SciELO - Scientific Electronic Library Online

 
vol.15 issue4Livestock Production in Buffering Zones in Chiapas, Mexico: Analysis of Community CapitalsEfficiency and Family Farming: more than a century of debate without enough answers author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Agricultura, sociedad y desarrollo

Print version ISSN 1870-5472

agric. soc. desarro vol.15 n.4 Texcoco Oct./Dec. 2018

 

Articles

Typology of Indigenous Hens in the Central Valleys of Oaxaca based on Morphometric Descriptors

Héctor Luis-Chincoya1 

José G. Herrera-Haro1  * 

Martha P. Jerez-Salas2 

Amalio Santacruz-Varela1 

Alfonso Hernández-Garay1 

1Colegio de Postgraduados, Programa de Recursos Genéticos y Productividad-Ganadería y Genética, Campus Montecillo. Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Estado de México.

2 Instituto Tecnológico del Valle de Oaxaca, Xoxocotlán, Oaxaca, México.


Abstract

In the region of the Central Valleys of Oaxaca, located in southern Mexico, the family production system of indigenous birds acquires great importance as a result of generating complementary income and improving the diet of rural families, in addition to the conservation of bird genotypes adapted to the production system and ecological environment of their surroundings. However, little is known about the typological characteristics of the bird groups under exploitation. The objective of the study was to group indigenous hens based on their phenotypical differences, using a random sample of 171 indigenous hens in their first laying cycle by taking the following body measurements: live weight (PV), age, dorsal height (AD), dorsal length (LD), pectoral perimeter (PPE), length of tarsus (LTARSO), length of foot (LPIE), length of thigh (LMUSLO), length of wing (LALA), width of wing (AALA), height of crest (AC), length of crest (LC), width of beak (AP), length of beak (LP), length of chin (LB), width of chin (AB), width of appendage (AO), length of appendage (LO), width of head (AC), length of head (LC), primary feather (PP) [all acronyms based on Spanish initials]. The morphometric information was analyzed estimating Pearson correlations and principal components analysis (PC) with standardized variables. The live weight showed the highest correlation with PPE (r=0.62) and LB with AB (r=0.91), which was related to the animal’s size and magnitude of the head. Two PCs explained 63 % of the total variation; PC1 included the conformation of head and extremities (tarsus and leg) and PC2 was defined by the size of the bird (height and weight). Based on their PCs, adult indigenous hens were classified into three types: very heavy, heavy and light, criteria that should be considered in the differentiation and selection of breeders.

Key words: indigenous birds; family production units; typology

Resumen

En la región de Valles Centrales de Oaxaca, localizada al sur de México, el sistema de producción familiar de aves criollas adquiere gran importancia por la generación de ingresos complementarios y la mejora de la alimentación de las familias rurales, además de la conservación de genotipos avícolas adaptados al sistema de producción y ambiente ecológico de su entorno. Sin embargo, se conoce poco sobre las características tipológicas de los grupos avícolas en explotación. El objetivo del estudio fue realizar una agrupación de gallinas criollas con base en sus diferencias fenotípicas, usando una muestra aleatoria de 171 gallinas criollas en su primer ciclo de postura en las cuales se midieron las siguientes medidas corporales: peso vivo (PV), edad, altura dorsal (AD), largo dorsal (LD), perímetro pectoral (PPE), largo de tarso (LTARSO), largo de la pierna (LPIE), largo del muslo (LMUSLO), largo del ala (LALA), ancho del ala (AALA), altura de la cresta (AC), largo de la cresta (LC), ancho del pico (AP), largo del pico (LP), largo de la barbilla (LB), ancho de la barbilla (AB), ancho de orejuela (AO), largo de orejuela (LO), ancho de cabeza (AC), largo de cabeza (LC), pluma primaria (PP). La información morfométrica se analizó estimando correlaciones de Pearson y análisis de componentes principales (CP) con variables estandarizadas. El peso vivo mostró la mayor correlación con PPE (r=0.62) y LB con AB (r=0.91), que se relacionaron con el tamaño del animal y la magnitud de la cabeza. Dos CP explicaron 63 % de la variación total; el CP1 incluyó la conformación de cabeza y extremidades (tarso y pierna), y el CP2 fue determinado por talla del ave (altura y peso). Con base en sus CP’s, las gallinas criollas adultas se clasificaron en tres tipos: muy pesadas, pesadas y ligeras, criterios que deben ser considerados en la diferenciación y selección de reproductores.

Palabras clave: aves criollas; unidades de producción familiar; tipología

Introduction

Small-scale poultry production systems are based on indigenous or “criollo” birds that are part of the cultural patrimony of the family (Raach-Moujahed et al., 2011), which is exploited under conditions of rusticity and difficult environments (Flint and Woolliams, 2008), using dietary inputs of low cost, in comparison with specialized bird lines (Haoua et al., 2015), and their importance lies in contributing high-quality protein and additional income for the family (Guèye, 2009; Guni et al., 2013). The management of indigenous birds is based on ancestral knowledge (Moreki, 2010), and their empirical selection has allowed conservation of the genetic variability of its breeders, considered currently natural gene reservoirs (FAO, 2010); this, in contrast with industrial bird production developed in intensive production systems, based on high-yield lines specialized in meat and egg production, which, when introduced into rural communities, begin a process of genetic erosion of the local populations (Haoua et al., 2015) with consequences reflected in a decrease of the effective size of the population (Abebe et al., 2015).

The typological grouping of indigenous populations is basic to establish programs of conservation and multiplication (Qu et al., 2006; Herrera and García, 2010). The technique of multivariate principal component analysis is a tool that helps group animals with similar characteristics, based on the generation of new variables obtained from linear combinations of the original body measurements, based on the proportion of the total phenotypical variance observed in the animals and identifying the body measurements that cause such variation (Yakubu et al., 2011). In this way an outlook of the productive potential of the flocks in their geographic regions of origin is obtained (Avellanet, 2006). Therefore, a study was suggested to characterize the poultry production system and to define a typology of indigenous hens, based on their morphometric characteristics, in the region of Central Valleys, Oaxaca.

Materials and Methods

Study area, collection procedures and information procurement

The study was carried out in the region of Central Valleys in Oaxaca, Mexico, which includes the districts of Ejutla, Etla, Ocotlán, Tlacolula, Zaachila, Zimatlán and Center, using the probabilistic sample by conglomerates in two stages (Sukhatme, 1970). The primary units were constituted by the seven districts, and the production units (PUs) inside the districts were considered secondary units. A sample of three primary units (n) was chosen and inside them, 19 secondary units were chosen randomly, representing 16 % of the population. In each secondary unit nine hens were chosen on which 21 morphometric variables were measured, constituting a total sample size of 171 adult hens distributed in the study region, with an estimated inventory of adult hens of 2004 animals. The size of the sample was obtained with an accuracy of 10% and reliability of 90 %.

The information about morphometric measures was obtained from each animal, considering 21 variables described in Table 1, outlined in Figure 1, considering weight and age. To take the measurements, the following were used with each indigenous hen: digital scale, digital Vernier (Mitutoyo, CD-18¨C) and measuring tape.

Table 1 Description of the variables for morphometric analysis. 

Variables morfométricas Unidad de medida Descripción de medida
1. - Peso vivo (PV) Kilogramo Peso por animal en una balanza con aproximación a gramos
2. - Largo dorsal (LD) Milímetros Longitud total del animal desde la punta del pico pasando por la parte dorsal, hasta la cola, sin considerar las plumas
3. - Altura dorsal (AD) Milímetros Se posicionó al animal erguido, tomando la medida con cinta métrica a la altura de las patas hasta la parte dorsal, justo a la altura de inserción de las alas.
4.- Perímetro pectoral (PPE) Milímetros Obtenida de la circunferencia de la cavidad torácica en el extremo posterior de la pechuga.
5.- Largo de tarso (LTARSO) Milímetros Longitud entre la articulación del tarso y el cojinete entre los dedos.
6.- Largo de la pierna (LPIERNA) Milímetros Longitud entre la articulación de la rodilla hasta la articulación del tarso.
7.- Largo del muslo (LMUSLO) Milímetros Longitud entre la articulación coxofemoral hasta la articulación de la rodilla.
8.- Largo del ala (LALA) Milímetros Longitud tomada con el ala extendida considerando desde el miembro torácico hasta las falanges de la punta del ala.
9.- Ancho del ala (AALA) Milímetros Desde la articulación del humero hasta la altura de las falanges.
10.- Altura de cresta (AC) Milímetros Desde las base de la cresta hasta el pico más alto.
11.- Largo de cresta (LC) Milímetros Medida transversal en la parte más ancha de la cresta.
12.- Ancho de pico (AP) Milímetros Desde inserción del pico, medido con el vernier digital
13.- Largo de pico (LP) Milímetros En la inserción en la cabeza, hasta la punta del pico
14.- Largo de barbilla (LB) Milímetros Desde la base inserción de la cabeza hasta la punta.
15.- Ancho de barbilla (AB) Milímetros De manera transversal en la parte más ancha.
16.- Ancho de orejuela (AORE) Milímetros De manera transversal en la parte más ancha.
17.- Largo de orejuela (LORE) Milímetros De manera longitudinal desde el orificio del odio hasta la punta.
18.- Ancho de cabeza (AC) Milímetros Medida de lado a lado, tomando como referencia la altura de los ojos.
19.- Largo de cabeza (LC) Milímetros Media desde la inserción del pico hasta la parte anterior de la cabeza
20. Pluma primaria (PP) Milímetros Considerada la primer pluma primaria de la punta del ala.
21. Edad Años Estimada por el productor y madurez sexual

Figure 1 Morphometric variables evaluated in indigenous hens. 

Univariate descriptive and Pearson correlation analyses were carried out, prior to the analysis of the model’s assumption. The comparisons between males and females were performed through a t-Student test for independent samples. In addition, the multivariate principal component analysis (PCA) technique was used, which allowed reducing the multidimensional space of morphometric variables in a subset of linear combinations (Morrison 1976). In order to avoid the scale effects of the PCA, the variables were standardized. The PCA results were graphed in a biplot that allowed the representation in two dimensions (first and second PC) of the birds and the variables measured simultaneously (Johnson, 1998). The analyses were performed using SAS ver. 9.0 (SAS Institute, 2002).

Results and Discussion

Morphological features

Table 2 shows the descriptive statistics, means and standard deviations, finding differences (p<0.05) between the dorsal weight and length of males and females: 2.5±0.5 kg, 45.4 cm and 2.0±0.5 kg, 41.4 cm, respectively. Similar results in the variables studied were reported by other researchers in Mexico, Spain and Botswana (Jerez-Salas, 2014; Campo, 2009; and Badubi et al., 2006, respectively).

Table 2 Means and standard deviations of the morphometric variables of indigenous hens in the Central Valleys of Oaxaca, Mexico. 

Característica Hembras (n=144) Machos (n=27)
Media D.E. Media D.E.
Peso vivo (kg) 2.01 0.50 2.50 0.59
Edad (años) 1.13 0.63 1.12 0.60
AD1 (mm) 282.25 30.11 313.33 48.44
LD2 (mm) 414.79 33.67 454.63 45.51
PPE3 (mm) 404.91 31.63 441.74 37.17
LB4 (mm) 21.49 9.11 47.00 17.12
AB5 (mm) 25.71 8.10 43.52 12.16
LC6 (mm) 45.84 9.33 53.88 9.99
AC7 (mm) 33.75 7.14 36.27 6.35
LPC8 (mm) 34.92 6.66 38.22 6.57
APC9 (mm) 23.78 6.74 25.21 5.28
LCR10 (mm) 27.14 11.53 49.83 15.25
ACR11 (mm) 48.41 13.23 92.18 23.50
LTarso12 (mm) 107.05 9.70 124.94 15.24
LPierna13 (mm) 136.05 11.17 158.34 13.87
LMuslo14 (mm) 102.50 10.96 116.51 10.21
LALA15 (mm) 183.77 16.99 203.33 16.62
AALA16 (mm) 94.69 9.14 106.11 7.86
PP17 (mm) 115.43 28.75 129.15 31.62
LORE18 (mm) 24.27 7.63 35.95 9.01
AORE19 (mm) 18.76 6.31 21.75 7.13

D.E.: Standard deviation, AD1: Dorsal height, LD2: Dorsal length, PPE3: Pectoral perimeter, LB4: Length of chin, AB5: Width of chin, LC6: Length of crest, AC7: Width of crest, LPC8: Length of beak, APC9: Width of beak, LCR10: Length of crest, ACR11: Width of crest, LTARSO12: Length of tarsus, LPIERNA13: Length of leg, LMUSLO14: Length of thigh, LALA15: Length of wing, AALA16: Width of wing, PP17: Primary feather, LORE18: Length of appendage, AORE19: Width of appendage.

Phenotypical correlations

Table 3 shows the significant phenotypical correlations (p<0.01) between some morphometric characteristics of indigenous hens. The positive correlations were between: live weight with pectoral perimeter (0.62), live weight with tarsus length (0.45), confirming: with higher weight, birds are larger and therefore have a greater breath of the breast area. Likewise, tarsus length with thigh length (0.69) and tarsus length with appendage length (0.67) are associated with the development of extremities with sexual accessories of the head. These results agree with those reported by Alabi et al. (2012) and Guni et al. (2013) in South Africa and Tanzania, who found a high positive correlation between the live weight with pectoral perimeter and tarsus length with thigh length, which describe the size of the animal.

Table 3 Principal morphometric correlations of indigenous hens. 

PV PPE LB AB LTARSO LMUSLO LORE
PV1 1.00 0.62 0.36 0.29 0.45 0.27 0.31
PPE2 1.00 0.45 0.41 0.50 0.40 0.39
LB3 1.00 0.91 0.57 0.61 0.83
AB4 1.00 0.64 0.65 0.82
LTARSO5 1.00 0.69 0.67
LMUSLO6 1.00 0.73
LORE7 1.00

PV1: Live weight, PPE2: Pectoral perimeter, LB3: Length of chin, AB4: Width of chin, LTARSO5: Length of tarsus, LMUSLO6: Length of thigh, LORE7: Length of appendage.

Typological description based on PCA

The principal component analysis allowed reducing the dimensionality of the 21 variables considered, showing that five linear combinations explained 80 % of the variation, but it was considered that the first two PCs were the most important, given that they explained 63 % of the total variation (Table 4) and allowed establishing a practical and easy-to-understand hen classification based on their morphological characteristics.

Table 4 Typical values and variance proportion explained for each principal component (PC). 

CP Valor propio Proporción explicada Proporción acumulada
1 10.53 0.50 0.50
2 2.70 0.13 0.63
3 1.56 0.07 0.70
4 1.00 0.05 0.75
5 0.84 0.04 0.79
6 0.75 0.04 0.83
7 0.63 0.03 0.86
8 0.57 0.03 0.88
9 0.44 0.02 0.91
- - - -
20 0.07 0.00 1.00

The PC1 component represents the highest amount of variability of the data, explaining 50 % of the total variance, composed by variables of: tarsus length, thigh length, which defined the size of the bird; while chin length, chin width, crest width, beak length, crest length, appendage length, appendage width explain the shape and magnitude of the head (Table 5). That is, it explains the size and shape of the head that is directly related to the sexual dimorphism of the bird; in males, these accessories are developed and attractive, while in females they are smaller. These results are consistent with those by Yakubu et al. (2009), who reported the PC1 with the variables of height and length of crest, tarsus length and thigh circumference, in a study of local chickens in Nigeria. However, Egena et al. (2014) in the PC1 found different variables in a population, such as: wing length (0.840), weight (0.826), and body length (0.814); this can be attributed to the ancestral origin and environmental conditions of adaptation in Nigeria.

Table 5 Typical vectors of the three first principal components. 

Variables originales Componentes principales
CP1 CP2
Peso 0.119 0.428
LD1 0.108 0.419
PPE2 0.155 0.323
LTarso3 0.257 0.173
LMuslo4 0.259 -0.043
LB5 0.256 0.028
AB6 0.262 - 0.013
AC7 0.252 - 0.271
LPC8 0.253 - 0.220
LCR9 0.253 0.040
LOrejuela10 0.281 - 0.084
AOrejuela11 0.238 -0.248

LD1: Dorsal length, PPE2: Pectoral perimeter, LTarso3: Length of tarsus, LMuslo4: Length of thigh, LB5: Length of chin, AB6: Width of chin, AC7: Width of crest, LPC8: Length of beak, LCR9: Length of crest, LOrejuela10: Length of appendage, AOrejuela11: Width of appendage.

The PC2 explains another 13 % of the total variability made up by the variables of weight, pectoral perimeter, and dorsal height (Table 5); as a whole, they define the size or build of the bird that reflects the breeding purpose of the hen in the production units, for egg, meat or double-purpose; that is, light hens would have a better aptitude for egg production, while the heavier tend to get more meat, and the double-purpose fulfill both functions. This agrees with results by Yakubu et al. (2009), who found in the PC2 the thorax circumference and length of the birds to be related to the size of the animal.

The two principal components originated that explain the size and build of the animal were the basis to establish the phenotypical descriptors as criteria of typology or grouping of the birds, giving rise to three groups according to the dimensionality plan of indigenous hens (Figure 2).

Figure 2 Distribution of indigenous hens in the level of dimensionality with principal components CP1 vs CP2. 

The first group of birds was characterized as heavy, larger than 3 kg; therefore, they have longer extremities, such as the tarsus and length of leg; that is, animals of greater size and build, which are bred in the production units with the aim of obtaining eggs to preserve those genes in the future offspring and obtain meat for self-consumption after concluding their first laying cycle.

The second group of birds was the most predominant, with a weight of 2 kg and medium size; this evidences that it is double-purpose hens in the production units that are preferred for egg extraction; in addition, they are also a good source of meat.

The third group was identified as the light or inferior, with a weight lower than 2 kg, with characteristics of lower size and weight. This suggests that the aim of these birds in the production unit is to obtain a higher amount of eggs in each laying cycle compared to the second group.

As background, it is convenient to note that one of the greatest advances in industrial poultry production is the moment when the breeders differentiated their genotypes as heavy and light hens (Nordskog, 1976; Orozco, 1991). In our case there is an intermediate genotype, since this kind of rural poultry production is basically double-purpose: meat and egg production.

Conclusions

Indigenous hens in the study region can be grouped according to the two main descriptors: size of the bird (conformation of head and extremities) and build of the animal (height and weight).

Based on the principal component analysis, the typological classification of indigenous hens from the Central Valleys of Oaxaca can be based on the following criteria: i) Very heavy hens (larger than 3 kg); ii) Intermediate hens (between 2 and 3 kg); and, iii) Light hens (smaller than 2 kg).

The three types of hens: heavy, semi-heavy and light, must be considered as typological differentiation criteria and for the selection of indigenous breeders in the production units of the region of the Central Valleys of Oaxaca.

Literatura Citada

Abebe, A. S., S. Mikko, and A. M. Johansson. 2015. Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers. PLoS ONE 10(4), p.e0120580. doi:10.1371/journal.pone.0120580. [ Links ]

Alabi, O. J., J. W. Ng’ambi, D. Norris and S. S. A. Egena. 2012. Comparative study of three indigenous chicken breeds of South Africa: body weight and linear body measurements. Agricultural Journal 7: 220-225. [ Links ]

Avellanet, T. R. 2006. Conservación de recursos genéticos ovinos en la raza Xisqueta: Caracterización estructural, racial y gestión de la diversidad en programas “in situ”. Tesis de Doctorado. Universitat Autònoma de Barcelona. Bellaterra, España. 282 p. [ Links ]

Badubi, S. S., M. Rakereng and M. Marumo. 2006. Morphological characteristics and feed resources available for indigenous chickens in Botswana. Livestock Research for Rural Development 18. http://www.lrrd.org/lrrd18/1/badu18003.htm (Consultado 4 de noviembre de 2015). [ Links ]

Campo, J. (2009). Valoración morfológica de las gallinas. En C. Sañudo, Valoración morfológica de los animales domésticos (pág. 617). España: Ministerio de Medio Ambiente y Medio Rural y Marino. [ Links ]

Egena, S. S. A., A. T. IJaiya, D. M. Ogah and V. E. Aya. 2014. Principal component analysis of body measurements in a population of indigenous nigerian chickens raised under extensive management system. Slovak J. Anim. Sci., 47 (2): 77-82. [ Links ]

FAO, 2010. La situación de los Recursos Zoogenéticos mundiales para la Alimentacion y la Agricultura. Food and Agriculture Organization of the United Nations. [ Links ]

Flint, A. P. F. and J. A. Woolliams. 2008. Precision animal breeding. Philosophical Transactions of the Royal Society B. 363: 573-590. [ Links ]

Guèye, E. F. 2009. The role of networks in information dissemination to family poultry farmers. World’s Poultry Science Journal 65: 115-124. [ Links ]

Guni, F. S., A. M. Katule and P. A. A. Mwakilembe. 2013. Characterization of local chickens in selected districts of the Southern Highlands of Tanzania: II. Production and Morphometric traits. Livestock Research for Rural Development 25. http://www.lrrd.org/lrrd25/11/guni25190.htm (Consultado 4 de noviembre de 2015). [ Links ]

Haoua, M. T., C. T. Keambou, M. Y. Poutougnigni, and Y. Manjeli. 2015. Characterisation of indigenous chicken production systems in the Sudano-sahelian zone of Cameroon. Livestock Research for Rural Development 27 Livestock Research for Rural Development 27 http://www.lrrd.org/lrrd27/2/haou27030.html (Consultado 4 de noviembre de 2015). [ Links ]

Herrera, H.J.G. y García C.A.. 2010. Bioestadistica en Ciencias Veterinarias, Procedimientos de Analisis de Datos con SAS. Universidad Complutense de Madrid. Madrid, España. 258 p. [ Links ]

Jerez-Salas, M. P., M. A. Vázquez-Dávila, F. Chavez-Cruz, M. I. Pérez-León, y J.C. Carrillo-Rodriguez. 2014. Conocimiento tradicional, manejo y morfología de gallinas criollas en tres localidades de los Valles Centrales de Oaxaca. Publicado en el libro: Gallinas criollas y Guajolotes nativos de México, Universidad Autónoma de Chiapas, Red CONBIAND, R. A. Perezgrovas-Garza, M. P. Jerez-Salas, & M. A. Camacho-Escobar, eds. [ Links ]

Johnson, D. E. 1998. Métodos Multivariados Aplicados al Análisis de Datos. Traducido del inglés por Pérez Castellanos. H. International Thomsom. Editores México, D.F. 566 p. [ Links ]

Moreki, J. C. 2010. Village poultry production in Serowe-Palapye sub-district of Botswana. Livestock Research for Rural Development 22. http://www.lrrd.org/lrrd22/3/more22046.htm (Consultado 4 de noviembre de 2015). [ Links ]

Morrison, D. F. 1976. Multivariate Statistical Methods. McGraw-Hill, New York. 338 p. [ Links ]

Nordskog A.W. 1976. Poultry Breeding and Genetics. I.S.U. Press,.Ames, Iowa, USA. 195 p. [ Links ]

Orozco P.F. 1991. Mejora Genética Avícola. Edit. Mundi-Prensa. Madrid, España. 230 p. [ Links ]

Qu, L., X. Li., G. Xu, K. Chen, H. Yang, L. Zhang, G. Wu, Z. Hou, G. Xu and N. Yang. 2006. Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers. Science in China, Series C: Life Sciences 49:332-341. [ Links ]

Raach-Moujahed, A., N. Moujahed and B. Haddad. 2011. Local poultry populations in Tunisia: Present and alternatives. A review. Livestock Research for Rural Development 23 Livestock Research for Rural Development 23 http://www.lrrd.org/lrrd23/4/raac23096.htm (Consultado el 1 de marzo de 2016). [ Links ]

SAS Institute. 2002, SAS/TAT User´s Guide:Sofware version 9.0. Statistical Analysis System Institute. Cary, North Carolina, USA, 4424 p. [ Links ]

Sukhatme, P. V. 1970. Sampling Theory of Surveys with Application. Iowa State College Press. Ames, Iowa. 491 p. [ Links ]

Yakubu, A., D. Kuje and M. Okpeku (2009). Principal components as measure of size and shape in Nigerian indigenous chickens. Thai J. Agric. Sci. 42 (3): 167-176. [ Links ]

Yakubu, A., A. E. Salako and A. R. Abdullah. 2011. Varimax rotated principal component factor analysis of the zoometrical traits of uda sheep. Archivos de Zootecnia 60: 813-816. [ Links ]

Received: May 2016; Accepted: July 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons