SciELO - Scientific Electronic Library Online

 
 número43Linguistically Motivated Negation Processing: An Application for the Detection of Risk Indicators in Unstructured Discharge SummariesA Graph-based Approach to Cross-language Multi-document Summarization índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Polibits

versión On-line ISSN 1870-9044

Polibits  no.43 México ene./jun. 2011

 

A Micro Artificial Immune System

 

Juan Carlos Herrera–Lozada1, Hiram Calvo1, and Hind Taud2

 

1 Centro de Investigación en Computación, Instituto Politécnico Nacional, México D. F., 07738, Mexico (e–mail: jlozada@ipn.mx, hcalvo@cic.ipn.mx).

2 Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, México D. F., 07700, Mexico (email: htaud@ipn.mx).

 

Manuscript received March 12, 2011.
Manuscript accepted for publication June 6, 2011.

 

Abstract

In this paper, we present a new algorithm, namely, a micro artificial immune system (Micro–AIS) based on the Clonal Selection Theory for solving numerical optimization problems. For our study, we consider the algorithm CLONALG, a widely used artificial immune system. During the process of cloning, CLONALG greatly increases the size of its population. We propose a version with reduced population. Our hypothesis is that reducing the number of individuals in a population will decrease the number of evaluations of the objective function, increasing the speed of convergence and reducing the use of data memory. Our proposal uses a population of 5 individuals (antibodies), from which only 15 clones are obtained. In the maturation stage of the clones, two simple and fast mutation operators are used in a nominal convergence that works together with a reinitialization process to preserve the diversity. To validate our algorithm, we use a set of test functions taken from the specialized literature to compare our approach with the standard version of CLONALG. The same method can be applied in many other problems, for example, in text processing.

Key words: Artificial immune system, Clonal selection theory, micro algorithm, numerical optimization.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

REFERENCES

[1] D. Ashlock, Evolutionary Computation for Modeling and Optimization, Springer, 2005.         [ Links ]

[2] M. Munetomo and Y. Satake, "Enhancing Model–building Efficiency in Extended Compact Genetic Algorithms," in ICSMC '06. IEEE International Conference on Systems, Man and Cybernetics, 2006, Volume 3, Oct. 8–11, 2006, pp. 2362–2367.         [ Links ]

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading, MA, 1989.         [ Links ]

[4] L. Nunes de Castro and J. Timmis, Artificial Immune Systems: A new Computational Intelligence Approach, Springer, 2002.         [ Links ]

[5] D. Dasgupta, "Advances in artificial immune systems," Computational Intelligence Magazine, IEEE, vol 1, issue 4, pp. 40–49, Nov. 2006.         [ Links ]

[6] A. Gelbukh, G. Sidorov, D. Lara–Reyes, and L. Chanona–Hernandez, "Division of Spanish Words into Morphemes with a Genetic Algorithm," Lecture Notes in Computer Science, 5039, Springer–Verlag, pp. 19–26, 2008.         [ Links ]

[7] K. Krishnakumar, "Micro–genetic algorithms for stationary and non–stationary function optimization" in SPIE Proceedings: Intelligent Control andAdaptive systems, 1989, pp. 289–296.         [ Links ]

[8] G. Alvarez, Can we make genetic algorithms work in high–dimensionality problems? Stanford Exploration Project (SEP) report 112, 2002.         [ Links ]

[9] G. Dozier, J. Bowen and D. Bahler, "Solving Small and Large Scale Constraint Satisfaction Problems Using a Heuristic–Based Microgenetic Algorithm," in Proceedings of the First IEEE Conference on Evolutionary Computation (ICEC'94), Z. Michalewicz, J. D. Schaffer, H.–P. Schwefel, D. B. Fogel and H. Kitano (eds), 1994, pp. 306–311.         [ Links ]

[10] G. Toscano, Carlos. A. Coello, "A Micro–Genetic Algorithm for multiobjective optimization," in First International Conference on Evolutionary Multi–criterion Optimization, Lecture Notes in Computer Science, vol. 1993, Springer, 2001, pp. 126–140.         [ Links ]

[11] Y. Ming and L. Cheng, "Application of Micro Genetic Algorithm to Optimization of Time–Domain Ultra–Wide Band Antenna Array," in Microwave and Millimeter Wave Technology, 2007, ICMMT '07, International Conference, April 2007, pp. 1–4.         [ Links ]

[12] J. Mendoza, D. Morales, R. López, J. Vannier, and C. A. Coello, "Multiobjective Location of Automatic Voltage Regulators in a Radial Distribution Network Using a Micro Genetic Algorithm," IEEE Transactions on Power Systems, vol. 22, issue 1, pp. 404–412, Feb. 2007.         [ Links ]

[13] J. C. Fuentes and C. A. Coello, "Handling Constraints in Particle Swarm Optimization Using a Small Population Size," Lecture Notes in Computer Science, MICAI 2007: Advances in Artificial Intelligence, vol. 4827, Springer, 2007.         [ Links ]

[14] L. Nunes de Castro and F. J. Von Zuben, "The clonal selection algorithm with engineering applications," in Proceedings of Genetic and Evolutionary Computation Conference, Workshop on AISAA, July 2000, pp. 36–37.         [ Links ]

[15] L. Nunes de Castro and F. J. Von Zuben, "Learning and optimization using the clonal selection principle," IEEE Trans. Evol. Comput., vol. 6, no. 3, pp. 239–251, Jun. 2002.         [ Links ]

[16] E. Mezura, J. Velázquez, and C. A. Coello, "A comparative study of differential evolution variants for global optimization," in ACM, GECCO 2006, pp. 485–492.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons