYMV incidence in the state of Chiapas (López et al., 2002).

In the state of Chiapas, some bean producing areas have the problem of acid soils with pH and base saturation, lower than 5 and 30%, respectively, thus aluminum saturation higher than 20%, limiting grain production (Buerkert, 1989; Zetina et al., 2002; Tosquy et al., 2008). In the rainfed from 2012, Sangre Maya, was evaluated along with the same controls, under acidic soil with a pH of 4 and aluminum saturation of 20% in the locality of Emiliano Zapata, with and without application of 1 t ha-1 of agricultural lime (Buerkert et al., 1990; Villar et al., 2003).

The new variety showed the best response in grain yield under both conditions of soil management; with lime, Sangre Maya obtained a yield 11.9 and 29.1%, higher than those obtained by Bribri and Creole Coloradito, respectively, whereas with acidic soil stress, the new variety exceded in 21.8 and 61%, the yield from the control. The lower percentage of yield decrement of Sangre Maya, is indicative that this variety has better adaptation to central acid soils from central Chiapas, than the variety Bribri and Creole Coloradito (Table 2).

Table 2. Grain yield of Sangre Maya and two control of red bean, in acidic soil with and without liming. 2012 Summer cycle. 

Genotipo Condición de suelo Decremento (%)
1 t ha-1 cal Sin cal
Sangre Maya 1175 950 19.15
Bribri 1050 780 25.71
Criollo Coloradito 910 590 35.17
Promedio 1045 773.3 26
CV 35.1
DMS 311

Sangre Maya variety adapts to tropical areas from the state of Chiapas, at altitudes ranging from 0 to 1 200 m, as in the case of the region called Meseta Comiteca. It can be sown in the summer cycle, under rainfed, in fall-winter with residual moisture and in winter-spring under irrigation conditions, which ensures the availability of a water lamina of about 400 mm and an average annual temperature between 24 and 26 °C (Lopez et al., 2002).

Conclusions

Sangre Maya variety is an alternative to mitigate the effects of climate change, which have caused delays in planting date under rainfed cycle, as frequent occurrence of terminal drought under sowings of residual humidity in central state Chiapas, as its outstanding feature of precocity (80 days from planting to harvest), allows it to adapt to short growth periods under rainfed and escape from terminal drought under residual moisture (Villar-Sánchez et al., 2013).

Literatura citada

Buerkert, A. 1989. Effects of liming and soil acidity on stand establishment, nodulation, yield, components of yield, and economics in common bean: an on-farm research approach in Chiapas, Mexico. Tesis de MSc. graduate division of the University of California. Davis, CA, USA. 68 p. [ Links ]

Buerkert, A. C.; Cassman, G. K.; De la Piedra, C. R. and Munns, N. D. 1990. Soil acidity and limming effects on stand, nodulation and yield of common bean. Agron. J. 82(4):749-754. [ Links ]

Centro Internacional de Agricultura Tropical (CIAT). 1987. Sistema estándar para la evaluación de germoplasma de frijol. Schoonhoven, A. van y Pastor-Corrales, M. A. (Comps.). CIAT. Cali, Colombia. 56 p. [ Links ]

García, E. 1981. Modificaciones al sistema de clasificación climática de Köppen. 3ª Edición. Instituto de Geografía-UNAM. 300 p. [ Links ]

Guzmán, M. S. H.; Acosta, G. J. A.; Álvarez, M. S.; García, D. y Loarca, P. 2002. Calidad alimentaria y potencial nutraceutico del frijol (Phaseolus vulgaris L.) Agric. Téc. Méx. 28(2):159-173. [ Links ]

López, S. E.; Acosta, G. J. A.; Cumplan, G. J.; Cano, R. O.; Villar, S. B. y Becerra, L. E. N. 2002. Adaptación de genotipos de frijol común en la región tropical húmeda de México. Agric. Téc. Méx. 28(1):35-42. [ Links ]

López, E.; Tosquy, O. H.; Villar, B.; Becerra, E. N. y Ugalde, F. J. 2003. Adaptación, resistencia múltiple a enfermedades y tolerancia a suelos ácidos en genotipos de frijol. Agron. Mesoam. 14(2):151-155. [ Links ]

Paz, M. T.; Flores, S. y Delmelle, G. 2007. Informe de cadena de frijol rojo en Nicaragua. International Food Policy Research Institute. http://www.ruta.org/downloads/CDCAFTA/documentos/ni/InformeFinalCadenaDeFrijolNicaragua.pdf. 34 p. [ Links ]

Rodríguez. G.; García, J. A.; Rebollar, S. y Cruz, A. C. 2010. Preferencias del consumidor de frijol (Phaseolus vulgaris L.) en México: factores y características que influyen en la decisión de compra diferenciada por tipo y variedad. Paradigma Económico. 2(1):121-145. [ Links ]

SAGARPA. 2015. Anuarios estadísticos de la producción agrícola. Servicio de Información Agroalimentaria y Pesquera (SIAP). México, D. F. http://www.siap.sagarpa.gob.mx. [ Links ]

Singh, S. P. 1982. A key for identification of different growth habits of Phaseolus vulgaris L. Ann. Rep. Bean Improv. Coop. 25:92-95. [ Links ]

Tosquy, V. O. H.; López, S. E.; Zetina, L. R.; Ugalde, A. F. J.; Villar, S. B. y Cumpián, G. J. 2008. Selección de genotipos de frijol con adaptación a suelos ácidos. Terra Latinoamericana. 26(3):227-233. [ Links ]

Ulloa, J. A., Rosas Ulloa Petra, Ramírez Ramírez José Carmen, Ulloa Rangel Blanca Estela. El frijol (Phaseolus vulgaris): su importancia nutricional y como fuente de fitoquímicos. Revista Fuente. 3(8):5-9. [ Links ]

Villar, S. B.; López, S. E. y Acosta, G. J. 2003. Selección de genotipos de frijol por rendimiento y resistencia al mosaico dorado y suelos ácidos. Rev. Fitotec. Méx. 26(2):109-114. [ Links ]

Villar, S. B.; López, S. E.; Tosquy, V. O. H. y Ugalde, A. F. J. 2010. Rojo INIFAP, nueva variedad de frijol de grano rojo para el trópico de México. Rev. Mex. Cienc. Agríc. 1(5):681-686. [ Links ]

Villar, S. B.; López, S. E.; Tosquy, V. O. H. y Ugalde, A. F. J. 2011. Rojo INIFAP. Nueva variedad de frijol de grano rojo para el estado de Chiapas. Ocozocoautla de Espinosa, Chiapas, México. INIFAP. Campo Experimental Centro de Chiapas. Folleto técnico Núm. 11. 20 p. [ Links ]

Villar, S. B.; López. S, E.; Tosquy. V, O. H.; Cruz, C. F. J. y Acosta, G. J. A. 2013. Sangre Maya. Nueva variedad de frijol de grano rojo para el estado de Chiapas y regiones bajo condiciones similares. Ocozocoautla de Espinosa, Chis., México. INIFAP. Campo Experimental Centro de Chiapas. Folleto técnico Núm. 17. 26 p. [ Links ]

Zetina, L. R.; Pastrana, A. L.; Romero, M. J. y Jiménez, Ch. J. A. 2002. Manejo de suelos ácidos para la región tropical húmeda de México. Sayula, Mpio. De Isla, Veracruz, México. INIFAP Campos Experimentales de Papaloapan y Huimanguillo. México. Libro técnico Núm. 10. 170 p. [ Links ]

Received: July 2016; Accepted: August 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons