SciELO - Scientific Electronic Library Online

 
vol.5 número especial 9La percepción en la evaluación del paisaje índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.5 no.spe9 Texcoco Set./Nov. 2014

https://doi.org/10.29312/remexca.v0i9.1069 

Investigation note

Micronutrients and Ammi majus yield answer to the application of compost

Alejandrina Ruíz-Bello1  § 

Libia Iris Trejo-Téllez1 

Arturo Pérez-Vázquez1 

1 Colegio de Postgraduados- Campus Montecillo. Carretera México-Texcoco, km 36.5, Col. Montecillo, Texcoco, Estado de México, México. C. P. 56230. (tlibia@colpos.mx; parturo@colpos.mx).


Abstract

Ammi majus species have ornamental value; however, the main object of study is the content of coumarins and furanocoumarins, substances used as base products for skin conditions. The aim of this study was to determine the performance of micronutrients with the application of compost. The experiment was conducted in 2013 in Texcoco, Mexico. The treatments consisted of mixing soil: compost 1:1 soil alone; two mixtures were added 20 and 30% "perlite" and a third 100 g of NPK fertilizer generating five treatments. Plants were harvested at five months of age; dried at 71 °C, weighed and ground for analysis of Fe, Cu, Mn and Zn. PH, electrical conductivity, organic matter and cation exchange capacity of the substrates were analysed. Compost had no effect on dry matter production, but significantly affected the pH, EC and CEC of the substrates. Mixtures with "perlite" and mixing with fertilizer produced the highest yields; in these, the pH went up and CE went down, both significantly. Only Mn showed signif icant differences, absorption increased with compost and with decreasing pH induced fertilizer. It is concluded that the addition of compost increased yield of Ammi majus, due to changes induced in the substrate and not necessarily the traditional nutrients.

Keywords: lace; medicinal plants; waste

Resumen

La especie Ammi majus tiene potencial ornamental pero el principal motivo de estudio es su contenido de cumarinas y furanocumarinas, substancias utilizadas como base en productos para padecimientos de la piel. El objetivo de este trabajo es conocer el rendimiento y absorción de micronutrientes con la aplicación de composta. El experimento se realizó en 2013 en Texcoco, México. Los tratamientos consistieron en mezcla suelo:composta 1:1 y suelo solo; a dos de las mezclas se les agregó 20 y 30% agrolita y a una tercera se le adicionaron 100 g de fertilizante N-P-K generando cinco tratamientos. Las plantas se cosecharon a los cinco meses de edad; se secaron a 71 °C, se pesaron y se molieron para el análisis de Fe, Cu, Mn y Zn. Se analizó pH, conductividad eléctrica, materia orgánica y capacidad de intercambio catiónico de los sustratos. La composta no tuvo efecto en la producción de materia seca, pero afectó significativamente el pH, la CE y la CIC de los sustratos. Las mezclas con agrolita y la mezcla con fertilizante, produjeron los rendimientos más altos; en estos, el pH subió y la CE bajó, ambos significativamente. Solo el Mn manifestó diferencias significativas, su absorción aumentó con la composta y con la disminución del pH inducida por el fertilizante. Se concluye que la adición de composta incrementó el rendimiento de Ammi majus, debido a los cambios inducidos en el sustrato y no necesariamente al aporte de nutrientes.

Palabras clave: encaje; plantas medicinales; residuos

The research was conducted in the area of influence, "Tezcutzingo-Metecatl" in the town of Texcoco, State of Mexico with Ammi majus species that exists in this area (Pulido-Salas and Koch, 1988). It belongs to the Apiaceae family (alt. Umbelliferae) and is known by the common names of lace and foam sea. It is native to Eurasia and introduced in America.

It grows from about 20 cm to a little over a meter; flowers from May to July (CONABIO, 2009), but with good soil conditions, flowering can be extended to early winter.

Although it has ornamental potential, current research has focused on its medicinal properties, due to a significant source of coumarins and furanocoumarins, known for its healing effect on various skin conditions in humans and their fungicidal and bactericidal effect on plants (Ojala et al., 2000; Królicka et al., 2006). Most studies were performed in vitro cultures (Królicka et al., 2001; Deepshikha et al., 2002; Staniszewska et al., 2003), and some aerial plant parts (Hamerski et al., 1990; Nasser, 1998).

The investigations include ways to induce biological synthesis and various methods to increase its extraction into in vitro grown plants (Staniszewska et al., 2003). We studied it with tissue sprouts Ruta graveolens, also important as a source of natural coumarins (Sidwa-Gorycka et al., 2003). Investigations include ways to regulate the biosynthesis of coumarins with natural catalysts (Hamerski et al., 1990; Vidal-Castro, 2012).

Furthermore, although the function of residues in substrates is mainly supplied, plant nutrients and improve the physical and microbiological conditions (Ruiz-Bello, 2012), other important aspects are decreasing: the accumulation of waste in the environment, the use of industrial fertilizers and the exploitation of natural peat deposits (peatmoss).

The disadvantages of waste as a potential source of toxic substances associated with diseases or pathogens, can reduce or eliminate through composting the process (Kuter et al., 1988; Schwarz et al., 2009); however, limits its use in the production of nursery plants and potted. The benefits of using the waste is not as obvious to the general public, as shown by Yue et al. (2011) who show that it is more important to the public that, the plants are produced in their locality and with with organic inputs. We have investigated the response to compost a wide variety of ornamental, with positive results; although in some species the compost does not provide all the nutrients needed (Rodríguez-Muñiz, 1998; Papafotiou et al., 2004; Ruiz-Bello, 2012) or have negative effects (Erdogan et al., 2011; Ruiz-Bello and Martínez-Villegas, 2011).

The residues can be used in solid or liquid form, collecting leachate or developing solutions based compost (Ahmed et al., 2011). Tagetes patula substrates formulated with compost and perlite, showed no significant differences in the period of emergence 3, 7, and 9 days. However, the maximum cotyledon expansion size differences (p< 0.01) positive effect of compost. The differences became more evident as the culture growth (Valenzuela et al., 2003). These authors found that Antirrhinum majus and Viola xwittrockiana had good germination and emergence in substrates with 25% combined with 75% compost, peat and substrates combined with 33% compost with peat and perlite (33% of each ) while the germination and emergence of Calendula officinalis was better substrates with higher percentages of vermicompost, 50 and 75%.

Muñiz-Rodríguez (1998) found in Impatiens and Spathyphillum that solid waste from sugar cane, but they supplied enough nutrients and induced the production of branches, its application did not produce plants more developed compared with other commercial fertilizers. In Camellia japonica L. It was possible to reduce significantly the amount of plant growth regulators by mixing compost of pine bark substrates (Larcer et al., 2011). Schwarz et al. (2009) used garden waste, sewage sludge and wood ash and evaluated their use as substrates in Petunia sp. and Tagetes sp. Peat improved some physical and chemical properties of the substrates. However, the composting yard waste was the most suitable for these species.

Vendrame et al. (2005) had no response on Angelonia angustifolia , Coreopsis grandiflorum and Scutellaria costaricana by the application of compost, peat, garden waste and algae, while Pseuderanthemum laxiflorum dry matter increased with the application of bio -solids and waste garden and decreased with treatment containing algae.

Papafotiou et al. (2004) investigated industrial olive oil solid waste composted, in order to replace the peat substrate poinsettia production. They observed that as the compost was increased and decreased the peat substrate, plant height and number of bracts decreased. Substitution at 50 and 75% caused delayed pigmentation of the bracts, which did not happen with 25% substitution. The root dry weight decreased significantly with only 75% substitution of peat for compost.

In Hibiscus sabdariffa L. mixtures were grown in sandy soil with compost, better results were obtained in various features of vegetative growth, as well as foliar sprays were made with leachate (Ahmed et al., 2011).

Under the assumption that, the compost increases dry matter production and affects the absorption of micronutrients in Ammi majus, the objective of the study was to determine these two parameters, in order to study the species under controlled conditions to establish it in the botanical garden "Metecatl", educational purposes and its use as an ornamental species.

We used compost produced from mixed grasses; mainly with cattle manure in an approximate ratio of 3:1. The treatments included consisted of a mixture soil: compost 1: 1, compared with soil without compost; two proportions of "perlite" (20 and 30%) and a dose of 20-20-20 commercial fertilizer (Table 1).

Table 1 Composition of the substrates in the five treatments. 

Tratamiento

  • Suelo

  • (%)

  • Composta

  • (%)

  • Agrolita

  • (%)

  • 20-20-20

  • (g)

1 100 0 0 0
2 50 50 0 0
3 50 50 30 0
4 50 50 20 0
5 50 50 00 100

The plants were obtained by seed. At two months of age were transplanted into pots containing treatments. Three months after transplantation were cut close to the very ground, dried at 71 °C, weighed and ground for analysis of Fe, Cu, Mn and Zn micronutrients. PH, electrical conductivity (EC), organic matter (OM) and cation exchange capacity (CEC) of the substrates were analysed in each treatment to see if the compost was inducing changes.

The results (Table 2) show that, the dry weight ranged from 11.17 to 17.29 g, with the lowest and statistically equal to those obtained in treatments with pure soil and mix soil: compost. The highest yield was achieved with 20% added with "perlite" statistically equal to 30% treatments "perlite" and fertilizer (Table 3) mixture.

Table 2 Dry matter and substrate characteristics at the time of harvest. 

Tratamiento MS (g) pH MO (%) CE (S m-1) CIC (cmol kg-1)
1 S 11.35 7.95 3.54 5.19 45.31
2 S-C 11.17 8.05 5.66 2.34 45.02
3 S-C-20%A 17.29 8.2 6.65 1.23 39.67
4 S-C-30%A 13.09 8.16 3.32 1.21 40.34
5 S-F 12.49 7.69 5.12 1.3 33.05

S= suelo; C= composta; A= agrolita; F= fertilizante.

Table 3 Mean tests of dried matter and substrate characteristics (α= 0.05). 

Tratamiento Grupo Tratamiento Grupo Tratamiento Grupo Tratamiento Grupo
*(MS) (pH) (CE) (CIC)
3(17.29) A 3(8.2) A 1(5.19) A 1(45.31) A
4(13.09) A 4(8.16) A 2(2.34) A B 2(45.02) A
5(12.49) A B 2(8.05) A B 5(1.3) B 4(40.34) A B
1(11.34) B 1(7.95) B 3(1.23) B 3(39.67) A B
2(11.17) B 5(7.69) C 4(1.21) B 5(33.04) B

Medias con la misma letra no son significativamente diferentes. *Los números entre paréntesis son los valores del parámetro.

Statistical analysis (Table 3) shows that the compost had no effect on dry matter production, but in the pH, EC and CEC of the substrate. The treatments in the pH rose and fell CE, both significantly, due to the compost, were those that produced the highest yields. This finding verifies the assumptions that the compost induces changes in the substrate and the plant responds to not only the supply of nutrients, but also the conditions of the substrate induced by the addition of compost (Ruiz-Bello et al., 2012).

Differences in CIC, although significant, showed no relation to the dry matter yield. There were no significant differences in the content of organic matter.

There is no reference of the content of these micronutrients in this species with deficiencies manifested, although no visible signs of any of them were presented at all; this indicates that the substrate supplied enough of the four elements.

The only one who showed significant differences (α= 0.05) between treatments was Mn, whose absorption seems to be favoured by the presence of compost in treatment 2, and pH decrease induced by fertilizer treatment 5 (Table 4).

Table 4 Micronutrient content in Ammi majus

Tratamiento Fe Cu

  • Zn

  • (mg kg-1 )

Mn (pH)
1 S 118.83 11.49 7.4 14.95 (7.95)
2 S-C 179.96 12.1 7.42 15.71 (8.05)
3 S-C-20%A 150.42 11.58 9.02 13.22 (8.2)
4 S-C-30A 183.15 10.76 7.14 11.58 (8.16)
5 S-C-F 208.56 11.22 8.75 23.04 (7.69)

S= suelo; C= composta; A= agrolita; F= fertilizante.

The hypothesis that the addition of compost increases the yield of Ammi majus, since differences between the dry matter produced in soil with and without compost are significantly different, being higher that obtained with soil supplemented with compost. It is noteworthy that, the effect was not directly on the plant, as it was observed in this experiment, the effect on the ground is due to the changes induced by the compost into the soil and not necessarily on the traditional nutrients.

Conclusions

The effect on the absorption of micronutrients is not the same for everyone. Regardless of the critical concentrations in the plant, the absorbed amounts were significantly different only for Mn.

Literatura citada

Ahmed, Y. M.; Shalaby, E. A. and Shanan, N. T. 2011. The use of organic and inorganic cultures in improving vegetative growth, yield characters and antioxidant activity of roselle plants (Hibiscus sabdariffa L.). Afr. J. Biotechnol. 11(10):1988-1996. [ Links ]

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). 2009. Malezas de México. Heike, V. (Ed.) (consultado marzo, 2014). [ Links ]

Deepshikha, P.; Madhumati, P. and Srivastava, P. S. 2002. Variation in xanthotoxin content in Ammimajus L. cultures during in vitro flowering and fruiting. Plant Sci. 162:583-587. [ Links ]

Erdogan, R.; Zaimoglu, Z.; Budak, F. and Koseoglu, C. 2011. Use of sewage sludge in growth media for ornamental plants and its effects on growth and heavy metal accumulation. J. Food Agric. Environ. 2(9):632-635. [ Links ]

Gallardo, C. y Valenzuela, O. 2003. Influencia de propiedades físicas y químicas de diferentes sustratos sobre la emergencia de especies ornamentales herbáceas anuales. Facultad de Ciencias Agropecuarias - UNER. Rev. Científ. Agrop. 7(1):69-74. [ Links ]

Hamerski, D.; Beier, R. C.; Kneusel, R. E.; Matern, U. and Himmelspach, K. 1990. Accumulation of coumarins in elicitor-treated cell suspension cultures of Ammi majus. Phytochemistry. 4(29):1137-1142. [ Links ]

Królicka, A.; Kartanowicz, R.; Stanislaw.; Wosinski, A.; Szpitter, A.; Kaminski, M. and Lojkowska, E. 2006. Induction of secondary metabolite production in transformed callus of Ammi majus L. grown after electromagnetic treatment of the culture medium. Enzyme and Microbial Technology. 39:1386-1391. [ Links ]

Krolicka, A.; Staniszewska, I.; Bielawski, K.; Malinski, E.; Szafranek, J. and Lojkowska, E. 2001. Establishment of hairy root cultures of Ammi majus. Plant Sci. 160:259-264. [ Links ]

Kuter, G. A.; Hoitink, H. A. J. and Chen, W. 1988. Effects of municipal sludge compost curing time on suppression on Pythium and Rhizotocnia diseases on ornamental plants. Plant Dis. 72:751-756. [ Links ]

Larcher; F.; Berruti, A.; Gullino, P. and Scariot, V. 2011. Reducing peat and growth regulator input in camellia pot cultivation. Hortic. Sci. 1(38):35-42. [ Links ]

Muñiz-Rodríguez, E. 1998. Utilización de biosólidos industriales en la producción de dos especies de plantas ornamentales. Tesis de Maestría en Ciencias en Suelos. Bell and howell information and leaming company. Universidad de Puerto Rico, Mayaguez, Puerto Rico. 231 p. [ Links ]

Nasser, A. and Singab, B. 1998. Acetylated flavonoltriglycosides from Ammi majus L. Phytochemistry . 7(49):2177-2180. [ Links ]

Ojala, T.; Remes, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R. and Haahtela, K. 2000. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. Ethnopharm. 73:299-305. [ Links ]

Papafotiou, M.; Physhaloua, M.; Kargasb, G.; Chatzipavlidisc, I. and Chronopoulosa, J. 2004. Olive-mill wastes compost as growing medium component for the production of poinsettia. Sci. Hortic. 2(102):167-175. [ Links ]

Pulido-Salas, M. T. and Koch, S. 1988. Lista florística del cerro Tezcutzingo. Boletín de la Sociedad Botánica de México. 48:81-94. [ Links ]

Ruíz-Bello, A.; Trejo-Téllez, L.; Rodríguez-Mendoza, M. N. y Martínez-Villegas, E. 2012. Parámetros de madurez en diversos materiales composteados. In: tópicos edafológicos de actualidad. 1ª Edición. Universidad Autónoma de Zacatecas. 76 p. [ Links ]

Ruíz-Bello, A. 2012. Compostaje. Aprovechamiento de residuos orgánicos. 1ª Edición. Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Estado de México. 50 p. [ Links ]

Ruíz-Bello, A. y Martínez-Villegas, E. 2011. Aporte nutrimental de compost en plantas de crisantemo. p. 35. In: Luna-Esquivel, G.; Rodríguez-Rodríguez, B. B.; Juárez-López, P.; Santillán-Ortega, C.; Flores-Canales, R.; Isiordia-Aquino, N.; Cambero-Campos, O. J.; Robles-Bermúdez, A. (Comp.). Memoria de resúmenes del XIII Congreso Nacional y VI Internacional de Horticultura Ornamental. 23 al 28 de octubre. Nuevo Vallarta, Nayarit, México. [ Links ]

Schwarz, E.; Seoane, S.; Núñez, A. y López, M. M. E. 2009. Caracterización y evaluación de compost utilizado como sustrato para planta ornamental. Compost Sci. Utilization. 4(17):210-219. [ Links ]

Sidwa-Gorycka, M.; Królicka, A.; Kozyra, M.; Glowniak, K.; Bourgaud, F. and Lojkowska, E. 2003. Establishment of a co-culture of Ammi majus L. and Ruta graveolens L. for the synthesis of furanocoumarins. Plant Sci. 165:1315-1319. [ Links ]

Staniszewska, I.; Krolicka A.; Malinski, E.; Lojkowska, E. and Szafranek J. 2003. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microbial Technol. 5(33):565-568. [ Links ]

Valenzuela, O.; Nicolau, F.; Rode, M.; Schlund, H. y Gallardo, C. 2003. Respuesta de tagetes patula a sustratos formulados con compost y perlita. Facultad de Ciencias Agropecuarias - UNER. Rev. Científ. Agropec. 7(1):57-61. [ Links ]

Vendrame, W. and Moore, K. K. 2005. Crecimiento vegetal comparativa de herbácea perenne en seaweed compost y compost de biosólidos. Compost Sci. Utilization. 2(13):122-126. [ Links ]

Vidal-Castro, J. D. 2012. Órgano catalizadores bifuncionales basados en líquidos iónicos para la síntesis de heterociclos en reacciones compatibles con la Química Verde. Tesis de Maestría en Química Sostenible. Universidad Politécnica de Valencia. Departamento de Química. Instituto de Tecnología Química. Valencia. 189 p. [ Links ]

Yue, C.; Dennis, J. H.; Behe, B. K.; Hall, C. R.; Campbell, B. L. and Lopez, R. C. 2011. Investigating Consumer Preference for Organic, Local, or Sustainable Plants. Hortscience. 4(46):610-615. [ Links ]

Received: May 2014; Accepted: September 2014

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons