SciELO - Scientific Electronic Library Online

 
vol.7 número2Propagación in vitro de guayaba (Psidium guajava L.) a partir de segmentos nodalesDeterminación de la aptitud del terreno para maíz mediante análisis espacial multicriterio en el Estado de México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 no.2 Texcoco Fev./Mar. 2016

 

Articles

Heterosis and genetic parameters in lines derived from native populations in tropical corn Tamaulipas

Javier González Martínez1 

José Alberto López Santillán1 

Benigno Estrada Drouaillet1 

Rafael Delgado Martínez1 

José Agapito Pecina Martínez2 

Edmundo Sostenes Varela Fuentes1 

Eduardo Osorio Hernández1 

Mario Rocandio Rodríguez1  § 

1Universidad Autónoma de Tamaulipas- Facultad de Ingeniería y Ciencias. Centro Universitario Adolfo López Mateos. Victoria, Tamaulipas. C. P. 87149, México.

2Colegio de Postgraduados-Instituto de Recursos Genéticos y Productividad, Carretera México-Texcoco, km 36.5. C. P. 56230, Montecillo, México. (a2123018007@alumnos.uat.edu.mx; jalopez@uat.edu.mx; benestrada@uat.edu.mx; rdelgado@uat.edu.mx; jpecina@colpos.mx; svarela@uat.edu.mx; eosorio@uat.edu.mx).


Abstract

The effects of general combining ability (ACG) and specific (ACE) for grain yield and its components was determined, in addition to estimating the degree of dominance, heterosis and heritability, in order to identify and assess heterotic patterns among corn inbred lines developed from native germplasm of central and southern Tamaulipas. The 30 direct and reciprocal crosses and their parents were evaluated in Güemez and Rio Bravo, Tamaulipas state, during the autumn-winter 2012-2013 cycle. The experimental unit consisted of a row of 5 m in length, with a row spacing of 0.8 m and 0.25 m between plants. Evaluations were established in a randomized complete design with three replications blocks. Grain yield (RGha), ear length (LMZ), ear diameter (DMZ), number of grains per ear (NGM), plant height (AP), single grain weight (PIG) and length were measured at flowering male (DFM). To estimate the effects of ACG and ACE, was used I Griffing method. The results of combined analysis showed significant differences for genotypes. The L1, L2, L4, L5 and L6 parents were involved in the best crosses for grain yield, while a cross L1 × L5, L2 × L4 and L5 × L6 showed positive effects of heterosis and ACE. The crosses L4 × L3, L4 × L5, L5 × L4, L5 × L6, L6 × L4, L6 × L5 yields showed above average grain. Additive effects were the main component for the expression of the variables evaluated.

Keywords: Zea mays L.; combining ability; diallel; native germplasm

Resumen

Se determinó los efectos de aptitud combinatoria general (ACG) y especifica (ACE) para rendimiento de grano y sus componentes, además de estimar el grado de dominancia, heterosis y heredabilidad, con el propósito de identificar y evaluar patrones heteroticos entre líneas endogámicas de maíz desarrolladas a partir de germoplasma nativo del centro y sur de Tamaulipas. Las 30 cruzas directas y recíprocas, así como sus progenitores se evaluaron en Güemez y Rio Bravo, estado de Tamaulipas, durante el ciclo otoño-invierno de 2012-2013. La unidad experimental consistió de un surco de 5 m de longitud, con una distancia entre surcos de 0.8 m y de 0.25 m entre plantas. Las evaluaciones se establecieron en un diseño de bloques completos al azar con tres repeticiones. Se midió rendimiento de grano (RGha), longitud de mazorca (LMZ), diámetro de mazorca (DMZ), número de granos por mazorca (NGM), altura de planta (AP), peso individual de grano (PIG) y días a floración masculina (DFM). Para estimar los efectos de ACG y ACE se empleó el método I de Griffing. Los resultados obtenidos del análisis combinado indicaron diferencias significativas para los genotipos. Los progenitores L1, L2, L4, L5 y L6 estuvieron involucrados en las mejores cruzas para rendimiento de grano, mientras que las cruzas L1 × L5, L2 × L4 y L5 × L6 mostraron efectos positivos de heterosis y ACE. Las cruzas L4 × L3, L4 × L5, L5 × L4, L5 × L6, L6 × L4 L6 × L5 mostraron rendimientos de grano superiores a la media. Los efectos aditivos fueron el componente principal para la expresión de las variables evaluadas.

Palabras clave: Zea mays L.; aptitud combinatoria; dialélico; germoplasma nativo

Introduction

The formation of synthetic varieties and hybrids of corn (Zea mays L.) is an ongoing process that involves the development of lines and identifying the best hybrid combinations (De la Cruz et al., 2010; Borghi et al., 2012; Badu et al., 2013). Gardner and Eberhart (1966) report that use analysis diallel crosses to estimate the components of the genetic variance, as well as specified (ACE) genetic parameters of general combining ability (ACG) and which are used to identify superior combinations and thus able to select the best parents for the design of more efficient breeding strategies (Gutierrez et al., 2002; Yao et al., 2013). According to Sprague and Tatum (1942), the average GCA corresponds to the behavior of a parent in a series of crosses and ACE as the deviation of each crossing over the average behavior of the parents involved in the crosses. The information in the diallel crosses is also useful to study the heterosis of yield and its components.

Corn, other studies have indicated the importance of increasing performance by heterosis (Vasal et al., 1992; Vasal et al., 1995; Antuna et al., 2003; Reyes et al., 2004; De la Cruz et al., 2010). Heterosis is the result of adding and interaction of a large number of genetic factors, provided by parents and assembled in the resulting hybrid, based on the assumption of dominance and Overdominance (Allard, 1999), so that, in terms gene action, heterosis is mainly due to interaction effects between alleles and dominance (Crown, 1999). Thus, to achieve the positive effects of heterosis in the formation of hybrid corn is to identify sources of germplasm heterotic potential (Márquez, 1988; Gutiérrez et al., 2004; Esquivel et al., 2011).

Tamaulipas state is considered within the areas that are centers of origin and genetic diversity of corn (Zea mays L.) in Mexico (Ortega et al., 1991; SAGARPA, 2012), which is established in most municipalities; in tropical regions of central and southern native germplasm it is still used, mainly because improved cultivars represent high investment and sometimes do not show adaptation to the specific weather conditions and production systems (Reyes and Cantú, 2005; Castro et al., 2011), even if it is proven agronomic potential and heterotic they have some native populations of Tamaulipas (Pecina et al., 2011; Pecina et al., 2013), its use has been minimal, due inter alia to lack continuity in research, and little information on their behavior and use of native corn populations in these regions.

In this context, it is a pressing need to generate specific improvement programs, with particular purposes and avoid a likely loss of this germplasm (Castro et al., 2013). The objectives of this study were to analyze the effects of general combining ability (ACG) and specific (ACE) on yield and its components six corn lines and their hybrid combinations also estimate the degree of dominance, heterosis and heritability to identify and evaluate the heterotic patterns among corn inbred lines developed from the native germplasm central and southern Tamaulipas.

Materials and methods

Location of the experiments

During the season autumn-winter 2012-2013, under irrigation, works were established at two locations in Tamaulipas: Güemez (23° 45' north latitude and 98° 59' west longitude, altitude 145 m, average temperature and rainfall annual of 22 °C and 700 mm, respectively) and Rio Bravo (25° 57' north latitude and 98° 01' west longitude, altitude of 25 m, annual average temperature 22.6 °C and 653 mm rainfall respectively).

Genetic material

The genetic material used was the result of a complete diallel six inbred lines S3 (Table 1) considering their direct and reciprocal crosses (30 cross) over the six inbred lines S3 as parents and as witnesses commercial hybrid H-440 were included and H-339 formed by the breeding program INIFAP corn in the Campo Experimental Rio Bravo, Tamaulipas. Which produced a total of 38 genotypes.

Table 1 S3 corn inbred lines used in a random mating design derived from native germplasm of central and southern Tamaulipas. 

Línea Población Localidad y municipio de origen
L1 3001 Ejido Concepción, Padilla, Tamaulipas
L2 3007 Colonia Agrícola las Cruces, Tula, Tamaulipas
L3 3012 Ejido Guadalupe Victoria, Tula, Tamaulipas
L4 3033 Ejido El Olivo, Llera, Tamaulipas
L5 3040 Ejido El Olivo, Llera, Tamaulipas
L6 3001 Ejido Concepción, Padilla, Tamaulipas

The parental lines were formed from native populations in tropical corn predominance of Tuxpeño race in all collections, but with influences from other races as Vandeño (influence on all collections), Mouse (influence on collections Padilla), Olotillo (influence on collections Llera) and Northern Conical (influence on the collections of Tula) in the state of Tamaulipas, and identified as outstanding performance and precocity in previous studies genotypes (Pecina et al., 2009; Pecina et al., 2011).

Conducting experiments

Sowing was performed on 6 and 10 February in the Experimental Rio Bravo and Güemez, respectively, the 38 genotypes were evaluated under irrigated conditions in both locations. Planting was carried out manually, placing two seeds every 0.25 m between plants and 0.80 m between rows. It is thinned when the plants presented the fifth and sixth leaf, leaving one plant per hill.

Fertilization was done with 80-60-00 and 135-50-00 dose Rio Bravo and Güemez, respectively, of which half of the nitrogen and total phosphorus in the seed was applied, and the rest of nitrogen the second weeding in both locations. Control weeds and insects are carried out in accordance with the recommendations for corn production in the north-central Tamaulipas (Reyes et al., 1990). Harvests were held in June-July 2013.

Design and experimental unit

The experimental design was randomized complete block with three replications was used to evaluate 38 genotypes. The experimental unit consisted of a row of 5 m long and 0.8 m wide, giving a useful plot area of 4 m2 with 21 plants per row, corresponding to a population density of 50 000 plants ha-1.

Characters evaluated

The day were determined to male flowering (DFM), counting from the day of planting until the time that 50% of the plants in each plot freed pollen; plant height (AP), measured in cm from ground level to the apex of the panicle. At the time of harvest to five pods which are measured length (LMZ) and average diameter of the cob (DMZ) in cm they were selected; number of grains per ear (NGM); Individual grain weight (PIG) g was obtained with the average weight of a sample of 100 grains taken at random from each experimental plot and grain yield (RGha) is determined in kg ha-1 adjusted to the 15% moisture.

Statistic analysis

The variance analysis to calculate the general combining ability (ACG) and specific (ACE) of the parental lines and crosses (direct and reciprocal) was made according to Method 1 of Griffing (1956), using the program Diallel-SAS Method I proposed by Zhan and Kang (2003), using SAS software V.9.0. (SAS Institute, 2002). Higher values of the variables under study are those that exceed the value of the mean plus the standard error (μ + σ).

The effect of heterosis percentage was calculated relative average parent in combination with the formula H= (F1 - PM)/PM x 100; where H= heterosis (%); F1= mean phenotypic population; F1; PM= (Pi + Pj)/2, half the average phenotypic parent; Pi and Pj= mean phenotypic parent i and j. The average dominance degree was analyzed according to the criteria described by Molina (1992). Estimating σA2 and σD2 was performed from the variance components combined analysis of variance. The broad sense heritability was estimated using the formula H2= σg2 / σa2 + σga2  +σg2, where each component was estimated according to the procedures described by Molina (1992).

Results and discussion

Analysis of variance showed that the effect of localities was significant (p≤ 0.01) for all variables except for PIG (Table 2), demonstrating significant contrast between the towns of culture, where in addition to the natural features influenced of each locality, different planting dates and crop management in each. The effect of genotypes presented statistical differences (p≤ 0.01) in all variables, so it is inferred the existence of genetic diversity of the origin of the parents, enabling the identification of crosses with contrasting performances, as well as differences in the porte plant varieties and patterns.

Table 2 Mean squares analysis of variance combined across two locations, and Güemez Rio Bravo, Tamaulipas, Mexico, 2013. 

FV Gl RGha (kg ha-1) LMZ (cm) DMZ (cm) NGM AP (cm) PIG(g) DFM
Localidad (L) 1 280297882** 97 7** 14.26** 90765.8** 60223.5** 1060.5 ns 2242.7**
Bloques(L) 4 774743.5 ns 0.8 ns 0.07 ns 4311.6* 659.4** 1498 8 ns 3.9 ns
Genotipos (G) 35 2408593.5** 2.1** 0.17** 4809.3** 422.8** 2246.2** 27.2**
ACG 5 10906018.3** 5.4** 0.61** 8146.3** 881.0** 7901.7** 64.8**
ACE 15 778441.5 ns 1.1ns 0.08 ns 2583.5 ns 202.9** 470.8 ns 13.8**
ER 10 1206270.5* 2.1* 0.12** 5922 6** 489.9** 2136.5* 28.1**
EM 5 413434.2 ns 3 2** 0.08 ns 8784.7** 234.1* 970.7 ns 58.4**
GxL 35 710959 5 ns 1:8* 0.05 ns 2282 ns 111.4ns 1508.0** 6.4*
LxACG 5 396613.8ns 1 7 ns 0.09 ns 1475.5 ns 121.9ns 1393.6 ns 6.0 ns
LxACE 15 458824 6ns 2.0* 0.05 ns 3135 6* 173 0* 14109ns 5.4 ns
LxEM 5 1334412.4ns 0.6 ns 0.06 ns 676.2 ns 12.9 ns 3438.0** 9.9*
LxER 10 1067876 4 ns 1.5 ns 0.05 ns 1697.3 ns 46.4 ns 1643.2 ns 75*
Error 140 656394.3 1.2 0.05 1751.1 95.3 1150.4 4.1
CV(%) 19.7 70 5.23 10.0 5.0 15.0 26

** p≤ 0.01; * p ≤ 0.05; ns= no significativo; L= localidad; bloques (L)= repetición anidado en L ; G = genotipos; L × G= interacción L × G; ACG= aptitud combinatoria general; ACE= aptitud combinatoria específica; L × ACG = interacción L × ACG; L × ACE= interacción L × ACE; ER= efectos recíprocos; L × ER= interacción L × ER; EM= efectos maternos; L × EM= interacción L × EM; CV= coeficiente de variación; gl= grados de libertad.

Regarding the effects of ACG and ACE found that the ACG had significant effects (p≤ 0.01) for all variables, whereas ACE showed only significant variables AP and DFM, the value of the mean squares of ACG were higher for all traits, indicating that the effects of ACG contribute more to the genetic variation of yield and its components to the effects of ACE. This indicates the importance of additive gene action on non-additive effects in the characters evaluated (Pswarayi and Vivek, 2008), these results are consistent with those reported by Antuna et al. (2003), De la Cruz et al. (2010), Vasal et al. (1992) Pech et al. (2010) who found that the additive genetic action is the most important yield and plant height genetic component. When the effects of additive gene action outweigh the non additive gene action, it is suggested to improve the recurrent selection population, this mode Reyes et al. (2004) and De la Cruz et al. (2010) mention that first you have to exploit the additive variance for selection and then the non-additive variance by hybridization.

Interaction L × ACG not statistically affect the evaluated variables, indicating that the effects of ACG parents are specific according to each location, and suggests parents choose the best ACG effects for each locality. As for the interaction L × ACE significances (p≤ 0.05) for LMZ, NGM and AP indicate that the cross did not keep their ACE across locations for these variables, while RGha, DMZ, PIG and DFM maintained their ACE in each locality. On the other hand, the interaction L× L×ER and EM only affected significantly (p≤ 0.05) to the DFM and PIG (Table 2).

Estimates of the effects of GCA and SCA for the six lines and 15 direct crosses values are shown in Tables 3 and 4. For ACG in RGha per hectare, L5, L6 and L4 parents had the highest positive values with 455.0, 239.3 and 154.2 kg ha-1, respectively (Table 3). Registered GCA values are indicators of variability in parents, which is transmitted to their progeny, in addition to the knowledge of this variability contributes to the prediction that will each parent with their respective offspring (Zewdie et al., 2000), and so selecting plants that combine superior characteristics between parents. Regarding the effects of ACE RGR, the best crosses were L1 × L5, L5 × L6, L2 × L4 and L3 × L5, with values of 293.0, 203.4, 101.5 and 23.0 kg ha-1, respectively, while the rest of the crosses had negative values (Table 4).

Table 3 General combining ability (ACG) in six parents of S3 corn inbred lines at two locations in Tamaulipas. 

Progenitor RGha (kg ha-1) LMZ (cm) DMZ (cm) NGM AP (cm) PIG(g) DFM
LI -671 -0.44 -0.16 -9.86 -6.37 -19.24 0.25
L2 -129.9 -0.18 0.02 0.61 0.72 0.27 -1.71
L3 -47.5 0.02 -0.04 -13.28 0.72 3.26 0.04
L4 154.2 0.18 0.03 11.36 0.55 0.46 1.22
L5 455.0 0.33 0.11 12.66 -0.01 2.56 0.13
L6 239.3 0.09 0.04 -1.49 4.39 12.69 0.07
ES gi-gj 87.2 0.12 0.02 4.5 1.05 3.65 0.22

RGha= rendimiento de grano por hectárea; LMZ= longitud de mazorca; DMZ= diámetro de mazorca; NGM= número de granos por mazorca; AP= altura de planta; PIG= peso individual de grano; DFM días a floración masculina; ES sij-sjj= error estándar de los efectos de ACG.

Table 4 Specific combining ability (ACE) and heterosis (%) in 15 direct crosses six corn lines at two locations in Tamaulipas. 

Cruza RGha (kg ha-1) LMZ (cm) DMZ (cm) NGM AP (cm) PIG(g) DFM
ACE H(%) ACE H(%) ACE H(%) ACE H(%) ACE H(%) ACE H(%) ACE H(%)
LI xL2 -47.1 -10.5 0 -4.41 -0.03 -1.7 -2.51 -1.8 -0.66 -1.8 4.55 -3.3 0.01 2.5
LI xL3 -41 1 13.4 -0.33 -1 14 -001 -0 8 -3 72 4 5 -627 0.3 -5.24 -9 043 9
LI xL4 -23.4 -7.2 0.11 -0 97 -0 04 -1 11.17 -0 8 -3.52 -12.1 -13.31 -15.2 1 25 9.9
LI xL5 293 36.4 0.1 632 0.16 11.6 1778 17.5 3 62 1.7 9.99 6.9 -0 99 0 8
LI xL6 -53.1 -12 0.54 291 0 05 2.7 12 84 -0.2 -1.97 -1 421 13.3 1 57 2 8
L2 xL3 -52.5 12.8 051 637 -0 01 0 7.26 17.4 -2.8 9 -5.3 -4.5 0 14 2 7
L2 xL4 101.5 7.7 023 1 62 0 01 1.4 -1.91 2.4 1.89 3.3 1.51 -03 -0 46 04
L2 xL5 -263.2 10.1 -0 28 741 -0.1 -0.4 -13.78 13.8 -7 09 47 -0.98 -10 -1 28 5
L2 xL6 -219 5 7.4 -0 18 -2.06 -0.01 5 0 8 7.7 6 07 62 0.59 -2.2 -039 0.1
L3 xL4 -50.7 -4 9 -001 -3 14 0.11 -0.2 27 08 -7 1 428 3 8 227 5.9 -0 54 -04
L3 xL5 23 -97 -0 02 7.86 -0.02 3.1 -12 16 6 6 263 3.5 -4 98 -0 8 1.22 0.8
L3 xL6 -203.5 -73 -036 258 -0 02 -4.1 -1253 -5.8 -042 14 3 82 -04 -1.22 2.3
L4 xL5 -188 6 -2 1 -033 1 93 0 05 3 7 -4.87 10.6 -1 59 9 8 638 -06 0.21 14
L4 xL6 -351 2 4 3 0.1 241 -0 07 -0.8 -15.91 -1 -1.9 -1.6 3 38 -2 -074 4
L5 xL6 203.4 7 0.17 8 11 0 04 0.2 14.75 6.9 1.61 1.5 -778 -4.5 1.19 -0.4
ES sij-sjj 1988 026 005 1027 239 8.32 049

RGha= rendimiento de grano por hectárea; LMZ= longitud de mazorca; DMZ= diámetro de mazorca; NGM= número de granos por mazorca; AP= altura de planta; PIG= peso individual de grano; DFM días a floración masculina; ES sij-sjj= error estándar de los efectos de ACG.

The fluctuations of the effects of ACE in all traits, indicating that they can not be predicted based on the values of ACG effects of the parents, as indicated by Revilla et al. (1999); however, Reyes et al. (2004) note that the single cross will be high value of ACE if at least one of its parental lines is high ACG, which coincides with the findings in this study.

Heterosis values found ranged between -12.0 and 36.4%, eight of the 15 crosses studied showed positive heterosis for grain yield per hectare and were cross L1 × L5, L1 × L3, L2 × L3, L2 × L5, L2 × L4, L2 × L6, L5 × L6 and L4 × L6 with heterosis of 36.4, 13.4, 12.8, 10.1, 7.7, 7.4, 7.0 and 4.3, respectively (Table 4). These values are higher than those reported by Vasal et al. (1992); but lower than those reported by De la Cruz et al. (2010). Negative heterosis generally insufficient genetic diversity among populations (Han et al., 1991), or possibly to the presence of interalélicos intraalélicos effects or reducing the expression of the measured attribute character. Crossing a progenitor of low value of ACG with other effects ACG high a hybrid of good response from ACE was obtained, as in the case of cross L1 × L5, L2 × L4 and L3 × L5, but also showed good response ACE crosses × L5 L6 having good ACG progenitors.

In estimating the components of genetic variance, heritability and average dominance degree (Table 5), it was found that the additive variance was expressed mainly by additive effects in all the variables evaluated, as they had shown the significances in the mean squares of ACG in Table 2; Also, the dominance variance showed negative values in LMZ and PIG, indicating that these variables effects additives are interacting with these variables forming performance components presented. These results can be attributed to the proportion of additive genetic variance is greater than the genetic variance of dominance (as found in this study), but it could exploit both additive and dominance, variances by combining selection methodologies and hybridization. According to the results evaluated all variables presented low heritability values, characters DFM, AP and RGha expressed heritability values of 0.42, 0.34 and 0.30, respectively, which for this study were higher heritability values. The average degree of dominance d-) of DFM, AP and NGM according to variables Molina, (1992) are considered as partial dominance, which is manifested in crosses to be formed with parents and while the variables RGha, LMZ, DMZ and PIG showed values of 0.29, 0.32, 0.62 and 0.80, respectively. These results show that you can exploit the effects of dominance and additive effects of the lines evaluated in this work.

Table 5 Components of variance seven variables, broad-sense heritability and average degree of dominance of yield and its components six corn lines S3 evaluated at two locations in Tamaulipas. 

RGha (kg ha-1) LMZ (cm) DMZ (cm) NGM AP (cm) PIG (g) DFM
σA2 1688585.6 0.72 0.09 931.6 113.6 1234.8 8.5
σD2 70866.1 -0.04 0.02 483.3 62.5 -394.6 5.6
Η2 0.30 0.04 0.28 0.18 0.34 0.09 0.42
d- 0.29 0.32 0.61 1.02 1.05 0.80 1.15

RGha= rendimiento de grano por hectárea; LMZ= longitud de mazorca; DMZ= diámetro de mazorca; NGM= número de granos por mazorca; AP= altura de planta; PIG= peso individual de grano; DFM= días a floración masculina; σA2, σD2 = valores estimados de varianza aditiva y de dominancia; H2= valor estimado de heredabilidad en sentido amplio; d= valor estimado de grado promedio de dominancia.

Genetic crosses showed response set by the average values of the variables under study, expressed significant variation. Such a response is mainly due to inherited by parents for hybrid superior character, through crossbreeding (Esquivel et al., 2011). Regarding RGha, as the main component of interest, six of the cross (20%) exceeded 4 900 kg ha-1 performance which L6 × L4, L6 × L5 were the most outstanding (Table 6). Good expression presented these crosses is due to the origin of the parents (Table 1), which come from native populations that have been cultivated by farmers, adapting to adverse weather conditions and which have accumulated favorable genes that have allowed them adapt to these environmental conditions in the center of Tamaulipas (Castro et al., 2011; Pecina et al., 2013).

Table 6 Comparison of means of traits evaluated in 30 crosses and two tropical corn hybrids, Güemez and Rio Bravo, Tamaulipas, Mexico. 

CRUZAS RGha (kg ha-1) NGM LMZ (cm) DMZ (cm) AP (cm) PIG (mg) DFM(d)
L1 x L2 4 057.8 449.5 15.6 4.2 200.3 228.0 74.3
LI x L3 2 847.2 383.9 14.7 4.1 176.2 215.4 74.0
LI x L4 3 941.1 464.0* 15.9* 4.2 201.8 216.8 75.8
LI x L5 3 814.0 425.0 15.2 4.2 195.3 214.5 75.5
LI x L6 3 789.7 453.4* 15.9* 4 1 1904 201.0 79.5*
L2 x Ll 4 324.5 431.7 14.7 4.4 201.2 225.9 75.3
L2 x L3 4 055.6 393.2 15.1 4.0 194.1 214.9 74.3
L2 x L4 4 223.7 415.0 15.9* 4.4 198.6 241.0 75.3
L2 x L5 4 141.1 406 5 15.1 4.2 194.2 238.6 73.7
L2 x L6 3 982.4 395.9 14.6 4.2 205.6 240.2 74.7
L3 x Ll 3 691.8 436.7 16.2* 4.4 197.4 233.1 76.2
L3 x L2 4 333.4 387.9 15.6 4.1 201.2 241.8 76.8
L3 x L4 4 270.2 416 0 15 6 4.3 191 7 241.8 77.0
L3 x L5 4 541.4 389.9 15.5 4.2 197.8 221.1 79.8*
L3 x L6 4 134.3 395.3 15.1 4.2 201.7 248.0* 76.7
L4 x Ll 4 234.9 445.8 15.2 4.2 202.1 215.0 76.3
L4 x L2 4 048 9 475.0* 15 4 4.4 213.7* 221.8 78.0
L4 x L3 4 924.1* 427.5 15.6 4.2 199.1 226.5 79.5*
L4 x L5 5 012.0* 466.2* 16.0* 4.5* 204.8 239.1 79.2*
L4 x L6 4291.8 418.3 15.7 4.3 201.5 249.2* 77.3
L5 x Ll 4 1896 433.2 15.2 4.3 187.3 216.7 74.2
L5 x L2 4 526.7 425.3 15.8 4.3 203.2 232.1 76.5
L5 x L3 4 036.2 412.9 15.0 4.3 187.4 231.3 77.5
L5 x L4 4 945.9* 444.0 16.3* 4.3 197.9 228.3 76.7
L5 x L6 4939 1* 440.9 16.0* 4.4 201.1 258.7* 77.0
L6 x Ll 4 004.5 444.7 15.4 4.4 211.1* 238.5 74.8
L6 x L2 4 049.4 390.8 15.0 4.2 201.9 243.1 74.7
L6 x L3 3 999.8 410.4 15.6 4.2 198.9 235.4 77.3
L6 x L4 5 063.3* 451.7 15 8 4.4 205.2 207.9 79.3*
L6 x L5 5 205.9* 417.4 15.2 4.3 202.6 247.0* 76.5
H-439 5 876.5** 472.4* 16.6* 4 7** 191.6 250.4* 80.5*
H-440 3 593.3 381.0 13.9 3.9 154.1 177.6 72.5
media 4 284.1 425.0 15.4 4.3 197.2 229.4 76.5
σ 5 67.6 27.2 0.5 0.2 10.7 16.7 2.0

*mayor que µ + σ; **mayor que µ + 2σ; RG= rendimiento de grano; LMZ= longitud de mazorca; DMZ= diámetro de mazorca; AP= altura de planta; PIG= peso individual de grano; DFM= días a floración masculina.

For NGM outstanding cross was four, with L4 × L2 crosses the highest number of grains per ear 475.0 expressed, that value is higher than reported for lines and collections of native populations in this area (Pecina et al., 2009; Pecina et al., 2011). To LMZ seven crosses (23.3%) had values greater than the mean plus the corresponding standard error (15.4 cm), these values are similar to those reported by Pecina et al. (2013), who evaluated groups of crosses, with different paternal origin for the same geographic area. The DMZ was the least affected variable, ranging from 0.1 to 0.5 cm, L4 × L5 being the only crossing that exceeded the mean plus one standard error instead, similar values reported Pecina et al. (2011) and Pecina et al. (2013), who mentioned that this feature is distinctive in Olotillo and Tuxpeño races.

Higher prices for AP exceeded the average values and the corresponding standard error ranged between 211.1 and 213.7 cm which corresponded to the cross L6 × L1 and L4 × L2 respectively, which were higher than those reported by Pecina et al. (2009) who indicate that agronomically greater heights is undesirable because it presents a high correlation with the flattens of plants, which is a problem in native populations; however, in this study no such problem arose. The PIG showed higher values in crosses L5 × L6, L3 × L6, L6 × L5 and L4 × L6 securities 258.7, 248.0, 247.0, 249.2 respectively, which L5 × L6 was the most important though was not affected by changes in the environment (Andrade et al., 1996). It notes that L6 is expressed expressively on all outstanding cross.

For DFM five crossbreds (16.6%) exceeded 79 days, increasing the number of days for this area, in which lower values (67-73 days) (Pecina et al., 2013) are reported. Note that the hybrid H-439 behaved in a superior manner in grain yield (5 876.5 kg ha-1) and size of the cob, cross L6 × L4 and L6 × L5 they showed RGha of 5 063.3 and 205.9 kg ha-1, respectively, which they are lower than those obtained in return for the commercial hybrid, but are an acceptable option for further improvement, as L6, L4 and L5 parents behave expressively in their crosses in grain yield.

Conclusions

The combined analysis showed significant differences for genotypes. Progenitor L4, L5 and L6 lines showed the greatest effects of ACG to RGha to 154.2, 455 and 239.3, respectively, which can be used for hybrid formation.

The L1, L2, L4, L5 and L6 parents were involved in the best crosses for grain yield (L1 × L5, L2 × L4 and L5 × L6) with positive effects of heterosis and ACE. Crosses L1 × L2, L2 × L3, L5 × L1 and L6 × L1 shown precocity of 74.3, 74, 74.3, 74.2 and 74.8 respectively, but with yields in excess of 4 000 kg ha-1 which can be used as cross outstanding.

Crosses L4 × L3, L4 × L5, L5 × L4, L5 × L6, L6 × L4 and L6 × L5 showed higher grain yields 4 924.1, 5 012.0, 4 945.9, 4 939.1, 5 063.3 and 5 205.9 kg ha-1 respectively. Additive effects were the principal for the expression of the variables evaluated component, making it possible to exploit the effects of additive by selection.

Literatura citada

Allard, R. W. 1999. Principles of plant breeding. Ed. John Wiley. 2nd Edition. New York, USA. 254 p. [ Links ]

Andrade, F.; Cirilo, A.; Uhart, S. y Otegui, M. E. 1996. Ecofisiología del cultivo de maíz. Editorial La Barrosa y Dekalb Press, Buenos Aires, Argentina. 292 p. [ Links ]

Antuna, G. O.; Rincón, S. F.; Gutiérrez, R. E.; Ruiz, T. N. A. y Bustamante, G. L. 2003. Componentes genéticos de caracteres agronómicos y de calidad fisiológica de semillas de líneas de maíz. Rev. Fitot. Mex. 26(1):11-17. [ Links ]

Badu, A. B.; Oyekunle, M.; Akinwale, R. O. and Aderounmu, M. 2013. Combining ability and genetic diversity of extra-early White maize inbreds under stress and nonstress environments. Crop Sci. 53(1):9-26. [ Links ]

Borghi, M. L.; Ibañez, M. A.; Bonamico, N. C.; Kandus, M. V.; Gomar, D. A.; Guillin, E. A.; and Di-Renzo, M. A. 2012. Combining ability of flint corn inbred lines: Mal de Río Cuarto disease tolerance and grain yield. Phyton, Int. J. Exp. Bot. 81:123-131. [ Links ]

Castro, N. S.; Ramos, O. V. H.; Reyes, M. C. A.; Briones, E. F. and López, S. J. A. 2011. Preliminary field screening of maize landrace germplasm from Northeastern Mexico under high temperatures. Maydica. 56(4):77-82. [ Links ]

Castro, N. S.; López, S. J. A.; Pecina, M. J. A.; Mendoza, C. M. C. y Reyes, M. C. A. 2013. Exploración de germoplasma nativo de maíz en el centro y sur de Tamaulipas, México. Rev. Mex. Cienc. Agríc. 4(4):645-653. [ Links ]

Crown, J. F. 1999. Dominance and overdominance. In: the genetics and exploitation of heterosis in Crops. Coors, J. C. and Pandey, S. (Eds.). American Society of Agronomy. New York. USA. 234-258 p. [ Links ]

De la Cruz, E.; Castañon, N. G.; Brito, M. N. P.; Gómez, V. A.; Robledo, T. V.; Lozano, del Río A. J. 2010. Heterosis y aptitud combinatoria de poblaciones de maíz tropical. Φhyton, Int. J. Exp. Bot. 79(1):11-17. [ Links ]

Esquivel, E. G.; Castillo, G. F.; Hernández, C. J. M.; Santacruz, V. A.; García, S. G.; Acosta, G. J. A. y Ramírez, H. A. 2011. Heterosis en maíz del Altiplano de México con diferente grado de divergencia genética. Rev. Mex. Cienc. Agríc. 2(3):331-344. [ Links ]

Gardner, C. O. and Eberhart, S. A. 1966. Analysis and interpretation of the variety crosses diallel and related populations. Biometrics. 22(3):439-452. [ Links ]

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9(4):463-493. [ Links ]

Gutiérrez, R. E.; Palomo, G. A.; Espinoza, B. A. y de la Cruz, L. E. 2002. Aptitud combinatoria y heterosis para rendimiento de líneas de maíz en la comarca lagunera, México. Rev. Fitot. Mex. 24(3):271-277. [ Links ]

Gutiérrez, R. E.; Espinoza, B. A.; Palomo, G. A.; Lozano, G. J. J. y Antuna, G. O. 2004. Aptitud combinatoria de híbridos de maíz para la Comarca Lagunera. Rev. Fitot. Mex. 27(1):7-11. [ Links ]

Han, G. C.; Vasal, S. K.; Beck, D. L. and Elias, E. 1991. Combining ability of inbred lines derived from CIMMYT maize (Zea mays L.) germplasm. Maydica . 36:57-67. [ Links ]

Márquez, S. F. 1988. Genotecnia vegetal. Tomo II. AGT Editor. México, D. F. 563 p. [ Links ]

Molina, G. J. D. 1992. Introducción a la genética de poblaciones y cuantitativa. Ed. AGT. México. 349 p. [ Links ]

Ortega, P. R.; Sánchez, G. J. J.; Castillo, G. F. and Hernández, C. J. M. 1991. Estado actual de los estudios sobre maíces nativos de México. In: avances en el estudio de los recursos fitogenéticos de México. Ortega, P. R.; Palomino, H. G.; Castillo, G. F.; González, H. V. A. y Livera, M. M. (Eds.). Sociedad Mexicana de Fitogenética, A. C. Chapingo, México. 161-185 pp. [ Links ]

Pech, M. A. M.; Castañon, N. G.; Suárez, J. M.; Mendoza, E. M.; Mijangos, C. J. O.; Pérez, G. A. y Latournerie, M. L. 2010. Efectos heteroticos y aptitud combinatoria en poblaciones de chile dulce (Capsicum annuum L.). Rev. Fitot. Mex. 33(4):353-360. [ Links ]

Pecina, M. J. A.; Mendoza, C. M. C.; López, S. J. A.; Castillo, G. F. y Mendoza, R. M. 2009. Respuesta morfológica y fenológica de maíces nativos de Tamaulipas a ambientes contrastantes de México. Agrociencia. 43(7):681-694. [ Links ]

Pecina, M. J. A.; Mendoza, C. M. C.; López, S. J. A.; Castillo, G. F.; Mendoza, R. M. y Ortíz, C. J. 2011. Rendimiento de grano y sus componentes en maíces nativos de Tamaulipas evaluados en ambientes contrastantes. Rev. Fitot. Mex. 34(2):85-92. [ Links ]

Pecina, M. J. A.; Mendoza, C. M. C.; López, S. J. A.; Castillo, G. F.; Mendoza, R. M. y Reyes, M. C. A. 2013. Genetic potential of S1 lines derived from native maize populations of Tamaulipas, México. Maydica . 58:127-134. [ Links ]

Pswarayi, A. and Vivek, B. S. 2008. Combining ability amongst CIMMYT’s early maturing maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Euphytica. 162:353-362. [ Links ]

Reyes, M. C. A.; Girón, C. R. y Rosales, R. E. 1990. Guía para producir maíz en el norte de Tamaulipas. Secretaría de Agricultura y Recursos Hidráulicos (SARH). Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP), Centro de Investigaciones Forestales y Agropecuarias de Tamaulipas, Campo Experimental Río Bravo. Río Bravo, Tamaulipas, México. Folleto para productores Núm. 7. 32 p. [ Links ]

Reyes, D. L.; Molina, J. D. G.; Oropeza, M. A. R. y Moreno, E. C. P. 2004. Cruzas dialélicas entre líneas autofecundadas de maíz derivadas de la raza Tuxpeño. Rev. Fitot. Mex. 27(1):49-56. [ Links ]

Reyes, M. C. A. y Cantú, A. M. A. 2005. H-439, nuevo híbrido trilineal de maíz para áreas de riego en el subtrópico de México. Agric. Téc. Méx. 31(1):97-100. [ Links ]

Revilla, P.; Butrón, A.; Malval, R. A. and Ordás, A. 1999. Relationships among kernel weight, early vigor and growth in maize. Crop Sci. 39:654-658. [ Links ]

SAGARPA. 2012. Acuerdo por el que se determinan Centros de Origen y Centros de Diversidad Genética del Maíz. Diario Oficial de la Federación. Segunda Sección noviembre de 2012. [ Links ]

SAS Institute. 2002. SAS user’s guide: Statistics. SAS Institute, Cary, NC. USA. 4424 p. [ Links ]

Sprague, G. F. and Tatum, L. A. 1942. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34(10):923-932. [ Links ]

Vasal, S. K.; Srinivasan, G.; Beck, D. L.; Crossa, J.; Pandey, S. and de León, C. 1992. Heterosis and combining ability of CIMMYTs tropical late white maize germplasm. Maydica . 37:217-223. [ Links ]

Vasal, S. K.; Srinivasan, G.; Vergara, A. N. y González, C. F. 1995. Heterosis y aptitud combinatoria en germoplasma de maíz de valles altos. Rev. Fitot. Mex. 18:123-139. [ Links ]

Yao, W. H.; Zhang, D. Y.; Kang, M. S.; Chen, H. M.; Liu, L.; Yu, L. J. and Fan, M. X. 2013. Diallel analysis models: a comparison of certain genetic statistics. Crop Sci. 5(4):1481-1490. [ Links ]

Zewdie, Y.; Bosland, P. W. and Steiner, R. 2000. Combining ability and heterosis for capsaicinoids in Capsicum pubescens. HortScience. 36:1315-1317. [ Links ]

Zhan, Y. and Kang, M. S. 2003. Diallel-SAS: A program for Griffing’s diallel methods: Handbook of formulas and software for plant geneticists and breeders. Kang, M. S. (Ed.). FPP. New York London Oxford. 1-19 pp. [ Links ]

Received: September 2015; Accepted: January 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons