SciELO - Scientific Electronic Library Online

 
vol.60 issue1A model of oscillator with variable massMecánica 3d: python y el algoritmo de Verlet author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.60 n.1 México Jan. 2014

 

Educación

Ondas solitarias no lineales: una introducción a los solitones ópticos espaciales

 

S. Lopez-Aguayo, M. Esparza-Echevarría, G. Lem-Carrillo y J. C. Gutiérrez-Vega

 

Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey, México 64849, e-mail: servando@itesm.mx

 

Received 24 February 2014
accepted 12 May 2014

 

Resumen

Se expone la teoría básica de los solitones ópticos espaciales, enfocándose en los solitones fundamentales brillantes. Estos conceptos son ilustrados mediante dos programas desarrollados en MATLAB. El programa Petvia_Mex, calcula el perfil de los solitones fundamentales que corresponden a la ecuación no lineal general de Schrödinger, mientras que el programa SSF_Mex, simula la propagación paraxial de un haz óptico en un medio no lineal. Utilizando ambos programas, se discuten diversos casos de importancia en el área de los solitones ópticos espaciales, con el fin de estimular el interés en el lector tanto en el área de los solitones, como en el área de la física no lineal en general.

Palabras clave: Solitones; ondas no lineales; ondas solitarias; óptica no lineal.

 

Abstract

The basic theory of spatial optical solitons is reviewed, focusing on fundamental bright solitons. The Physics of solitons is illustrated with two programs developed in MATLAB. One of these programs PetviaJMex, calculates the profile of fundamental solitons corresponding to the generalized nonlinear Schrödinger equation, while the other program SSF_Mex, simulates the paraxial propagation of optic beams in non-linear media. Using both codes, various phenomena of spatial optical solitons are discussed to stimulate the interest of the reader into soliton theory and Nonlinear Physics in general.

Keywords: Solitons; nonlinear waves; solitary waves; nonlinear optics.

 

PACS: 42.65.Tg; 42.81.Dp; 42.65.Sf

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Bibliografía

1. S. Russell, Reports on waves (Reports of the 14th meeting of the British Association for the Advancement of Science, London, 1844). Pp. 311-390.         [ Links ]

2. M. Agüero, J. Fujioka and L. Ceciliano, Ciencia Ergo Sum 9 (2002) 197-201.         [ Links ]

3. J. Boussinesq, Comptes Rendus de l 'Academie des Sciences 72 (1871) 755-759.         [ Links ]

4. D.J. Korteweg, G de Vries, Philosophical Magazine, 5th series 39 (1895) 422-443.         [ Links ]

5. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15 (1965) 240-243.         [ Links ]

6. Mordechai Segev, Opt. Photonics news 13 (2002) 27.         [ Links ]

7. M. Remoissenet, Waves Called Solitons (Springer-Verlag, Heidelberg, 1999).         [ Links ]

8. P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1996).         [ Links ]

9. V.E. Zakharov and A.B. Shabata, Zh. Eksp. Teor. Fiz 61 (1971) 118-134.         [ Links ]

10. C.S.Gardner, J. M.Green, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19 (1967) 1095-1097.         [ Links ]

11 . Y. Kivshar and G. Agrawal, Optical solitons (Academic Press, USA, 2003).         [ Links ]

12. S. Trillo and W. Torruelas, Spatial solitons (Springer-Verlag, Berlin, 2001).         [ Links ]

13. G. E. Torres-Cisneros, et al., Rev. Mex. Fis. 41 (1995) 662-694.         [ Links ]

14. G. Stegeman, D. Christodoulides and M. Segev, 1EEEJ. Quantum. Electron. 6 (2000) 1409-1427.         [ Links ]

15. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).         [ Links ]

16. Yuri Kivshar, Nature Phys. 2 (2006) 729-730.         [ Links ]

17. G. Stegeman and M. Segev, Science 286 (1999) 1518-1523.         [ Links ]

18. M.J. Ablowitz and P.A. Carkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (London Mathematical Society Lecture Note Series, 149. Cambridge, 1991).         [ Links ]

19. Y. Kivshar, Opt. Quant. Electron 30 (1998) 571-614.         [ Links ]

20. A. A. Sukhorukov and Y. Kivshar, Pramana 57 (2001) 10791096.         [ Links ]

21. Y. Kivshar and B. Luther-Davies, Phys. Rep. 298 (1998) 81197.         [ Links ]

22. M. Segev, Opt. Quant. Electron30 (1998) 503-533.         [ Links ]

23. S. López-Aguayo et. al., Opt Lett 31 (2006) 1100-1102.         [ Links ]

24. D. Christodoulides and T. Coskun, Phys. Rev. Lett. 80 (1998) 2310-2313.         [ Links ]

25. S López-Aguayo, Y. V. Kartashov, V. Vysloukh, and L. Torner, Phys. Rev. Lett. 105 (2010) 013902.         [ Links ]

26. S. López-Aguayo, J.P. Ochoa-Ricoux and J.C. Gutiérrez-Vega, Rev. Mex. Fis. 52 (2005) 28-36.         [ Links ]

27. S. López-Aguayo, A. Desyatnikov, and Y. Kivshar, Opt. Express 14 (2006) 7903-7908.         [ Links ]

28. S. López-Aguayo and J.C. Gutiérrez-Vega, Opt. Express. 15 (2007) 18326-38.         [ Links ]

29. D. Schrader, 1EEEJ. Quantum. Electron. 31 (1995) 2221-2225.         [ Links ]

30. D. E. Pelinovsky and Y.A. Stepanyants, SIAM J. Numer. Anal. 42 (2004) 1110-1127.         [ Links ]

31. T.I. Lakoba, J. Yang, J. Comput. Phys. 226 (2007) 1668-1692.         [ Links ]

32. M. J. Ablowitz and Z. H. Musslimani, Opt. Lett. 30 (2005).         [ Links ]

33. T. R. Taha and M. J. Ablowitz, J. Comp. Phys 55 (1984) 203230.         [ Links ]

34. M. Lax et al., J. Opt. Soc. Am. A 2 (1985) 731-742.         [ Links ]

35. M. Frigo and S. Johnson, Proceedings of the IEEE 93 (2005) 216-231.         [ Links ]

36. N.N. Akhmediev, Opt. Quant. Electron 30 (1998) 535-569.         [ Links ]

37. B. Malomed, Prog. Opt. 43 (2002) 69-191.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License