SciELO - Scientific Electronic Library Online

vol.59 issue1Variational approximation for wave propagation in continuum and discrete mediaEl primer texto formal de óptica de México author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.59 n.1 México Jan./Jun. 2013




Probing students' critical thinking processes by presenting ill-defined physics problems


N. Ercega, I. Avianib, and V. Mešicc


a Department of Physics, University of Rijeka, R.Matejcic2, 51000 Rijeka, Croatia.

b Institute of Physics, BijeniCka c. 46, Hr-10002 Zagreb, Croatia and Faculty of Science, University of Split, Teslina 12, 21000 Split, Croatia.

c Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.


Received 7 March 2013;
Aaccepted 26 April 2013.



Students' reflections on the meaningfulness of physics problem statements and solutions were investigated. The sample consisted of 276 Croatian high school/university students. The students, being at the different learning levels, were all familiar with the physical concepts concerned. Students' critical thinking processes were explored based on their responses to two open-ended ill-defined problems. Further, the teachers' ability to predict the typical students' approach to problem solving was investigated. For this purpose, 48 teachers were administered the closed-ended questionnaire composed of the empirically obtained students' responses to the two ill-defined problems. The results show that ill-defined problems have the potential of eliciting a whole diversity of deep-rooted students' ideas regarding the meaningfulness of problem statements and solutions. Further, the results indicate that the level of students' critical thinking is low regardless of their educational level and curriculum. It seems that traditional teaching does not sufficiently develop critical thinking. The teachers correctly judge the students' ability to consider the meaningfulness of the solution but they significantly overestimate their criticism towards the problem statement. We believe this kind of problems could facilitate the teachers' efforts directed at systematically developing the students' critical thinking processes. Consequently, students' coping with ill-defined problems could help them to improve their real-life competencies, as well as to develop the habit of taking a critical attitude towards the statements and solutions of physics problems.

Keywords: Critical thinking; ill-defined problem; problem statement; students' problem solving.



Hemos investigado las habilidades estudiantiles de revisar la definición de un problema físico y la significatividad de la solución. La muestra constaba de 276 estudiantes de secundaria y universitarios croatas. Los estudiantes, que estaban en niveles diferentes de educacion, estaban familiarizados con los conceptos físicos correspondientes. Los procesos del pensamiento crítico de estudiantes eran investigados basandose en su respuesta a dos problemas mal definidos abiertos. Tambien era investigada la habilidad de profesores de prever el enfoque estudiantil típico. Para esta ocasion 48 profesores respondieron a una encuesta de tipo cerrado compuesta de respuestas verdaderas de los estudiantes a dos problemas mal definidos. Los resultados muestran que los problemas mal definidos pretenden estimular a los estudiantes a expresar una gama amplia de sus ideas muy arraigadas sobre la significatividad del planteamiento y la solucion del problema. Los resultados indican tambien el nivel bajo del pensamiento crítico estudiantil, independientemente del nivel de educacion y del currículo. La enseríanza tradicional obviamente no desarrolla suficientemente el pensamiento crítico. Los profesores estiman correctamente la habilidad estudiantil de revisar la realidad del resultado, pero por otra parte, sobrestiman considerablemente su criticismo a la hora de definir el problema. Creemos que este tipo de problemas podrían facilitar el esfuerzo de profesores dirigido hacia el desarrollo sistemático de los procesos del pensamiento crítico estudiantil. Por consiguiente, el afrontamiento de estudiantes a los problemas mal definidos podría ayudarles en mejorar sus competencias en la vida real, tanto como desarrollar la costumbre de tomar una postura crítica hacia la definicion y la solucion de problemas físicos.

Descriptores: Pensamiento; problema físico mal definido; definicion del problema; solucionamiento estudiantil del problema.

PACS: 01.40.Fk;; 01.55.+b





1. S. Carol, Encyclopedia of days: Start the day with history (iU-niverse, Bloomington, 2009).         [ Links ]

2. T. Rennell, September 26th, 1983: The day the world almost died. Retrieved from        [ Links ]

3. Russia Today, Soviet officer who 'saved the world from WWIII' gets Dresden Peace Prize. Retrieved from        [ Links ]

4. L. C. McDermott, Am. J. Phys. 61 (1993) 295.         [ Links ]

5. V. Kariz Merhar, Phys. Teach. 39 (2001) 338.         [ Links ]

6. A. H. Schoenfeld, Educ. Psychol. 23 (1988) 145.         [ Links ]

7. M. T. H. Chi, P. J. Feltovich and R. Glaser, Cogn. Sci. 5 (1981) 121.         [ Links ]

8. F. Reif and J. I. Heller, Educ. Psychol. 17 (1982) 102.         [ Links ]

9. J. D. Novak and D. B. Gowin, Learning How to Learn (Cambridge University Press, Cambridge, England, 1984).         [ Links ]

10. C. Singh, Am. J. Phys. 70 (2002) 1103.         [ Links ]

11 . A. H. Schoenfeld, Mathematical Problem Solving (Academic Press, New York, NY, 1985).         [ Links ]

12. N. Reid and M. J. Yang, Int. J. Sci. Educ. 24 (2002) 1313.         [ Links ]

13. C. Bereiter and M. Scardamalia, Surpassing Ourselves: An Inquiry Into the Nature and Implications of Expertise (Open Court Publishing, Chicago, 1993).         [ Links ]

14. E. F. Redish, J. M. Saul and R. N. Steinberg, Am. J. Phys. 66 (1998)212.         [ Links ]

15. J. Sweller, Cog. Sci. 21 (1988) 257.         [ Links ]

16. J. Sweller and M. Levine, J. of Exp. Psych: Learn., Mem. Cog. 8 (1982) 463.         [ Links ]

17. J. Sweller, R. Mawer and M. Ward, Am. J. Psych. 95 (1982) 435.         [ Links ]

18. J. Larkin, Research in Science Education: New Questions, New Directions (Center for Educational Research and Evaluation, Louisville, CO, 1981). pp. 115-130.         [ Links ]

19. A. Van Heuvelen, Am. J. Phys. 59 (1991) 891.         [ Links ]

20. E. Mazur, Opt. Photonics News 3 (1992) 38.         [ Links ]

21. E. Kim and S.-J. Pak, Am. J. Phys. 70 (2002) 759.         [ Links ]

22. E. Redish, Changing student ways of knowing: What should our students learn in a physics class? In Proceedings ofWorld View on Physics Education 2005: Focusing on Change, New Delhi (World Scientific Publishing Co, Singapore, 2005). Retrieved from        [ Links ]

23. W. J. Leonard, R. J. Dufresne and J. P. Mestre, Am. J. Phys. 64 (1996) 1495.         [ Links ]

24. B. Eylon and F. Reif, Cog. Instr. 1 (1984) 5.         [ Links ]

25. P. Heller and M. Hollabaugh, Am. J. Phys. 7 (1992) 637.         [ Links ]

26. F. Lawrenz, R. Keith, P. Heller and K. Heller, J. Coll. Sci. Teach. 22 (1992) 106.         [ Links ]

27. P. Urone, College Physics (Brooks/Cole Publishing Company, Pacific Grove, CA, 1998), p. XI.         [ Links ]

28. N. Erceg, M. Marusk and J. Slisko,Rev Mex. Fis. E 57 (2011) 44.         [ Links ]

29. M. Marusk, N. Erceg and J. Slisko,Eur J. Phys. 32 (2011) 711.         [ Links ]

30. A. Rodrigues and M. Oliveira, The role of critical thinking in physics learning. Retrieved from         [ Links ]

31. C. Thompson, International Journal of Humanities and Social Science 1 (2011) 1.         [ Links ]

32. A. Fisher, Critical Thinking (Cambridge University Press, Cambridge, UK, 2001).         [ Links ]

33. A. Masek and S.Yamin, International Scholarly Research Network, ISRNEducation 2012 (2012) 1.         [ Links ]

34. P. J. Burke, Am. J. Phys. 17 (1949) 527.         [ Links ]

35. B. K. Beyer, Soc. Educ. 49 (1985) 270.         [ Links ]

36. B. Potts, Practical Assessment, Research & Evaluation 4 (1994). Retrieved from        [ Links ]

37. R. Kegan, In over our heads: The mental demands of modern life (Harvard University Press, Cambridge, 1994).         [ Links ]

38. D. Halpern, Am. Psychol. 53 (1998) 449.         [ Links ]

39. D. Spendlove, Int. J. Technol. Des. Ed. 18 (2008) 45.         [ Links ]

40. A. L. Costa, Developing minds: A resource book for teaching thinking (Association for Supervision and Curriculum Development, Alexandria, VA ,1985).         [ Links ]

41. L. J. Grabau, Kentucky Journal for Excellence in College Teaching and Learning 5 (2007) 123.         [ Links ]

42. P. Frank, Am. J. Phys. 15 (1947) 209.         [ Links ]

43. P. Hari, Developing Problem Solving and Critical Thinking Skills in Physics and Engineering Physics Courses. Retrieved from        [ Links ]

44. B. Johnson and L. Christensen, Educational research, quantitative, qualitative, and mixed approaches (Pearson Education, Boston, 2004).         [ Links ]

45. D.C. Howell, Statistical Methods for Psychology (Wadsworth, Belmont, 2013).         [ Links ]



i. For comparison, the corresponding traditional problems would read: 1. Wanting to measure its mass, the girl is standing on the scale that shows the value of 30 kg. What value the scale will show, if the girl takes kids' helium-filled balloon whith the volume of 3 dm3? 2. Tennis ball hits the net with the speed of 36 m/s. What is the stopping acceleration of the ball, if the stopping distance is 3 dm?

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License