SciELO - Scientific Electronic Library Online

 
vol.6 número especial 12Respuesta de la nochebuena (Euphorbia pulcherrima Willd. ex Klotzsch) a la relación nitrato:calcio en tres etapas fenológicasEfecto de las alcamidas como inductores de tolerancia al estrés biótico en tomate índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.6 spe 12 Texcoco Nov./Dez. 2015

 

Articles

Textile industrial sludge in the production of potted hydrangea (Hydrangea macrophylla L.)

Emilio Bautista-Vargas1 

Adalberto Benavides-Mendoza1 

Maria de las Nieves Rodríguez Mendoza2 

José Antonio González-Fuentes1 

Valentín Robledo-Torres1 

Alberto Sandoval-Rangel1  § 

1Universidad Autónoma Agraria Antonio Narro-Departamento de Horticultura. Calzada Antonio Narro 1923, Buenavista, Saltillo Coahuila, México. C. P. 25315. Tel: 844 411-0303.

2Colegio de Postgraduados-Programa de Edafología. Montecillo, Texcoco Estado de México.


Abstract

Industrial sludge is a serious environmental problem. Its use as mulch is the most accepted practice from an ecologically and economically point of view. The use of sludge in agriculture improves certain physical properties of the soil, serving as a complement to fertilization, but an inadequate management has some risks for the accumulation of potentially toxic elements in soils, which can be absorbed by crops and and enter the food chain. The objective of the present study is to search alternatives for the use of industrial textile sludge and provide value added as substrate in the production of hydrangea (Hydrangea macrophylla L.). Four sludge concentrations were tested: 0, 10, 20 and 30%, using peat as base substrate, in a completely randomized design with 15 replications, being the experimental unit one plant. The results of this study showed that it is feasible to use textile industrial sludge in 10% concentrations, without negative effects on growth and chemical composition of plants, increasing the concentration of potassium in the inflorescences and stems. Concentrations above 10% decreased plant growth, presumably due to the increase of EC in the substrate.

Keywords: mineral; organic fertilizers

Resumen

Los lodos industriales constituyen un serio problema ambiental. Su uso como abono orgánico es la práctica más aceptada desde el punto de vista ecológico y económico. El uso agrícola de lodos mejora ciertas propiedades físicas del suelo, a la vez de servir como complemento de la fertilización, pero el manejo inadecuado presenta algunos riesgos por la acumulación de elementos potencialmente tóxicos en los suelos, los cuales pueden ser absorbidos por los cultivos y pasar así a la cadena trófica. El presente estudio tuvo como objetivo, buscar alternativas para el uso de los lodos industriales textiles y darle un valor agregado como sustrato en la producción de hortensia (Hydrangea macrophylla L.). Se evaluaron cuatro concentraciones de lodo: 0, 10, 20 y 30%, usándose turba ácida como sustrato base, en un diseño experimental completamente al azar con 15 repeticiones siendo la unidad experimental una planta. Los resultados de este estudio mostraron que es factible utilizar el lodo industrial textil en concentraciones de 10%, sin efectos negativos sobre el crecimiento y composición química de las plantas, elevando la concentración de potasio en las inflorescencias y los tallos. Concentraciones superiores a 10%, disminuyeron el crecimiento de la planta, presumiblemente debido al aumento en la CE en el sustrato.

Palabras clave: fertilización orgánica; minerales

Introduction

As consequence from industrial activities some byproducts are generated like waste water and sludge or solids, which can be used in agricultural practices as soil improvers or a mineral source (Castro et al., 2007; Barbarick et al., 2012). A residual sludge is wet organic matter with a number of additives, among which there are some components of interest and others whose presence is undesirable for the possibility of contamination (Ortiz-Hernandez et al., 1995; Datta and Yung, 2005). The physical and chemical characteristics of sludge vary depending on their origin: urban or industrial and the type of process to which they are subjected (Cooper, 2005).

Proper management of industrial or municipal sludge can benefit soil quality due to the incorporation of nutrients and organic matter (Castro et al., 2007). However, inadequate waste management is a source of environmental problems such as soil and groundwater pollution, emission of harmful gases, fumes and odors (Esteller, 2002), also sludge can contain heavy metals, fecal matter and organic pollutants (Datta and Young, 2005).

The possibility of polluting soil and groundwater constitutes their main limitation hence its use must be accompanied by adequate planning and supervision (Otero et al., 1996). For practical and economic reasons the application of sewage sludge is a common practice in developed countries (Ottaviani et al., 1991; Mendoza et al., 2010). Among the positive effects of the incorporation of industrial sludge to soils, are cited higher aggregate stability, increased cation exchange capacity, and higher level of fertility and higher organic matter content, in addition to improve water retention (Alloway and Jackson, 1990).

Sludge has been used in forestry to increase forest productivity, reforestation and to stabilize deforested or disturbed areas by mining, construction, fires, overgrazing, erosion or other factors (Brown et al., 2003). Also, the application of sludge in crops has shown positive effects on Pinus douglasiana and maize (Salcedo et al., 2007) and red tomato Narvaez et al. (2013). Based in the positive results of the above studies, the use of industrial textile sludge could be extended to ornamental species and especially potted.

In northern Mexico, there are 62 waste water treatment plants, which produced about 475,000 tons of sewage sludge (95 000 t dry), which could be used as fertilizer in industrial and forage crops in close to 10 000 ha (Uribe, 2001). However, before applying sludge, whether coming from municipal or industrial discharges, these should be tested regarding their effect on plants, because they can be a source of transfer of heavy metals, various chemicals and pathogens to products harvested (Otero et al., 1996; Paré et al., 1999; Ďubka and Miller, 1999). Therefore the objective of this work was to verify the feasibility of the use of industrial sludge in the production process of hydrangeas (Hydrangea macrophylla L.), documenting sludge concentration in the substrate to obtain a proper growth, morphology and mineral plant concentration.

Materials and methods

Collection and analysis of industrial sludge

The sludge used was from a denim manufacturer: Fabrica la Estrella S. A. de C. V. from Parras de la Fuente, Coahuila, Mexico. These were obtained from the filtrate and solid pressing hauled in wastewater from the industrial process. Sludge or solids count with certificate of non-hazardous based on the analysis of CRETIB (corrosivity, reactivity, explosidad, toxicity, flammability and biological-infectious) of the General Law of Ecological Balance and Environmental Protection from SEMARNAT (SEMARNAT, 2014).

To verify and document the presence and concentration of fecal coliforms, Salmonella spp., helminth eggs and elements: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc, the sludge was analyzed in the laboratory Intertek Testing Services de Mexico , S. A. de C. V., accredited by the Mexican Official Standard NOM-004SEMARNAT-2002 (SEMARNAT, 2003). Additionally, the physical characteristics salinity, sodicity and fertility were determined according to Mexican Official Standard NOM021-RECNAT-2000. (SEMARNAT, 2002).

Plant material

Ornamental plant rooted cuttings from hydrangea (Hydrangea macrophylla L.) var. Blue Fantasy were used.

Research site

The study was conducted in a semicircular greenhouse with temperature control from the Horticulture Department of the Universidad Autonoma Antonio Narro, Buenavista, Saltillo, Coahuila, Mexico located at a latitude of 25o north and 23 'and west longitude 101° 02', with an altitude of 1 743 masl.

Design and experimental treatments

Using peat (Peatmoss®) as base, four treatments with different sludge concentrations 0%, 10%, 20%, 30% (v/v) were established. Once the mixtures were ready, they placed in containers or pots of 2 L, with rooted cuttings of hydrangea. The pots were placed randomly in the greenhouse. 15 replications per treatment and each replication was a pot. For irrigation and nutrition, solution Steiner (Steiner, 1961) was used at 50% of the plantation until the appearance of flower bud and 75% after flower bud to harvest flower.

Variables evaluated

Electrical conductivity and pH in leachate. To verify the effect of industrial sludge inclusion on leachate in each treatment, five samples at 15, 30, 45, 60 and 75 days after transplantation were made, for this purpose a plastic container was placed under the pots, three per each treatment, the sample was collected in the morning, in which pH and electrical conductivity was measured with a potentiometer HANNA model Combo HI98120.

Plant height and inflorescence diameter. Evaluations were made at 118 days after establishing the experiment, when the plants were at flowering. Plant height was measured from the base of the plant to the floral apex and the diameter of the inflorescence was measured using a longitudinal-transverse projection, i.e., two measurements were made in a cross north-south and east-west axis per inflorescence and the average was obtained.

Nutrient concentration in the plant. Once harvested plant leaves, stems, flowers and roots were removed and placed in a forced air oven 72 hours at 70 °C; then an analysis of K, Mg, Ca, Fe, Mn, Cu, Zn and Na concentration in each of the organs sampled using an spectrophotometer of atomic absorption Varian AA-1275 (Fick et al., 1976). Total nitrogen was measured with micro Kjelhdal (AOAC, 1980a), and phosphorus through spectrophotometry (AOAC, 1980b).

Chlorophyll concentration in leaf tissue. It was determined through spectrophotometry (Harborne, 1973), at 660 and 642 nm in an absorption spectrophotometer Bausch & Lomb, Spectronic 21.

Results and discussion

Analysis of industrial sludge

Microbiological analysis. The sludge for this study was classified as type A, for its low content of fecal coliforms, absence of Salmonella and helminth eggs (Table 1). Being possible its use for agricultural purposes. It is also possible direct manipulation without risk to man and plants, according to the Official Mexican Standard NOM-004SEMARNAT-2002 (SEMARNAT, 2003).

Table 1 Microbiological analysis of textile industrial sludge, factory La Estrella S. A. de C. V. of Parras de la Fuente, Coahuila, Mexico. 

NMP= Número más probable; ND= No detectado; HH= Huevos de helminto.

Analysis of heavy metals and metalloids. The results of the analysis (Table 2), classified the sludge as excellent according to NOM-004-SEMARNAT-2002 (SEMARNAT, 2003), since its concentration is below the maximum allowable limit. The management of sludge involves no risk.

Table 2 Content of heavy metals in the textile industrial sludge, factory La Estrella S. A. de C. V. of Parras de la Fuente, Coahuila, Mexico. 

ND = No detectado.

Physical analysis of salinity and sodicity of sludge. Analysis results indicate clay loam, bulk density of 0.74 g cm-3 and organic matter content 2.16%, carbonate 8.98% and moisture retention at field capacity of 30.45%. In relation to salinity, sludge has an extremely high electrical conductivity and alkaline pH according to NOM-021-RECNAT-2000 (SEMARNAT, 2002). High sulfate, bicarbonate and chloride values, with no presence of carbonates, medium in potassium, high calcium, magnesium and sodium (Richards, 1980) (Table 3). Due to high salt content in the sludge it was necessary to use them in mixture with peat to dilute the salts present in the sludge. Previous studies indicated that the maximum content of textile sludge based on volume is 25% (Benavides-Mendoza et al., 2007).

Table 3 Analysis of salinity and sodium saturation extract textile industrial sludge, factory La Estrella S. A. de C. V. of Parras de la Fuente, Coahuila, Mexico. 

Fertility analysis. The concentrations of mineral elements in textile sludge were very low and moderately low for N, P and S. As for Ca, Zn, Fe and Mg had very high values (SEMARNAT, 2002) (Table 4). Mineral content in sludge does not indicate the possibility of restriction to plant growth, by excessive concentration of elements. Moreover, by mixing the sludge with the substrate in concentrations below 25% (Benavides-Mendoza et al., 2007), the mineral content decreases, being in low or very low ranges.

Table 4 Analysis of fertility textile industrial sludge, factory La Estrella S. A. de C. V. of Parras de la Fuente, Coahuila, Mexico. 

ND = No determinado.

pH and electrical conductivity (EC) of water leached

Sludge inclusion in the substrate, increased pH and EC of leached water or nutrient solution (Table 5). Applying a correlation analysis, it was observed that there is a direct relationship between the percentage of sludge inclusion to the substrate and the increase of pH (r= 0.74) and EC (r= 0.76) in the leachate or nutrient solution. Alkaline pH in the substrate reduces the availability of nutrients and the increase of EC is related to high salt content in the substrate, which comes from products used to apply and fix colors in textile (Benavides-Mendoza et al., 2007).

Table 5 Mean and standard deviation of the pH and EC of the water obtained leached acidic peat substrate and textile industrial sludge at different concentrations. 

Medias con distintas letras son diferentes estadísticamente (Tukey P ≤ 0.05).

Morphological variables

Sludge inclusion on the substrate, affected plant height and inflorescence diameter (Table 6). The reduction in plant growth and inflorescence, could relate to the increase in EC generated by the addition of the sludge. This effect is tangible by verifying that the concentrations of 20% and 30% increased leachate EC to 4.52 and 4.36 dS m-1 respectively, while the control was 2.16 dS m-1. EC values greater than 4 mS cm-1 reduces growth and production in sensitive plants (Maiti and Benavides, 2002) and in particular ornamental, either woody (Aguilar Valdez et al., 2011), or herbaceous like buttercup (Valdez Aguilar et al., 2009b.), lisianthus (López-Pérez et al., 2014;. Valdez Aguilar et al., 2013) and cempazuchitl (Valdez Aguilar et al., 2009a); also semihardwood ornamentals like hydrangea, are more susceptible to salinity than herbaceous (Cabrera, 1999).

Table 6 Mean and standard deviation of plant height and diameter of inflorescence hydrangea, grown in acidic peat substrate and textile industrial sludge at different concentrations. 

Medias con distintas letras son diferentes estadísticamente (Tukey p ≤ 0.05).

However, other studies found that the addition of sludge to soil or substrate had a positive effect on Lilium sp. (Torres-González et al., 2011), lettuce (Vaca et al., 2004) alfalfa (Uribe et al., 2001) and maize (Salcedo et al., 2007). The different responses of plants are related to physical and chemical properties of the sludge and these vary according to their origin: urban or industrial and type of process to which these are subjected (Cooper, 2005).

Absorption of mineral nutrients

Macronutrients. N, Mg and Ca, showed no difference between treatments for the different organs of the plant, the same thing happened for K in leaves, while the latter increased its concentration in the inflorescence and stem. As to P, this showed negative trend in the stems and roots regarding the concentration of the sludge, while inflorescence and leaves showed a slight increase in 10% of sludge (Table 7). Mills and Benton (1996) reported that the percentage content recommended for macronutrient in leaves of H. macrophylla is: N 2.24 - 5.6, P 0.25 - 0.7, K 2.2 - 7.8, Ca 0.6 - 2 Mg 0.22 to 0.6.

Table 7 Concentration of macronutrients in different organs hydrangea grown in acidic peat and textile industrial sludge at different concentrations. 

Medias con distintas letras son diferentes estadísticamente (Tukey p ≤ 0.05). CV = Coeficiente de variación. Para fósforo no hubo repeticiones por lo cual no se realizó análisis estadístico.

According to nutrient content recommended by Mills and Benton (1996) and the concentrations observed in this study, plants were in the range of sufficiency except for potassium showing values below the recommended level. Even if potassium was generally low, the highest concentration was found in inflorescences, leaves and stems, but in root this effect was not observed. In stem, potassium content increased in proportion to the concentration of sludge in the substrate, which seems to indicate that the sludge promotes the absorption of potassium, even when, in previous studies low levels of potassium are reported in this type sludge (Narváez et al., 2013). Also, the reports from the literature show that sludge affects in different ways nutrient uptake by plants, for example, it is reported that the addition of sludge decreased Ca concentration in tobacco leaves (Kabata and Pendias, 1992) and in tomato fruits (Narvaez-Ortiz et al., 2013).

Micronutrients. The response in the concentration of trace elements varied according to the organ analyzed. In root and stem, Fe increased in sludge concentration 20%, the other nutrients were similar to control. On leaves and inflorescences Na and Zn showed no difference regarding the control, while Cu increased in all industrial sludge treatment. Mills and Benton (1996) report that proper micronutrient content in mg kg-1 for H. macrophyla is: Fe 50-300, Mn 38-300, Cu 1-25, Zn 20-200 and according to the results of this study micronutrient content is the sufficiency range. As it has been mentioned that sludge is a source of mineral nutrients (Castro et al., 2007; Barbarick et al., 2012), noting the concentration of micronutrients in textile sludge, it seems that there is no relation between them and the obtained in the different plant tissues. Therefore it is possible that the requirement of micronutrients has been provided by the Steiner nutrient solution (Steiner, 1961), not allowing the expression of nutrients from the substrate (Table 8).

Table 8 Concentration of micronutrients in different organs hydrangea grown in acidic peat and textile industrial sludge at different concentrations. 

Medias con distintas letras son diferentes estadísticamente (Tukey p ≤ 0.05). CV = Coeficiente de variación. Para fósforo no hubo repeticiones por lo cual no se realizó análisis estadístico.

Chlorophyll content

The inclusion of textile industrial sludge in the substrate did not cause any changes in chlorophyll concentration (Table 9). Chlorophyll content is an indicator of photosynthetic activity in plants (De Jong et al., 1984), and is related to nutrients content and environmental conditions of light and temperature (Salisbury and Ross, 2000). The experiment was conducted in greenhouse where temperature conditions, radiation and humidity were the same for all treatments and it was verified that nutrient concentration in the plant were in the sufficiency range. This suggests that chlorophyll content in plants was more related to nutrient concentration and environmental conditions than to EC and pH of the substrate. Additionally, it was found that total chlorophyll content in leaves of hydrangea, was similar to that reported in orange leaves (Reyes-Santamarina et al., 2000) and lower to that assessed in tomato leaves (Rodríguez et al., 1998).

Table 9 Mean and standard deviation of the chlorophyll content in leaves grown in acidic peat hydrangea and textile industrial sludge at different concentrations. 

Medias con distintas letras son diferentes estadísticamente (Tukey P≤ 0.05).

Conclusions

The incorporation of sludge to more than 10% increases electrical conductivity and pH of effluent and decreases crop development. In production of potted hydrangea the application of sludge at 10% as complement to substrate favors the development of the crop and increase total content of K.

The use of sludge in low concentrations for production systems of hydrangea is feasible.

Literatura citada

Alloway, B. J. and Jackson, A. P. 1990. The behavior of heavy metals in sludge amended soils. Sci. Total Environ. 100:151-176. [ Links ]

Association of Official Analytical Chemists (AOAC). 1980a. Official methods of analysis 13th edition. Association of Official Analytical Chemists. Washington, DC., USA. 547-562 pp. [ Links ]

Association of Official Analytical Chemists (AOAC). 1980b. Official methods of analysis of the association of official analytical chemists. 30th edition. Association of Official Analytical Chemist.Washington, D.C. USA. 39 p. [ Links ]

Barbarick, K. A.; Ippolito, J. A. and McDaniel, J. 2012. Biosolids application to no-till dryland agroecosystems Agriculture. Ecosyst. Environ. 15:72-81. [ Links ]

Benavides-Mendoza, A.; Ramírez, H.; Ruiz-Torres, N.; Perales-Huerta, A.; Cornejo-Oviedo, E.; Ortega-Ortiz, H. y Dávila-Salinas, R. V. 2007. Aplicación de subproductos industriales de la compañía industrial de Parras, S.A. de C.V. en sustratos para la siembra y crecimiento de plantas. In: tópicos selectos de botánica. González-Álvarez, M. y Salcedo- Martínez, S. M. (Eds.). Universidad Autónoma de Nuevo León, México. 147-162 pp. [ Links ]

Brown, S.; Chaney, H.; Compton, H. and De-Volder, P. 2003. Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas. Plant Soil. 249:203-215. [ Links ]

Cabrera, R. I. 1999. Propiedades, uso y manejo de sustratos de cultivo para la producción de plantas en maceta. Rev. Chapingo Serie Horticultura. 5(1):5-11. [ Links ]

Castro, C. P.; Henríquez, O. and Freres, R. 2007. Posibilidades de aplicación de lodos o biosólidos a los suelos del sector norte de la Región Metropolitana de Santiago. Rev. Geografía Norte Grande. 37:35-45. [ Links ]

Cooper, J. 2005. The effect of biosolids on cereals in central New South Wales, Australia. Crop growth and yield. Aust. J. Exp. Agric. 45:435-443. [ Links ]

Datta, S. P. and Young, S. D. 2005. Predicting metal uptake and risk to the human food chain from leaf vegetables grown on soils amended by long-term application of sewage sludge. Water, Air, and Soil Pollution. 16:119-136. [ Links ]

De Jong, T. M.; Tombesi, A. and Ryugo, K. 1984. Photosynthetic efficiency of kiwi (Actidinia chinensis, Planch.) in response to nitrogen eficiency. Photosynthetica 18:139-145. [ Links ]

Dubka, S. and Milller, K. 1999. Accumulation of potentially toxic elements in plants and their transfer to human food chain. J. Environ Sci Health. 34:681-708. [ Links ]

Esteller, M. V. 2002. Vulnerabilidad de acuíferos frente al uso de aguas residuales y lodos en agricultura. Rev. Latino-Americana de Hidrogeología. 2:103-113. [ Links ]

Fick, K. R.; Miller, S. M.; Funk, J. D.; McDowell, L. R. and Houser, R. H. 1976. Methods of mineral analysis for plant and animal tissues. University of Florida institute of food and agriculture. Department of Animal Sciences, Gainesville, F L. USA. 81 p. [ Links ]

Harborne, J. B. 1973.Chlorophyll extraction. In: Phytochemical Methods. Recommended Technique. J B Harbone (Ed.).Chapman and Hall. London, UK. 205-207 pp. [ Links ]

Kabata, P. A. and Pendias, H. 1992. Trace elements in soils and plants, 2nd edition. CRC Press. [ Links ]

López-Pérez, C. A.; Valdez-Aguilar, L. A.; Robledo-Torres, V.; MendozaVillarreal, R.; Castillo-González, A. M. 2014. El calcio imparte tolerancia a alta conductividad eléctrica en Lisianthus (Eustoma grandiflorum Raf. Shinn.). Rev. Mex. Cienc. Agríc. 5:1193-1204. [ Links ]

Maiti, R. y Benavides, M. A. 2002. Salinidad. In. Benavides- Mendoza A. 2002. Ecofisiología y bioquímica del estrés en plantas. Universidad Autónoma Agraria Antonio Narro. Saltillo, Coahuila México. 54 p. [ Links ]

Mendoza, C.; Francisco, J.; Gallardo, A.; Robles, F. and Bovea, M. D. 2010. Opciones de valorización de lodos de distintas estaciones depuradoras de aguas residuales. Ingeniería. 13:177-190. [ Links ]

Mills, A. H. and Benton, J. 1996. Plant analysis handbook II. A practical sampling, preparation analysis and interpretation guide. Micromacro publishing. Inc. USA. 223 pp. [ Links ]

Narváez-Ortiz, W. A.; Benavides-Mendoza, A.; Robledo-Torres, V. y Mendoza-Villarreal, R. 2013. Efectividad del lodo textil en la producción y composición química del fruto de tomate. Rev. Mex. Cienc. Agríc. 4:129-141. [ Links ]

Ortiz-Hernández, M A.; Gutiérrez-Ruiz, M. E. y Sánchez-Salinas, E. 1995. Propuesta de manejo de los lodos residuales de la planta de tratamiento de la ciudad industrial del valle de Cuernavaca, estado de Morelos, México. Rev. Int. Contam. Ambient. 11:105-115. [ Links ]

Otero, J. L.; Andrade, M. L. y Marcet, P. B.; 1996. Caracterización química y evaluación agronómica de dos tipos de lodos residuales. Inv. Agric. Prod. Veg 11:117-131 [ Links ]

Ottaviani, M.; Santarsiero, A. and De-Fulvio, S. 1991. Hygienic, technical and legislative aspects of agricultural sewage sludge usage. Acta Chim. Hung. 128:535-543. [ Links ]

Paré, T.; Dinel, H. and Schnitzer, M. 1999. Extractability of trace metals during co-composting of biosolids and municipal wastes. Biol. Fertil. Soils. 29:31-37. [ Links ]

Reyes-Santamaría, M. I.; Villegas-Monter, Á.; Colinas-León, M. T. y Calderón-Zavala, G. 2000. Peso específico, contenido de proteína y de clorofila en hojas de naranjo y tangerino. Agrociencia 34:49-55. [ Links ]

Richards, L. A. 1980. Suelos salinos y sódicos. Editorial Limusa, México. 169 p. [ Links ]

Rodríguez-Mendoza, M. N.; Alcántar- González, G.; Aguilar- Santelises, A.; Etchevers- Barra, J. D. y Santizó- Rincón, J. A. 1998. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra. 16:135-141. [ Links ]

Salcedo, P. E.; Vázquez, A.; Laksmy, A.; K.; Zamora, N. F.; Hernández, A. E. and Rodríguez, M. R. 2007. Evaluación de lodos residuales como abono orgánico en suelos volcánicos de uso agrícola y forestal en Jalisco, México. Interciencia. 32:115-120. [ Links ]

Salisbury, F. B. y Roos, C. W. 2000. Fisiología vegetal. Grupo editorial Iberoamericana. [ Links ]

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). 2014. Decreto de la ley general del equilibrio ecológico y la protección al ambiente. Diario Oficial de la Federación. Última reforma. 16 de enero de 2014. [ Links ]

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). 2003. Norma Oficial Mexicana NOM-004-SEMARNAT-2002. Protección ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. Diario Oficial de la Federación. 15 de agosto de 2003. México, D. F. [ Links ]

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). 2002. Norma Oficial Mexicana NOM-021-RECNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. 31 de diciembre de 2002. [ Links ]

Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil. 15:134-154. [ Links ]

Torres-González, J. A.; Benavides-Mendoza, A.; Ramírez, V.; Robledo-Torres, H.; González-Fuentes, J.A. and DíazNùñez, V. 2011. Aplicación de lodo industrial crudo en la producción de Lilium sp. en invernadero. Terra Latinoam. 29:467-476 [ Links ]

Uribe, M. H. 2001. Uso de biosólidos para incrementar la productividad en alfalfa. Folleto Técnico de Divulgación. Campo Experimental Delicias-INIFAP, México. 1-8 pp. [ Links ]

Vaca, M. M.; Beltrán, M.; Vázquez, A.; López, R. and Hachec, R. 2006. Fertilización dosificada con biosólidos acondicionados. Revista AIDIS de Ingeniería y Ciencias Ambientales, Investigación, desarrollo y práctica. 1(1). [ Links ]

Valdez-Aguilar, L. A.; Grieve, C. M. and Poss, J. 2009a. Salinity and alkaline pH of irrigation water affect growth of marigold plants: I growth and dry weight partitioning. Estados Unidos. HortScience 44(6):1719-1725. [ Links ]

Valdez-Aguilar, L. A.; Grieve, C. M.; Poss, J. and Mellano, M. A. 2009b. Hypersensitivity of Ranunculus asiaticus to salinity and alkalinity in irrigation water in sand cultures. Estados Unidos. HortScience. 44(1):138-144. [ Links ]

Valdez-Aguilar, L. A.; Grieve, C. M.; Mahar, A. R.; McGiffen, M. E. and Merhaut, D. J. 2011. Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing seasons: spring-summer and fall-winter. HortScience 46:632-642. [ Links ]

Valdez-Aguilar, L.A.; Grieve, C. M. and Poss, J. 2013. Response of lisianthus to salinity: plant growth. Estados Unidos. J. Plant Nutrit. 36:1605-1614. [ Links ]

Received: March 2015; Accepted: June 2015

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons