SciELO - Scientific Electronic Library Online

vol.60 issue1Mecánica 3d: python y el algoritmo de VerletPrimeras mediciones precisas de la gravedad hechas en México author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.60 n.1 México Jan. 2014



Probing students' conceptual knowledge of satellite motion through the use of diagram


N. Ercega, I. Avianib, V. Mešićc, Z. Kalimana, and D. Kotnik-Karuzaa


a Department of Physics, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia.

b Institute of Physics, Bijenička c. 46, Hr-10002 Zagreb, Croatia and Faculty of Science, University of Split, Teslina 12, 21000 Split, Croatia.

c Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.


Received 11 March 2014
accepted 21 April 2014



We investigated students' understanding of satellite motion around the Earth. For that purpose, we surveyed high-school and university students from Croatia. With the objective of gaining insight into teachers' understanding of students' abilities, physics teachers were asked to predict students' answers. The results of the study suggest that most students have difficulties with providing physically based explanations. They tend to approach such problems through the use of phenomenological primitives. Specifically, they tend to use the "closer is stronger" p-prim when attempting to identify the satellite orbit which would ensure receiving satellite television signal at a certain location paying no attention to the direction of the gravitational force. We found no statistically significant association between the students' ability to correctly explain the satellite motion and their educational background. The teachers considerably overestimate students' abilities. Generally, the results of this study suggest that diagram-based problem can be useful tool for probing students' understanding of satellite motion.

Keywords: Diagrammatic representation; satellite motion; students' problem solving.



Hemos investigado el entendimiento de los estudiantes del movimiento del satélite alrededor de la Tierra. Con este fin hemos hecho un estudio de los estudiantes de la secundaria y los estudiantes universitarios de Croacia. Con el objetivo de comprender la habilidad de los enseñantes de entender las habilidades estudiantiles, les hemos pedido a los profesores de física prever las respuestas estudiantiles. Los resultados de la investigación sugieren que la mayoría de los estudiantes tiene dificultades a la hora de dar explicaciones físicamente fundamentadas. Ellos tienen la tendencia de abordar estos problemas usando los conceptos fenomenológicamente primitivos. En concreto, tienen la tendencia de usar "p-prim closer is stronger" cuando tratan de identificar la órbita de un satélite que debería asegurar la recepción de señal de televisión por satélite en cierto lugar, sin tener en cuenta la dirección de la fuerza gravitacional. No hemos encontrado una relación estadísticamente significativa entre las habilidades estudiantiles de explicar correctamente el movimiento del satélite y su formación. Los enseñantes estiman mucho más de lo que valen las habilidades estudiantiles. En general, los resultados de esta investigación sugieren que los problemas con los diagramas pueden ser una herramienta útil para investigar el entendimiento estudiantil del movimiento del satélite.

Palabras clave: Representación diagramática; movimiento del satélite; solucionamiento estudiantil del problema.


PACS: 01.40.Fk;; 01.55.+b





The authors would like to thank the participants who were so kind to answer all of our questions and the teachers who made this investigation possible by implementing the questionnaire: Vesko Nikolaus, Darijo Micic, Branka Milotic, Maja Planinic, Mladen Buljubasic and Djudita Franko with her teaching team. Many thanks to Hrvoje Mesic for his ideas regarding the formulation of the task.



1. M. McCloskey, A. Caramazza and B. Green, Science 210 (1980) 1139.         [ Links ]

2. P. Gardner, Res. Sci. Ed. 14 (1984) 136.         [ Links ]

3. V. Bar, B. Zinn and E. Rubin, Int. J. Sci. Educ. 19 (1997) 1137.         [ Links ]

4. K. E. Williamson and S. Willoughby, A. Ed. Rv. 11 (2012) 010105-1.         [ Links ]

5. C. Kavanagh and C. Sneider, A. Ed. Rv. 5 (2007) 53.         [ Links ]

6. J. C. Libarkin, S. W. Anderson, J. Dahl, M. Beilfuss and W. Boone, J. Geosci. Edu. 53 (2005) 17.         [ Links ]

7. S. Abell, M. Martini and M. George, Int. J. Sci. Educ. 23 (2001) 1095.         [ Links ]

8. R. Trumper, J. Sci. Edu. Technol. 10 (2001) 189.         [ Links ]

9. N. Bulunuz and O. Jarrett, Basic earth and space science concepts: building elementary teacher understanding. Paper presented at the annual conference of the Georgia science teachers association, Columbus, Georgia, 2002.         [ Links ]

10. E. Kikas, J. Res. Sci. Teach. 41 (2004) 432.         [ Links ]

11. J. Parker and D. Heywood, Int. J. Sci. Educ. 20 (1998) 503.         [ Links ]

12. A. M. Madsen, A. M. Larson, L. C. Loschky and N. S. Rebello, PhysRev. ST-PER 8 (2012) 010122.         [ Links ]

13. V. Bar and B. Zinn, Science & Education 7 (1998) 471.         [ Links ]

14. A. R. Hall, From Galileo to Newton (Dover Publications, Inc., New York, 1981).         [ Links ]

15. I. Newton, A treatise of the system of the world (printed for F. Fayram, London, 1731).         [ Links ]

16. S. Gonen, J. Sci. Educ. Technol. 17 (2008) 70.         [ Links ]

17. S. Vosniadou, Learn. Instr. 4 (1994) 45.         [ Links ]

18. J. Bliss and J. Ogborn, Learn. Instr. 4 (1994) 7.         [ Links ]

19. E. E. Clough, R. Driver and C. Wood-Robinson, School Science Review 69 (1987)255.         [ Links ]

20. C. Sneider, V. Bar and N. Martimbeau, The LHS Quarterly 17 (1994) 4.         [ Links ]

21. B. Johnson and L. Christensen, Educational research, quantitative, qualitative, and mixed approaches (Pearson Education, Boston, 2004).         [ Links ]

22. I. Newton, Sir Isaac Newton's Mathematical principles of natural philosophy and his System of the world, translated into English by Andrew Motte in 1729. The translations revised, and supplied with an historical and explanatory appendix (University of California Press, Berkeley, 1946).         [ Links ]

23. L. K. Wee and G. H. Goh, Phy. Ed. 48 (2013) 72.         [ Links ]

24. A. Lightman and P. Sadler, Phys. Teach. 31 (1993) 162.         [ Links ]

25. J. Viiri, Eur. J. Eng. Ed. 28 (2003) 353.         [ Links ]

26. D. C. Howell, Statistical Methods for Psychology (Wadsworth, Belmont, 2013).         [ Links ]

27. A. A. DiSessa, Cogn. Instr. 10 (1993) 105.         [ Links ]

28. J. Tuminaro and E. F. Redish, Phys Rev. ST-PER 3 (2007) 020101.         [ Links ]

29. L. C. McDermott, Am. J. Phys. 61 (1993) 295.         [ Links ]

30. J. Dahl, S. W. Anderson and J. Libarkin, J. Sci. Edu. 6 (2005) 65.         [ Links ]

31. J. Clement, Am. J. Phys. 50 (1982) 66.         [ Links ]

32. L. B. Resnick, Science 220 (1983) 477.         [ Links ]

33. N. Erceg, I. Aviani and V. Mešić, Can. J. Phys. 92 (2014) 9.         [ Links ]

34. N. Erceg, I. Aviani and V. Mešić, Rev. Mex. Fis. E 59 (2013) 65.         [ Links ]

35. N. Erceg and I. Aviani, Napredak 154 (2013) 61.         [ Links ]

36. N. Erceg and I. Aviani, Croatian Journal of Education 16 (2014) 43.         [ Links ]

37. N. Erceg, M. Marusic and J. Sliško, Rev. Mex. Fis. E 57 (2011) 44.         [ Links ]

38. M. Marusic, N. Erceg and J. Sliško, Eur. J. Phys. 32 (2011) 711.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License