SciELO - Scientific Electronic Library Online

vol.7 número6Rendimiento, eficiencia en uso del agua en canola en función del nitrógeno y distancia entre hilerasEfecto del fuego en producción y calidad de zacate rosado en Aguascalientes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 no.6 Texcoco ago./sep. 2016



Characterization of soursop fruit (Annona muricata L.) in Tepic, Nayarit, Mexico

José Orlando Jiménez-Zurita1 

Rosendo Balois-Morales2  § 

Irán Alia-Tejacal3 

Porfirio Juárez-López3 

María Teresa Sumaya-Martínez2 

Juan Esteban Bello-Lara1 

1Universidad Autónoma de Nayarit-Posgrado en Ciencias Biológico Agropecuarias. Ciudad de la cultura “Amado Nervo”. C. P. 63155. Tepic, Nayarit, México. (;

2Universidad Autónoma de Nayarit- Unidad de Tecnología de Alimentos. Ciudad de la cultura “Amado Nervo” s/n. C. P. 63155. Tepic, Nayarit, México. (

3Universidad Autónoma del Estado de Morelos- Posgrado en Ciencias Agropecuarias y Desarrollo Rural. Av. Universidad Núm. 1001, Col. Chamilpa, Cuernavaca, Morelos, México. C. P. 62209. (;


Nayarit is the main producer of soursop (Annona muricata L.) worldwide; however, varieties or ecotypes present in the state are not recognized most production is done on trees rootstock. Thus, the results of a preliminary investigation on the characterization of soursop fruits (Annona muricata L.) in Tepic, Nayarit are presented. The 13 trees eight years old, which were harvested from four to seven fruits between June and July 2014. The mass of fruit in the population varied between 837.8 and 2513 g, the average pulp, peel and seed ratio was 71, 20.5 and 8.5%, respectively, in the population. The fruits were on average elliptical, with seed content between 19 and 311. Skin color of the fruit was green and slightly bright (h= 151.7 - 164.9, C*= 9.4-21.4; L*= 30.2 -45.8 ), average firmness 7.3 N, total soluble solids between 7.1 and 14 °Brix, titratable acidity average was 0.7% and pH 3.6. The cluster analysis formed 4 groups. Group four had the lowest number of seeds (41) and higher amount of SST SST (13.2 °Brix). The variables mass, size and color of the peel helped to split the groups. Soursop variability was determined with potential to obtain fruits for fresh market and industrial; thus to propagate the species.

Keywords: Annona muricata; ecotypes; morphology; postharvest


Nayarit es el principal productor de guanábana (Annona muricata L.) a nivel mundial; sin embargo, no se reconocen variedades o ecotipos presentes en la entidad, la mayoría de la producción se realiza en árboles a pie franco. Así, se presentan resultados de una investigación preliminar sobre la caracterización de frutos de guanábana (Annona muricata L.) de Tepic, Nayarit. Se seleccionaron 13 árboles de ocho años de edad, de los cuales se cosecharon de cuatro a siete frutos entre junio y julio de 2014. La masa del fruto en la población varió entre 837.8 y 2513 g, la proporción promedio de pulpa, cascara y semilla fue de 71, 20.5 y 8.5%, respectivamente, en la población. Los frutos fueron elípticos en promedio, con un contenido de semillas entre 19 y 311. El color de la epidermis del fruto fue verde opaca y poco luminosa (h= 151.7 - 164.9, C*= 9.4-21.4; L*= 30.2 -45.8), la firmeza fue en promedio de 7.3 N, los sólidos solubles totales entre 7.1 y 14 °Brix, la acidez titulable promedio fue de 0.7 % y el pH de 3.6. El análisis de conglomerados formó 4 grupos. El grupo cuatro presentó el menor número de semillas (41) y mayor cantidad de SST (13.2 °Brix). Las variables masa, dimensiones y color de la cascara ayudaron a la separación de los grupos. Se determinó variabilidad en guanábana con potencial para obtener frutos para el mercado en fresco e industrial; así como para propagación de la especie.

Palabras clave: Annona muricata; ecotipos; morfología; poscosecha


Soursop (Annona muricata L.) is the most established fruit from Annona species; the Caribbean region, southern Mexico and Guatemala are considered as centers of origin, although it is distributed in Africa and Asia. It is used as fruit for fresh consumption and processed regionally. In South America the highest production of soursop concentrates in Venezuela, Brazil and Colombia, while in Central America, Mexico is the largest soursop producer and consumer (Vavilov, 1994; Paull and Duarte, 2011; Coelho de Lima et al., 2011). In Mexico during 2013 it was cultivated in about 2724 h, with an average yield of 8.5 t ha-1 with a total production value of nearly 105 million pesos (SIAP, 2014). Approximately 73% of the area established in the country is in the state of Nayarit (SIAP, 2014). Soursop production is exported regularly throughout the year and there has been an increase in average values of consumption in the fresh market (Coelho de Lima et al., 2011).

Soursop propagation is usually by seed (Paull and Duarte, 2011). In Mexico soursop fruit present great diversity of genotypes, because most plantations consist of trees propagated by seed, this variability has been studied very little (Evangelista-Lozano et al., 2003). In Nayarit have been carried out few studies related to quality and post-harvest of this species using tree rootstock where no variety is indicated (Castillo-Animas et al., 2005; Tovar-Gómez et al., 2011). Evangelista-Lozano et al. (2003) indicate that in other countries like Brazil, Costa Rica and Puerto Rico have made individual selection of trees with high yield and interest towards industry, while in Mexico few studies have been done about it. Particularly in the state of Nayarit, where are no studies.

In Brazil, due to the lack of selected varieties, most commercial soursop areas were established from seed, which represents a great variability in yields and fruit quality (Do Sacramento et al., 2003). Tovar-Gómez et al. (2011) indicate up to 60% of post-harvest losses due to the perishable nature and fragility to physical damage of the fruit, causing that soursop exportation to be made on the day of harvest and transported by air at 13 °C, which is costly. Benkeblia et al. (2011) report that the first step to define the quality and productivity of a fruit is the selection of cultivars, because each attribute of fruit quality is highly regulated by multiple processes inherent to the individual fruit; therefore the selection of an appropriate range for a particular growing condition and market channel can greatly influence its postharvest quality.

Considering the above is necessary to perform studies on characterization of fruits in Nayarit, in order to document the characteristics of these soursop groups, which in later works support breeding in the region and improve its postharvest handling. Therefore the aim of this paper is an initial effort in the study of the physical and chemical characteristics of soursop tree established by rootstock in an orchard from the municipality of Venustiano Carranza, in Tepic, Nayarit.

Materials and methods

Fruit collections were performed in the central region of Nayarit from June 2014 to July 2014, collecting fruits from 13 trees distributed in the community Venustiano Carranza (latitude 21° 32'2.77" north and longitude 104° 58'39.73" west), has a warm humid climate (INEGI, 2005). The fruits were collected from trees rootstock, 8 years old. The trees were selected according to criteria of the producer, which are: trees have higher production, better quality (size, greater amount of pulp, higher homogeneity) regarding the fruits from the rest of the orchard. From each tree were removed manually four to seven fruits at physiological maturity, using the harvest index used by producers in the region, who count 160 days after anthesis when the fruit becomes clear or yellowish green; this color change has also been mentioned as an indicator of harvest by other authors (Worrell et al., 1994). The fruits were transported in plastic boxes to the special laboratory analysis of the Food Technology Unit from the Autonomous University of Nayarit where ripened at 26 °C and 85% RH.

From each fruit recorded longitudinal diameter (cm), equatorial diameter (cm), total diameter (cm) fruit weight, peel, pulp and seed (g); number of seeds, total soluble solids (°Brix), pH and firmness (Miranda et al., 2003). Shell color, brightness or reflected light (L) (0= pure black, 100= pure white), angle hue (h) (0= red purple, 90= yellow) and chromaticity (C, intensity from gray to pure chromatic color) were determined with a colorimeter (Baking Meter BC-10, Konita Minolta®). The acidity was determined by AOAC Official Method (2005), by volumetric titration with sodium hydroxide (NaOH) and phenolphthalein as indicator, the results were expressed in percentage of ascorbic acid.

The data was subjected to a descriptive statistics analysis of the evaluated population, with the UNIVARIATE procedure from SAS (SAS, 2000), then the data was studied with the multivariate cluster analysis, using the Numerical Taxonomy System (NTSYSpc 2.1); for clustering the Sequential, Hierarchical, Agglomerative and Nest (SHAN) clustering, with which was built the respective grouping dendrogram with average linkage (UPGMA) and the coefficient of cophenetic correlation. In the clustering analysis was used the principal component with the standardized correlation matrix, with this analysis identified the characters that contributes the most to differentiate the evaluated soursop materials.

Results and discussion

Descriptive statistics

The mass from the population of soursop fruit evaluated showed high variation (25.7%), with values between 837.8 and 2513 g, the maximum value was for A6 (Table 2). Evangelista-Lozano et al. (2003) report soursop fruit with values between 408 and 513 g from Jiutepec, Morelos, Mexico, while in Brazil (Do Sacramento et al., 2003) report soursop mass between 2.39 and 3.21 kg. This suggests that the fruits from the assessed orchard outweigh those produced in Morelos and some trees produce fruit with similar mass to selections from Brazil.

Table 1. Soursop materials (Annona muricata L.) and geographical location of collection. 

Materiales Localidad Ubicación geográfica
LN LO Altitud
A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 Venustiano Carranza 21° 32' 2. 77" 104° 58' 39.73" 893 m

Table 2. Descriptors for quantitative characteristics and statistical parameters from the sample of soursop fruit (Anonna muricata L.). 

Variable Media S 2 r Máximo Mínimo CV (%)
Masa (g) 1529.7 383.7 1675.2 2513 (A6) 837.8 (A9) 25.72
Masa de la semilla (g) 99.3 39.1 184.5 208 (A2) 23.5 (A9) 39.21
Masa de la cascara (g) 240.3 61.2 257.5 387.6 (A2) 130.1 (A10) 25.02
Masa de la pulpa (g) 834 300.6 1425.8 1550.5 (A6) 124.7 (A13) 35.28
Diámetro longitudinal (cm) 19.5 2.5 10.3 25.3 (A6) 15 (A13) 13
Diámetro ecuatorial (cm) 12 1.5 9.2 18.8 (A6) 9.6 (A10) 12.4
Diámetro (cm) 39.5 3.9 15.8 47.8 (A2) 32 (A10) 9.9
Numero de semillas 137 70.4 292 311 (A11) 19 (A9) 47.1
Luminosidad (L*) 38.6 3.6 15.6 45.8 (A8) 30.2 (A6) 9.5
Cromaticidad (C*) 16.1 2.6 12 21.4 (A8) 9.4 (A6) 16.7
Matiz (h) 158.3 3 13.1 164.9 (A10) 151.7 (A6) 1.9
Firmeza (N) 8.3 8.9 38.3 42.3 (A17) 3.9 (A8) 71.3
pH 3.6 0.3 2 5.1 (A17) 3.1 (A3) 10.2
Solidos solubles totales (ºBrix) 10.9 1.6 6.8 14 (A9) 7.1 (A12) 15.7
Acidez titulable (%) 0.7 0.2 0.8 1.2 (A11) 0.3 (A12) 26.8

The mass ratio of pulp, peel and seed was 71.0, 20.5 and 8.5%, respectively; observing high coefficients of variation due to its mass, between 25.0 and 39% (Table 2). Most pulp was obtained in the A6 material with more than 1.5 kg (Table 2), materials with greater mass of seed and peel were A2 and A2 trees, both surpassing the 200 g (Table 2). Do Sacramento et al. (2011) indicate that outstanding materials from Brazil had proportions between 83.1 and 85.8% in pulp, 7.1 and 9.7% in peel and 3 and 5% in seed. This indicates that materials from Nayarit have higher proportion of peel and seeds, thereby reducing the proportion of the pulp.

Diameter variables showed low coefficients of variation between 9.9 and 13.0 cm (Table 2). Hidalgo (2003) suggests that variables with lower coefficient of variation of 20% indicate little variability in these characters. The longitudinal and equatorial diameter ratio indicates that overall the population was 1.6; i.e. greater tendency to an elliptical shape (Table 2). The average number of seeds in various populations ranged from 19 and 311 (Table 2), the coefficient of variation was one of the greatest of all variables (47.2%). These results are attributed to soursop has pollination problems and fertilization of its flowers, due to the characteristics of morphology of the flower and pollinators thereof (Franco et al., 2001) which caused high seed variation in fruits evaluated.

Soursop peel color was green (h between 151.7 and 164.9) opaque (C* between 9.4 and 21.4) with low luminosity (L* between 30.2 and 45.8) (Table 2). The chromaticity parameter showed the highest coefficient of variation in fruit color. Evangelista-Lozano et al. (2003) indicate that soursop fruits grown in Jiutepec, Morelos, the hue values were between h= 92.9 ± 2.5 and 96.7 ± 2 and luminosity between L*= 46.3 ± 2.7 and 47.5 ± 3.7, indicating a bright green little intense. These results indicate that fruits from Nayarit have a tendency to green than fruits from Morelos, although less bright.

Firmness was the variable with higher coefficient of variation (71.4), the values were between 3.93 and 42.3 N (Table 3). Márquez et al. (2012) indicate that soursop on mature stage its firmness is between 4.7 and 7.4 N, while in the stage over mature the average values are 3.6 N. This suggests that the average firmness of the population match with a mature stage, since firmness had average values of 8.3 N values (Table 2).

Table 3. Average values of evaluated variables in 4 groups formed by clustering of 13 soursop materials from ejido Venustiano Carranza municipality of Tepic, Nayarit. 

I 19.14 11.87 38.18 104.55 73.07 246.26 728.43 40.12 16.13 159.41 1361.71 21.61 3.79 10.97 0.6
II 20.5 12.69 41.81 187.6 123.28 264.13 1027.08 37.7 16.31 158.4 1718.48 8.47 3.58 10.44 0.8
III 17.43 10.17 34.17 204.33 128.83 172.23 535.93 42.07 18.8 161.83 1051.73 7.19 3.63 10.23 0.8
IV 17.53 10.93 34.3 40.33 33.6 173.97 495.9 34.08 13.49 156.79 968.67 9.97 3.57 13.12 0.7

Soluble solids from the population under study were between 7.1 and 14 °Brix (Table 2). Borrero et al. (1995) indicate that soursop at physiological maturity reaches values of 7.0 °Brix. Three days after harvesting the fruits reach values between 10 and 16% (Paull and Duarte, 2011). The Ministry of Agriculture from Brazil (1999) indicates that soursop must have a minimum of 9 °Brix in consumption. Do Sacramento et al. (2012) determined values between 12.1 and 13.8 °Brix in some selections from Brazil; while fruits from Morelos and Nayarit have reported values between 11 and 12 (Evangelista-Lozano et al., 2003). pH of the soursop fruits showed minimum values of 3.1 and maximum of 5.1 and on average the population showed values of 3.6 (Table 2). The Ministry of Agriculture from Brazil (1999) indicates that the minimum pH value for soursop is 3.5; which is very close to the one from this work on average for the entire population. Finally titratable acidity was on average 0.7%, with higher values in the coefficient of variation (26.8%) (Table 2); these values are lower than 0.92-1.00 in soursop fruits from Brazil (Do Sacramento et al., 2003) but similar to those reported by Márquez et al. (2012) for soursop from Colombia.

Clustering and principal component analysis

Cluster analysis showed that with a mean index of taxonomic distance of 1.26, four groups were formed (Figure 1). Group I located 5 trees: A1, A4, A11, A12 and A13, these fruits showed low acidity (<0.6%), the highest firmness (21.6 N), pH (3.79) and intermediate values for total soluble solids (10.97 °Brix) (Table 3). Group II 6 materials: A2, A3, A5, A6, A7 and A10, these fruits showed the highest values in dimensions, number of seeds (187.6), total mass (1718.4 g) and peel mass (264.1 g) and pulp (1 027 g), also the the highest value for titratable acidity (0.8%) (Table 3); group III consisted of a single tree (A9), this had the highest seed weight (128.8 g), lower firmness (7.2 N) and high titratable acidity (0.8%), with similar values to the latter group (Table 3). Group IV was formed by tree A8, where its fruits showed the lowest number of seeds (40.3), lower fruit mass (968.6 g), the color with less tendency to green (h= 156.8), opaque (C*= 13.5) and less bright (L*= 34.08) also the highest amount of soluble solids (Table 3).

Figure 1. Dendogram from 13 soursop materials (Annona muricata L.) built by UPGMA (average linkage) from 15 attributes. 

Castillo-Animas et al., (2005) classified soursop fruit, from an orchard of Peñita Jaltemba, Nayarit in three sizes: a) small between 350 and 550 g b) medium between 560 and 750 g and large between 760- 1200 g. In this work all the fruits were large (Table 3). The fruits from groups with the highest number and seed mass can be important to be used in propagation of rootstocks or to search for useful antioxidants in different industries (Correa et al., 2012). The tree from group IV showed higher values for soluble solids and lower seed proportion which could be considered the most promising for fresh consumption and industrialization.

The principal component analysis (CP) indicates that CP1, CP2 and CP3 explained respectively 34.71, 23.13 and 16.39% of variability, so that together accounted for about 74.3% of total variability (Table 4).

Table 4. Eigenvalues and proportion of total variance explained by principal components, based on the correlation matrix applied to 15 quantitative characteristics from 13 soursop materials in ejido Venustiano Carranza municipality of Tepic, Nayarit. 

Componente principal Valor propio Proporción de la varianza explicada (%)
Absoluta Acumulada
1 4.51 34.71 34.71
2 3 23.13 57.84
3 2.13 16.39 74.24
4 1.2 9.25 83.49
5 0.75 5.8 89.29
6 0.58 4.5 93.8
7 0.36 2.77 96.57
8 0.23 1.78 98.35

CP1 was defined by the size of the fruit, total mass, fruit pulp and its structures (Table 5). CP2 was defined by chromaticity and inversely by firmness and titratable acidity.

Table 5. Eigenvectors and degree of participation of 15 variables in the first three principal components based on the correlation matrix from 13 soursop ecotypes (Annona muricata L.). 

Variable original Vectores propios
Diámetro longitudinal (cm) 0.6377 0.3272 0.1035
Diámetro ecuatorial (cm) 0.8889 0.184 0.0305
Diámetro (cm) 0.9047 0.0062 0.221
Numero de semillas 0.6472 -0.522 -0.1087
Peso de la semilla (g) 0.7779 -0.4508 0.0228
Peso de la cascara (g) 0.7682 0.3588 0.3785
Peso de la pulpa (g) 0.9526 0.1282 0.0502
Luminosidad (L*) -0.3735 -0.4589 0.6864
Cromaticidad (C*) -0.1386 -0.7709 0.5687
Matiz (h*) -0.2861 -0.2349 0.7609
Masa (g) 0.9516 0.0893 0.177
Firmeza (N) -0.2077 0.7438 0.4635
pH -0.2215 0.4325 0.1267
Solidos solubles totales (ºBrix) -0.5433 0.0534 -0.0544
Acidez titulable (%) 0.2862 -0.8321 -0.3486

Finally CP3 was defined by color brightness (L*) and hue (h). In other characterization studies in tropical fruits like mamey and Mexican plum, mesocarp mass characteristics and color have determined the greatest variability and helped in group formation (Gaona- García et al., 2008; Alia et al., 2012). It is important to consider in future works to expand the exploration area and add variables of physiological interest such as respiration, ethylene production, production of fermentable volatile, antioxidant activity, concentration of total phenols and ascorbic acid to obtain materials with good flavor, longer shelf life and greater contribution to human health.


It was observed variability in soursop grown in Tepic, Nayarit. Four groups of trees with potential for development of fresh and industrial market were detected; thus to propagate the species. The variables mass, size and peel color helped to separate the groups.

Literatura citada

Alia, T. I.; Y. I.; Astudilllo, M. C. A.; Nuñez, C. L. A. Valdez, A. S.; Bautista, B. E.; García, V. R. Ariza, F. y Rivera, C. F. 2012. Caracterización de frutos de ciruela mexicana (Spondias purpurea) del sur de México. Rev. Fitotec. Mex. (5):21-26. [ Links ]

AOAC. 2005. 18th (Ed.). Gaithersburg, Maryland, U.S.A. [ Links ]

Benkeblia, N.; Tennant, P. F.; Jaeandha, S. K. and Gill, P. S. 2011. Preharvest and harvest factors influencing the postharvest quality of tropical and subtropical fruits. In: postharvest biology and Technology of Tropical and Subtropical Fruits. V. 1: Fundamental issues. Yahia, M. E. (Ed.) Woodhead Publishing Limited. 113-141 pp. [ Links ]

Borrero, F. V.; Hernández, E.; Jiménez, R. y Roa, A. 1995. Determinación de índices de madurez de cosecha en gunabana (Annona muricata) en dos regiones de Colombia. In: IV simposio Internacional de Manejo, Calidad u fisiología Postcosecha de Frutas. Santiago, Universidad de Chila. Lizana. 42:25-43. [ Links ]

Castillo, A. D.; Varela, H. G.; Pérez, S. y Pelayo, Z. B. R. 2005. Daños por frío en guanábana. Índice de corte y tratamientos postcosecha. Rev. Chapingo Ser. Hortic. 11:51-57. [ Links ]

Coelho, de L. M. A. and Alves, R. E. 2011. Soursop (Annona muricata L.). In: postharvest biology and Technology of Tropical and Subtropical Fruits. Mangosteen to white sapote. Yahia, M. E. (Ed.) Woodhead Publishing Limited. 4:363-391. [ Links ]

Correa, G. J.; Ortiz, D.; Larrahondo, E. J.; Sánchez, M. M. y Pachon, H. 2012. Actividad antiozxidante en guanábana (Annona muricata L.): una revisión bibliográfica. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 11:111-126. [ Links ]

Do Sacramento, K. C.; Faria. J. C.; Da Cruz; W F. L. de S. Barretto, J.; Gaspar, W. e Vieria, L. J. B. 2003. Caracterizacao física e química de frutos de tres tipos de gravioleira (Annona muricata L.). Rev. Bras. Jaboticabal. 25:329-331. [ Links ]

Evangelista, L. S.; Cruz, C. J. G.; Pérez, G. S.; Mercado, S. E. y Dávila, O. G. 2003. Producción y calidad frutícola de guanábanos (Annona muricata L.) provenientes de semilla de Jiutepec, Morelos, México. Rev. Chapingo Ser. Hortic. 9:69-79. [ Links ]

Franco, M. O.; J. Jass, E.; García, V. y Saucedo, C. 2001. Crecimiento y calidad de frutos de Annona muricata L. con diferente intensidad de polinización. Rev. Fitotec Mex. 24:139-144. [ Links ]

Gaona, G. A.; Alia, T. I.; López, M. V.; Andrade, R. M.; Colinas, L. M. T. y O. Villegas, T. O. 2008. Caracterización de frutos de zapote mamey (Pouteria sapota) en el suroeste del estado de Morelos. Rev. Chapingo Ser. Hortic. 14:41-47. [ Links ]

INEGI. 2005. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Tepic, Nayarit. [ Links ]

Márquez, C. C. J.; Villacorta, L. V.; Betancur, D. P. P.; Ciro, V. H. J. y Cartagena, V. J. R. 2012. Physiological and physicochemical characterization of the soursop (Annona muricata L. cv. Elita). Revista de la Facultad Nacional de Agronomía-Medellín 65:6477-6486. [ Links ]

Ministerio de Agricultura de Brasil. 1999. Portaria Núm. 136. Diario Oficial Núm. 62. Secao 1-5 pp. [ Links ]

Miranda, L. D.; Barragán, Q. E. y Barreto, O. D. 2003. Manejo integrado del cultivo de la guanábana: innovaciones tecnológicas. Ibagué: Corpoica. 189. [ Links ]

Paull, R. E. and Duarte O. 2011. Tropical fruits. Volume 2. CABI Publishing. Oxfordshire, UK. 371. [ Links ]

SAS Institute Inc., SYSTEM 2000® Software: Product Support Manual, Version 1, First Edition, Cary, NC: SAS Institute Inc., 2000. [ Links ]

SIAP. 2014. Cierre de la producción agrícola. [ Links ]

Tovar, G. B.; Mata, M.; de Oca. M.; García, G. H. S. y Montalvo, G. E. 2011. Efecto de emulsiones de cera y 1-metilciclopropeno en la conservación poscosecha de guanábana. Rev. Chapingo Ser. Hortic. 17:53-61. [ Links ]

Vavilov, N. I. 1994. México y Centroamérica como centro básico del origen de las plantas cultivadas del nuevo mundo. Traducción. Gribosvskaia, E y Ortega, P. R. Rev. Geog. Agríc. 20:15-34. [ Links ]

Worrell, D. B.; Carrington, C. M. S. and Huber, D. J. 1994. Growth, maturation and ripening of soursop (Annona muricata L.). Sci. Hortic. 57(1-2):7-15. [ Links ]

Received: April 2016; Accepted: July 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons