SciELO - Scientific Electronic Library Online

 
vol.7 número2Uso eficiente y recuperación aparente de nitrógeno en maíz forrajero en suelos diferentesRentabilidad de chile manzano (Capsicum pubescens R Y P) producido en invernadero en Texcoco, Estado de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 no.2 Texcoco feb./mar. 2016

 

Articles

Growth of varieties and yield components of higuerilla (Ricinus communis L.) in Montecillo, State of Mexico

José Luis Solís Bonilla1  2  § 

Abel Muñoz Orozco1 

José Alberto Salvador Escalante Estrada1 

Alfredo Zamarripa Colmenero3 

1Colegio de Postgraduados Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco. C. P. 56230, Estado de México. (amunozo@colpos.mx; jasee@ colpos.mx).

2INIFAP-Campo Experimental Rosario Izapa. Carretera Tapachula- Cacahoatán km18. C. P. 30870. Tuxtla Chico, Chiapas, México. (solis.joseluis@inifap.gob.mx).

3RD2 Visión, Camino a Calance S/N C. P. 30870, Tuxtla Chico, Chipas. (zamarripaco.alfre@yahoo.com.mx).


Abstract

Several institutions have been directed to the search for new sources of energy from plants. One of these species is the higuerilla (Ricinus communis L.), oilseed plant that is widely distributed in Mexico. The aim of this work was to study the variability and customization of a group of varieties of higuerilla in Montecillo, State of Mexico, city of temperate climate. varieties were assessed by a selection index and major components. The genetic material consisted of 10 improved varieties of INIFAP originating in Chiapas and Michoacan and improved not collected at Montecillo. morphological, days to flowering, and variable clusters, fruits and seeds were evaluated. According to the selection indices and major components improved V2 (Riric 265-1), V3 (Riric67-6) V6 (Riric19) and V10 (Riric1) varieties were the best adaptation and characteristics which were highlighted more stem diameter, number of branches, number of leaves, length of the canopy, short stature and precocity. Improved it not excelled in length bunch and fruits per cluster. Selection indices were efficient to clarify the best varieties and agreed with the groups and conglomerates determined by major components. However, it presented severe frost, seed production which suggests the possibility of generating genetic material adapted to this altitudinal level was achieved.

Keywords: Ricinus communis L.; adaptation; biofuels

Resumen

Diversas instituciones se han encaminado a la búsqueda de nuevas fuentes de energía a partir de especies vegetales. Una de estas especies es la higuerilla (Ricinus communis L.), planta oleaginosa que se encuentra ampliamente distribuida en México. El objetivo de este trabajo fue estudiar la variabilidad y adaptación de un grupo de variedades de higuerilla en Montecillo, estado de México, localidad de clima templado. Se valoraron las variedades mediante un índice de selección y por componentes principales. El material genético consistió de 10 variedades mejoradas del INIFAP originarias de Chiapas y Michoacán y una no mejorada colectada en Montecillo. Se evaluaron características morfológicas, días a floración, y variables de racimos, frutos y semillas. De acuerdo a los índices de selección y componentes principales las variedades mejoradas V2 (Riric 265-1), V3 (Riric67-6) V6 (Riric19) y V10 (Riric1) fueron las de mejor adaptación y las características en las que más destacaron fueron diámetro de tallo, número de ramas, número de hojas, longitud del dosel, porte bajo y precocidad. La no mejorada sobresalió en longitud de racimo y frutos por racimo. Los índices de selección resultaron eficientes para precisar las mejores variedades y concordó con los agrupamientos determinados por componentes principales y conglomerados. No obstante, de presentarse heladas severas, se logró la producción de semilla lo que sugiere la posibilidad de generar material genético adaptado a este nivel altitudinal.

Palabras claves: Ricinus communis L.; adaptación; biocombustibles

Introduction

Several countries in the world have supported the use of biofuels producing species in order to reduce emissions of greenhouse gases (Zamarripa et al., 2012). One alternative is the higuerilla (Ricinus communis L.), oilseed species that is widely distributed in Mexico, and has high potential for seed production to obtain oil (Martinez et al., 2012). More than 95% of the production of higuerilla in the world is concentrated in India, China and Brazil (Sailaja et al., 2008). India 840 000 ha-1, harvested; China 210 000 ha-1; Brazil 159 205 ha-1 with a grain yield 1.09, 0.190 and 0.09 million t respectively (FAOSTAT, 2011). The higuerilla crop development can cause a chain of new businesses, technologies and products (Mazzani, 1983, Brigham, 1993; Stachetti et al., 2007). Several authors mention that the progressive development of aviation fuels and the use of high-revving engines generate high demand for higuerilla oil, this creates a need for technical and scientific information on this crop in various ecological niches (Tobar, 1981; Scholz and Da Silva, 2007; Sepúlveda, 2012).

The higuerilla is native to Africa, being in the Republic of Yemen to North Africa, and the Near and Middle East (Purseglove, 1974, Vavilov, 1992). It is a plant annual or perennial habit according to environmental conditions (Vibrans, 2009), plant high canopy, sometimes a little shrub, from light to gray-green color, sometimes reddish, with erect stems up to 6 m. (Rzedowski and Rzedowski, 2001). The seed is oval, spherical or elongated rarely, from 0.8 to 3 cm long, 0.6 to 1.5 cm wide and 0.4 to 1.0 cm thick (Moshkin, 1986).

Variable presented with reddish brownish stains and has a hard and brittle outer shell and a very fine whitish underside. Both protect the seed, which consists of a tiny embryo with two cotyledons thin and soft, compact and oily albumen (Weiss, 1983; Rzedowski and Rzedowski, 2001). The seed contains toxins such as ricin (which is an albumin belonging to the family of ribosome inactivating protein, they stop protein synthesis, causing cell death by apoptosis) and ricinina very toxic alkaloid that attack the liver and pancreas (Rzedowski and Rzedowski, 2001; Fanan et al., 2009). Higuerilla oil meets physicochemical characteristics that position it as an option on the production of biofuels (Martinez et al., 2012). Besides its use in the manufacture of surfactants, coatings, greases, fungistatic, pharmaceuticals, cosmetics and many other products (Lima et al., 2013).

Studies on yield components provide guidance for optimal production. These are interdependent and change in response to environmental conditions. Negative correlations between yield components are very common (Kumar et al., 1997; Rajala et al., 2009; Soratto et al., 2011, Sadras and Slafer, 2012). Some authors point out that for the selection of highly productive variants higuerilla emphasis should be placed on the number of clusters and fruit weight; as well as the length of the bunches and seed weight (Sarwar and Boota, 2008). In some studies, the number of seeds per cluster breaks down the number of fruits per cluster and the number of seeds per fruit; however, these two components are preferably analyzed together because there is negligible variation in the number of seeds per fruit (Fanan et al., 2009; Machado et al., 2009). Individual seed weight plays an important role (Severino, 2012).

Seed weight is determined by the genetic potential of the plant (Egli et al., 1987), but the variability in seed weight may be caused by many physiological processes that are sensitive to environmental changes. In cross-pollinated species, the origin of diploid embryo and endosperm triploid nature is a potential variability in seed weight (Hay et al., 2010) source. Given the above, the objective of this work was to study the variability and adaptation of a group of varieties of higuerilla in Montecillo, State of Mexico, from April to December 2013.

Materials and methods

The experiment was conducted in the period from april to december 2013 in the experimental field of the Graduate College, located in Montecillo, Texcoco, State of Mexico, with geographic coordinates 19° 28' 02.9'' north latitude and 98° 54' 02.3'' west longitude and an altitude of 2 240 meters. The climate according to Koppen climate classification modified by García (2005) is C (Wo) (W) b (i'), corresponding to temperate humid with summer rains. The average annual rainfall and temperature are 625 mm and 16 °C respectively. Precipitation of the year into the experiment in april and lasted to mid-october with a bimodal regime with intraestival drought (SI) in the month of august and the great winter drought (GSI) in mid-october to mid-march. The cumulative rainfall during the crop growing season was 639 mm (Figure 1). frost early december to mid-february (Figure 2) were presented. The data of meteorological variables were obtained from the stations in the Graduate College and the University of Chapingo.

Figure 1 Rainfall during the growing season of the crop in Montecillo, cycle from april to december 2013. 

Figure 2 Minimum daily at the end of the crop cycle in Montecillo, cycle from april to december 2013 temperatures. 

The soil of the Experimental Station (Table 1) was analyzed, it is a sandy loam, moderately basic and slightly saline soil, with percentages of organic matter (M.O.) of 2-3%

Table 1 Main properties of the soil of the experimental batch Montecillo. 

Textura pH CE dSm-1 CIC meq/lOOg MO (%) N total (%) P mg kg-1 К Ca Mg Na
cmol kg-1
Franco arenoso 7.9 0.77 27.5 2.98 0.15 13.15 1.56 27.35 17.5 0.71

Was evaluated 11 varieties of higuerilla: 10 improved and CP13 collection "unimproved" (Table 2). The INIFAP varieties were selected according to previous results obtained by Zamarripa et al. (2010). seed collected was used in 2013 in the Graduate College in Montecillo in unimproved. The experiment was established on April 6, 2013. The experimental plot was 6 meters long and 1.5 meters wide (9 m2), with five plants per row, in square 1.5 x 1.5 m. The population density was 4 444 plants ha-1. The five plants formed the useful plot. design used randomized block with four replications. In those variables that readings on several dates were conducted it generated a factorial design with two factors, varieties and readings under a split plot arrangement where readings were for large plots and subplots varieties. The model is as follows:

Y=Rep+Lec+Error a+Var+Var x Lec+Error b 1)

Where: Y= total variation of the response variable; Rep= variation of repetitions; Lec= change in lectures; error= variation associated with large plots; Var= variation of the varieties; Var x= interaction Lec varieties readings; Error b= variation associated with subplots.

Table 2 Origin of higuerilla varieties used in the study of variability and adaptation in Montecillo. 

Genotipo Forma Origen Altitud (msnm) Color de semilla
Riric269-3 M Morelia, Michoacán 1695 Café veteado
Riric265-1 M Barranca Honda, Michoacán 872 Crema veteado
Riric67-6 M Frontera Comalapa, Chiapas 687 Crema veteado
Riric267-2 M Tipitio, Uruapan, Michoacán 2 101 Crema veteado
RiriclO M Unión Juárez, Chiapas 878 Crema veteado
Riricl9 M Sierra Morena, Villa Corzo, Chiapas 1070 Crema veteado
Riric29 M La Garza, Villaflores, Chiapas 605 Café veteado
Riric274 M San Jerónimo,Unión Juárez, Chiapas 776 Crema veteado
Riric273 M Guatimoc, Cacahoatán, Chiapas 809 Crema veteado
Riricl M Unión Roja, Cacahoatán, Chiapas 519 Café veteado
CP13 NM Montecillo, Texcoco, Edo. de México 2 240 Gris veteado

M; mejorado, NM; no mejorado.

The variables evaluated with more than one reading date were: plant height (AP) measured from the ground surface to the upper end, stem diameter (DT) 40 cm above the ground, leaf number (NH) counted from the base of the stem to the high end, number of branches (NR) of the base of the stem to the first fork, plant canopy area (ABS) for this width (ADS) and took over (LDS) canopy.

The variables are recorded once a day to flowering (DF), number of clusters per plant (NRP), cluster length (LR), number of fruits per bunch (NF), equatorial diameter (OD) and polar (DP) of fruit and fruit weight (PF). Likewise characteristics were measured in seed: length (LS), width (AS), thickness (GS), volume (VL), length / width ratio (RLA), 100 seed weight (PCS) and seed production (REN). The model for the analysis of these variables experiment corresponded to a simple blocks, and error varieties as variation factors as described immediately.

Y=Rep+Var+Error 2)

Where: Y= total variation of the response variable; rep= variation of repetitions; var= change in varieties; error = variation associated with the error.

The analyzes were performed using the statistical program SAS 9.0 (SAS Insitute Inc., Cary, NC, USA) and the averages compared by Duncan test, with a significance level of 5%. To develop a selection index (IS), which involve all response variables were assigned a "1" for each "a" in the line of each variety. The sum of "1" was the IS. Thus the index integrates the adaptive effect of all the features that the variety showed good response in the environment of Montecillo. Finally stockings varieties of all variables in the study were subjected to multivariate analysis of main components.

Results and discussion

Factor analysis with dates and varieties

The significance was detected in blocks, dates of lectures and seven varieties of plant characteristics evaluated, the varieties reading dates interaction was significant only for plant height (Table 3).

Table 3 Relations between sources of variation and morphological characteristics of plant Montecillo; square means and significance, from April to December 2103 cycle. 

FV GL AP DT NR NH ADS LDS ABS
Bloques 3 13972.2** 15.3** 8.83** 64.82** 25164.3** 29237.1** 2.6**
Fechas 9 407383.0** 388.4** 30.6** 735.2** 694667.7** 652741.5** 66.9**
Error a 27 637.6 0.61 0.23 3.17 1530 3 1446 1 0.13
Variedades 10 4849.1** **7 2.41** 17.18** 8699.5** 9295.7** 0.81**
Var X fech 90 516.9** 0.58ns 0.15ns 1.30ns 942.5ns 516.1ns 0.04ns
Error b 169 192.7 0.35 0.10 1.43 1124.1 1083.7 0.09
CV 16.65 20.86 16.17 22.77 27.62 20.91 22.61
R2 0.98 0.96 0.85 0.93 0.93 0.96 0.95

FV=fuente de variación; GL=grados de libertad; AP= altura de planta; DT= diámetro de tallo; NR= número de ramas; NH= número de hojas; ADS= ancho del dosel; LDS= longitud del dosel; ABS= área basal **Diferencias significativas a 0.01 de probabilidad; *Diferencias significativas a 0.05 de probabilidad; ns= no significativo.

Morphological variation among plant varieties

This variation is illustrated in Table 4, in the column of each variable varieties with the letter "a" are statistically equal and higher. According to the IS, the varieties 1 (Riric269-3) mode 6; 3 (Riric67-6) and 4 (Ricirc267-2) with values of 5, were the best index. They marked in bold the most important characteristics in each variety, allowing appreciate the frequency characteristic. The characteristics most frequently were the DT, NR, NH, LDS reflecting the features of greater emphasis on the selection. In relation to the AP, the low frequency of high plants improved varieties it indicates that the selection has focused on plants reduced height.

Table 4 Comparison of means of morphological and plant selection index higuerilla varieties in Montecillo, cycle from April to December of 2013 features. 

Variedades AP (cm) DT (cm) NR NH ADS (cm) LDS (cm) ABS (m2) IS
1 101.4b 3.7a 12.4a 57.4 ab 167.8 a 158.1a 3.9 a 6
2 85.7 cde 3.5 ab 10.8 abc 45.9 abcde 144.7 bc 144.4 ab 3.1 bc 4
3 90.9 cd 3.7a 10.7 abc 46.1 abcde 142.9 bcd 152.0 ab 3.4 ab 5
4 89.0 cde 3.5 ab 12.2 ab 62.8 a 120.9 def 147.9 ab 3.4 ab 5
5 87.2 cde 3.0 cd 9.8 bc 39 7e 88.7 g 136.6 b 2.5 c 0
6 88.6 cde 3.4 ab 10.6 ab 53.4 abc 149.8 ab 138 4 b 3.0 bc 4
7 93.3 c 3.0d 11.4 ab 49.6 abcd 121.7 cdef 148.4 ab 3.0 bc 3
8 110.8 a 3.3 abc lO.O bc 40.2 de 142.7 bcd 144.0 ab 3.0 bc 3
9 81.1 e 3.2 bed 12.1 ab 55.4 ab HO.Of 153.1 ab 3.4 ab 4
10 84.8 de 3.4 abc 8.6 c 45.4 cde 136.0 bcde 142.0 ab 3.2 bc 2
11 68.4 f 2.3—e 6 3 d 26.3 f 118.0ef 104.0 c 2.1 d 0
Media 8924 3.33 10.49 47 50 131.23 142.69 3.14
+Frec-pc 1 7 7 7 2 8 4

AP= altura de planta; DT= diámetro de tallo; NR= número de ramas; NH= número de hojas; ADS=ancho del dosel; LDS= longitud del dosel; ABS= área basal (m2); IS= índice de selección o frecuencia de “aes” por variedad, +frecuencia de “aes” por característica. Promedios con la misma letra dentro de columnas son estadísticamente iguales según la prueba de Duncan (p≤ 0.05).

Characteristics of clusters and fruit

The analysis of variance is summarized in Table 5, there was significance in the variables repeats fruit bunches (FR) and polar fruit diameter (DP). For six varieties significance was detected characteristics, and was not observed for the number of clusters per plant (NRP). As for days to flowering there was significance in repetitions and varieties.

Table 5 Relations between sources of variation and characteristics of fruit bunches and Montecillo; square means and significance, from april to december of 2013 cycle. 

FV GL DF NRP LR FR DP DE PF
Repeticiones 3 734.6** 2.372 ns 25.61ns 182.46* 0.09* 0.06 ns 1.89ns
Variedades 10 832.1** 2.25 ns 699.17** 3051.40** 0.78** 0.91** 57.11**
CV 9.62 28.10 13.04 20.59 6.00 6.22 17.68
R2 0.81 0.60 0.93 0.93 0.85 0.86 0.79

FV= fuente de variación; GL= grados de libertad, DF= días a floración; NRP= número de racimos por planta; LR= longitud de racimo; FR= frutos por racimo; DP= diámetro polar de fruto; DE= diámetro ecuatorial de fruto; PF= peso de fruto. **Diferencias significativas a 0.01 de probabilidad, * diferencias significativas a 0.05 de probabilidad ns= no significativo.

Variation of the characteristics of clusters and fruits and selection index between varieties

Improved varieties (1-10) have increased the unimproved NRP (CP13), however this is longer cluster and number of fruits per cluster, features that can be useful in crosses or reciprocal recurrent selection schemes. As in the previous case the selection index was developed; in the case of the variable days to flowering by the interest in early varieties are those with letter "c" is assigned "1". The varieties with the best index were the two (Riric265-1), 5 (Riric10), 6 (Riric19) and 10 (Riric1) with values of 5 (Table 6). They stood by characteristics of large and heavy fruit traits that have been influenced by the selection process. Another character most often in improved varieties was the number of clusters per plant.

Table 6 Comparison of means of the characteristics of clusters and fruit and IS higuerilla varieties in Montecillo, cycle from april to december 2013. 

Variedades DF (dds) NRP LR (cm) FR DP (cm) DE (cm) PF(g) IS
1 122 b 31.6 ab 44.2 b 62.2 b 2.4 d 2.4 c 6.0 c 1
2 108 bc 29. ab 16 9 e 18.1 e 3.0 ab 3 2 a 13.2 a 5
3 111 bc 29.0 ab 20.4 cde 23.2 de 2.9 bc 3.1 a 11.6 a 4
4 122 b 32.2 ab 23.4cd 30.7 cd 2.9 bc 3.0 a 11.8 a 3
5 117 bc 28.0 ab 18.4 de 24.5 cde 3.2 a 3.2 a 13.6 a 5
6 99 c 29.0 ab 18.4 de 24.6 cde 3.1 ab 3.2 a 12 8 a 5
7 104 c 24.5 ab 24.9 c 31.0cd 2.7 c 2.7 b 8.9 b 2
8 103 c 40.3 a 16 6e 25.0 cde 2.9 bc 3.0 a 10.7 ab 4
9 100 c 27.5 ab 21.7 cde 36.0c 2.3 d 2.4 c 5.5 c 2
10 104 c 35.0 ab 18.9 de 25.8 cde 3.1 ab 3.1 a 12.4a 5
11 149 a 11.7 b 49.9 a 104.5 a 1.9 e 1.8 d 3.5 c 2
Media 113 28.92 24.93 36.89 2.802 2.872 10.059
+Frec-pc 8 10 1 1 4 7 7

DF= días a floración; NRP= número de racimos por planta; LR= longitud de racimo (cm); FR= frutos por racimo; DP= diámetro polar de fruto (cm); DE= diámetro ecuatorial de fruto (cm); PF= peso de fruto (g); IS= índice de selección o frecuencia de “aes” por variedad, + frecuencia de “aes” por característica. Promedios con la misma letra dentro de columnas son estadísticamente iguales según la prueba de Duncan (p≤ 0.05).

Barrios et al. (2013) mention that the average number of clusters in Morelos was 11. For his part Machado et al. (2009) reported from 34 to 143 fruits per cluster. Similar results were found in this investigation. Barrios et al. (2013) found Morelos ranges from days to flowering 40-72 dds. This research ranges DF ranged from 99-149 dds, the differences lie in the altitudinal level and climate, being Morelos warmer and drier climate.

Seed characteristics

For varieties significance to the seven characteristics of seeds evaluated (Table 7) was detected. There were significant variables repetitions in seed volume (VL) and weight of 100 seeds (PCS).

Table 7 Relations between sources of variation and seed characteristics Montecillo; square means and significance, from april to december of 2013 cycle. 

FV GL LS AS GS VL RLA PCS REN
Repeticiones 3 0.01ns 0.01ns 0.004 ns 0.02* 0.0002 ns 318.52* 47.50 ns
Variedades 10 0.28** 0.28** 0.04** 0.22** 0.02** 2024.51** 90.78*
CV 3.86 3.72 3.02 9.88 1.82 12.31 31.17
R2 0.92 0.96 0.94 0.89 0.96 0.84 0.64

FV= fuente de variación; GL= grados de libertad, DF= días a floración; NRP= número de racimos por planta; LR= longitud de racimo; FR= frutos por racimo; DP= diámetro polar de fruto; DE= diámetro ecuatorial de fruto; PF= peso de fruto. **Diferencias significativas a 0.01 de probabilidad, * diferencias significativas a 0.05 de probabilidad ns= no significativo.

Variation of the characteristics of seed and selection index between varieties

The varieties 5(Riric10), 6 (Riric19) and 10 (Riric1) were the best selection index values 6 (Table 8). The results for the variable weight of 100 seeds show an amplitude in the means obtained for varieties which gives an idea of the variability between these grown materials. This same variability was observed in Morelos by Barrios et al. (2013). Likewise, Mazzani (1983) reports similar results to the research in Maracay, Venezuela found 100 seed weight between 19 and 91.8 g.

Table 8 Comparison of means of the characteristics of seeds and IS higuerilla varieties in Montecillo, cycle from april to december 2013. 

Variedades LS (cm) AS (cm) GS (cm) VL (ml) RLA PCS(g) REN (g ρ1) IS
1 1.53 e 1.21 ed 0.73 d 0.60 ef 1.27 cd 60.28 cd 1102 a 1
2 1.86 ab 1.50 abe 0.82 be 0.93 ab 1.24 def 88.22 a 663 b 4
3 1 81 bc 1.50 bc 0 83 be 0.85 ¿c 1.20f 83.96 ab 585 b 2
4 1 74 cd 1.44 c 0.81 с 0.78 cd 1 21 f 73 25 bc 868 ab 1
5 1.95 a 1 58 a 0.85 ab 0.93 ab 1.23 ef 93.88 a 771 ab 6
6 1.96 a 1.57 ab 0.86 ab 0.95 a 1.25 ede 93 25 a 794 ab 6
7 1.69 d 1.26 d 0.74 d 0.67 de 1.34b 67.88 cd 801 ab 1
8 1.77 bcd 1.44 c 0.80 c 0.82bc 1.23 ef 82 38 ab 1106 a 2
9 1.36 f 1 16 e 071 d 0.53 f 1.17 g 54.80 d 914 ab 1
10 1.96 a 1.54 ab 0.87 a 0.91 ab 1.27 c 88 52 a 767 ab 6
11 1.21 g 0.76 f 0.54 e 0.21g 1.60 a 22.85 e 297 b 1
Media 1.71 1.36 0.78 0.74 1.27 73.57 787.85
+Frec-pc 4 4 3 5 1 6 8

TLS= longitud de semilla (cm); AS= ancho de semilla (cm); GS= grosor de semilla (cm); VL= volumen de semilla (ml); RLA= relación largo- ancho; PCS= peso de 100 semillas (g); REN= rendimiento de semillas (g p-1); IS= índice de selección o frecuencia de “aes” por variedad, +frecuencia de “aes” por característica, Promedios con la misma letra dentro de columnas son estadísticamente iguales según la prueba de Duncan (p≤ 0.05).

The varieties had the highest frequencies in the selection indices: V6 (Riric19), V2 (Riric 265-1) and V10 (Riric1) conglomerated in the ACP group III with the difference that in the main components variables are confused and indices are explicit (Figure 3).

Figure 3 Distribution of higuerilla varieties in Montecillo, cycle april- december 2013: v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 and v11. 

The variables that were correlated with REN: AP (r= 0.82, p< 0.01), NR (r= 0.70, p< 0.05), LDS (r= 0.74, p< 0.05) and NRP(r= 0.79, p< 0.01), other variables were also correlated positively. NRP/PCS, DP/PCS, DE/PCS, PF/ PCS and LS; AS and GS with PCS. negative correlations were found days to flowering; DF/NRP (r= -0.69, p< 0.05); DF/FR (r= 0.84, p< 0.01); DF/PF (r= -0.50, p< 0.05); DF/ PCS (r= -0.69, p< 0.05); DF/REN (r= -0.54, p< 0.05), LR/PF (r= -0.81, p< 0.01), LR/PCS (r= -0.84, p< 0.01), FR/PF (r= -0.83, p< 0.01) and FR/PCS (r= -0.91, p< 0.01);.

Conclusions

The variability was found in higuerilla varieties in terms of the morphological characteristics of the plant as well as features of clusters, especially fruits and seed size. This allowed us to differentiate groups which had different production potential, beating the unimproved variety CP13 used as a witness. Comparing with improved unimproved varieties included in this study, it follows that DT, NR, NH, LDS, bass and precocity (DF) flies are the characteristics of more emphasis on improving. The longer showed improved cluster and number of fruits per cluster that can be added to improved by breeding schemes. According to the best selection indices varieties V2 (RIRIC 265-1) Barranca Honda, Michoacan, V6 (Riric19) of Villa Corzo and V10 (Riric1) of Cacahoatán, Chiapas were the best adapted to the conditions of planting April Montecillo. However, the severe frost, seed production which suggests the possibility of generating improved material adapted to this altitudinal level was achieved. The method of selection indexes used was efficient to clarify the best varieties and clearly informs the characteristics that determine the index allowing the improvement and better target agreed with the groups determined by major components.

Literatura citada

Barrios, G. E.; Zamarripa, C. A.; Canul, K. J.; Hernández, A. M.; Alarcón, C. N. y Chepetla, C. V. H. 2013. Evaluación de materiales elite de higuerilla en Morelos. Ciencia y Tecnología Agroprecuaria. 1( 2):27-32. [ Links ]

Brigham, R. D. 1993. Castor: return of an old crop. In: Janick, J. and Simon, J. E. (Eds.) New crops. John Wiley & Sons, New York. 380-383. [ Links ]

Egli, D. B.; Wiralaga, R. A. and Ramseur, E. L. 1987. Variation in seed size in soybean. Agron. J. 79:463-467. [ Links ]

Fanan, S.; Medina, P. F. and Camargo, M. B. P. 2009. Description of agronomic characteristics and harvest time evaluation in the yield of castor bean cultivar IAC 2028. Bragantia. 68:415-422. [ Links ]

FAOSTAT. 2011. Dirección de Estadística. http://faostat3.fao.org/home/S. [ Links ]

García, E. 2005. Modificación al Sistema de Clasificación Climática de Köppen. 4a (Ed.). Universidad Nacional Autónoma de México (UNAM). México, D. F. 217 p. [ Links ]

Hay, F. R.; Smith, R. D.; Ellis, R. H. and Butler, L. H. 2010. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum. Ann. Bot. 105:1035-1052. [ Links ]

Kumar, P. V.; Ramakrishna, Y. S.; Rao, B. V. R.; Victor, U. S.; Srivastava, N. N. and Rao, A. V. M. S. 1997. Influence of moisture, thermal and photoperiodic regimes on the productivity of castor beans (Ricinus communis L.). Agric. Forest Meteorol. 88:279-289. [ Links ]

Lima, J. R. S.; Dantas, A. A. C.; Soares, S. E.; Brayner, O. L. C. A. and Da-Silva, I. F. 2013. Seasonal and interannual variations of evapotranspiration, energyexchange, yield and water use efficiency of castor grown underrainfed conditions in northeastern Brazil. Industrial Crops and Products. (50):203-211 [ Links ]

Machado, C. G.; Martins, C. C.; Silva, L. B. and Cruz, S. C. C. 2009. Production and physical characteristics of castor bean seeds affected by raceme and fruit position. Acta Scientiarum. Agronomy. (31):293-299. [ Links ]

Martínez, V. B. B.; Hernández, C. M.; Solís, B. J. L. and Zamarripa, C. A. 2012. Calidad agroindustrial del aceite de higuerilla (Ricinus communis L.) para la producción de bioenergéticos en México. In: V Congresso Brasileiro de Mamona / II Simpósio Internacional de Oleaginosas Energéticas & I Fórum Capixaba de Pinhão Manso, Guarapari (ES). 2 p. [ Links ]

Mazzani, B. 1983. Cultivo y mejoramiento de plantas oleaginosas. Caracas, Venezuela: Fondo Nacional de Investigaciones Agropecuarias. 277-360 p. [ Links ]

Moshkin, V. A. and Alekseev, A. P. 1986. Ripening of seeds. In: Moshkin, V.A. (Ed.). Castor. New Delhi, Amerind. 315 p. [ Links ]

Purseglove, J. W. 1974. Tropical Crops. Dicotyledons. London, (Longman). 519 p. [ Links ]

Rajala, A.; Mäkelä, P.; Muurinen, S. and Peltonen-Sainio, P. 2009. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Res. 114:263-271. [ Links ]

Rzedowski, G. C. y Rzedowski, J. 2001. Flora fanerogámica del Valle de México. 2a (Ed.). Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México. 1406 p. [ Links ]

Sailaja, M.; Tarakeswari, M. and Sujatha, M. 2008. Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embry oaxes from mature seeds. Plant Cell Rep. 27:1509-1519. [ Links ]

Sadras, V. O. and Slafer, G. A. 2012. Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Res. 127:215-224. [ Links ]

Sarwar, G. and Boota, C. M. 2008. Evaluation of castor (Ricinus communis L.) induced mutants for possible selection in the improvement of seed yield. Span. J. Agric. Res. 6(4):629-634. [ Links ]

Sepúlveda, G. I. 2012. Bioturbosina. Producción de cultivos energéticos para la aviación comercial. Rev. Mex. Cienc. Agríc. 3(3):579-594. [ Links ]

Severino, L. S. 2012. Studies on yield components and seed physiology of castor (Ricinus communis L.). A dissertation in plant and soil science. Texas Tech University. 117 p. [ Links ]

Soratto, R. P.; Souza-Schlick, G. D.; Giacomo, B. M. S.; Zanotto, M. D. and Fernandes, A. M. 2011. Low-height castor bean row spacing and plant population for mechanical harvest. Pesquisa Agropecuária Brasileira. 46:245-253. [ Links ]

Scholz, V. E. y Da-Silva, N. J. 2007. Óleo de mamona como combustível: fatos, perspectivas e riscos. Engenharia na Agricultura, Viçosa, M. G. 15(2):168-172. [ Links ]

Stachetti, R. G.; Aparecida, R. I.; Almeida, B. C. C.; Viera, L. M. A.; Moreno, P. A. M.; Frighetto, R. T. S. and Irias, L. J. M. 2007. Socio-environmental impact of biodiesel production in Brazil J. Technol. Manag. Innov. 2(2):46-66. [ Links ]

Tobar, H. J. R. 1981. Evaluación de tres densidades de siembra en variedades guatemaltecas e híbridos sur africanos del cultivo de higuerillo (Ricinus communis L.). Tesis profesional. Universidad de San Carlos de Guatemala. Facultad de Agronomía. Guatemala. 152 p. [ Links ]

Vavilov, N. I. 1992. Origin and geography of cultivated plants. Traslated by D. Löve. Cambridge: Cambridge University Press. 498 pp. [ Links ]

Vibrans, H. Modificado de Mondragón P. J. (2004) 2009. Malezas de México, Ficha Ricinus communis.http://www.conabio.gob.mx/malezasdemexico/euphorbiaceae/ricinus-communis/fichas/pagina1.htm. [ Links ]

Weiss, E. A. 1983. Oilseed Crops (book). Longman, London. 660 p. [ Links ]

Zamarripa, C. A.; Solís, B. J. L.; Martínez, V. B. B. y Cotoc, B. J. C. 2010. Evaluación y selección de materiales elite de higuerilla (Ricinus communis L.), para la obtención de biocombustibles en México. In: Memoria V Reunión Nacional de Innovación Agrícola, INIFAP. 245 p. [ Links ]

Zamarripa, C. A.; Solís, B. J. L.; Riegelhaupt, E. M.; Martínez, V. B. B. y Hernández, C. M. 2012. Balance de emisiones de gases de efecto invernadero del cultivo de higuerilla en la producción de biodiesel en México. In: V Congresso Brasileiro de Mamona / II Simpósio Internacional de Oleaginosas Energéticas & I Fórum Capixaba de Pinhão Manso, Guarapari (ES). 1 p. [ Links ]

Received: December 2015; Accepted: February 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons