SciELO - Scientific Electronic Library Online

vol.59 número1Spatial location in 360° of reference points over an object by using stereo visionA handy exact solution for flow due to a stretching boundary with partial slip índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de física E

versión impresa ISSN 1870-3542

Rev. mex. fís. E vol.59 no.1 México ene./jun. 2013




Exact solution of the 1D riemann problem in Newtonian and relativistic hydrodynamics


F. D. Lora-Clavijo, J. P. Cruz-Pérez, F. Siddhartha Guzmán, and J. A. González


Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México.


Received 10 August 2012;
Accepted 15 February 2013.



Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation.

Keywords: Hydrodynamics-astrophysical applications; hydrodynamics-fluids.

PACS: 95.30.Lz; 47.35.-i.





This research is partly supported by grants: CIC-UMSNH-4.9,4.23 and CONACyT 106466. (J.P.C-P and F.D.L-C) acknowledge support from the CONACyT scholarship program.



1. E. F. Toro, Riemann solvers and numerical methods for fluid dynamics. (Springer-Verlag Berlin-Heidelberg, 2009).         [ Links ]

2. J. Ma. Martí, E. Muller, Living Rev. Relativity 6 (2003) 7.        [ Links ]

3. J. Ma. Martí, E. Muller, J. Fluid. Mech. 258 (1994) 317-333.         [ Links ]

4. R. J. LeVeque, in Numerical methods for conservation laws. (Birkhauser, Basel, 1992).         [ Links ]

5. G. A. Sod, J. Comp. Phys. 27 (1978) 1-31.         [ Links ]

6. A. Taub, Phys. Rev. 74 (1948) 328-334.         [ Links ]

7. K. S. Thorne, Astrophys. J. 179 (1973) 897-907.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons