SciELO - Scientific Electronic Library Online

 
vol.58 issue1Experimental and simulated exploration of structural deflections and acoustic waves of guitar top platesDesarrollo de un sistema para medir tiempos en experimentos de movimiento rectilíneo author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.58 n.1 México Jun. 2012

 

Enseñanza

 

Enhancing the process of teaching and learning physics via dynamic problem solving strategies: a proposal

 

S. Rojas

 

Departamento de Física, Universidad Simón Bolívar, Venezuela, e-mail: srojas@usb.ve

 

Recibido el 17 de octubre de 2011;
Aceptado el 25 de enero de 2012

 

Abstract

The large number of published articles in physics journals under the title "Comments on ..." and "Reply to ... " is indicative that the conceptual understanding of physical phenomena is very elusive and hard to grasp even to experts, but it has not stopped the development of Physics. In fact, from the history of the development of Physics one quickly becomes aware that, regardless of the state of conceptual understanding, without quantitative reasoning Physics would have not reached the state of development it has today. Correspondingly, quantitative reasoning and problem solving skills are a desirable outcome from the process of teaching and learning of physics. Thus, supported on results from published research, we will show evidence that a well structured problem solving strategy taught as a dynamical process offers a feasible way for students to learn physics quantitatively and conceptually, while helping them to reach the state of an Adaptive Expert highly skillful on innovation and efficiency, a desired outcome from the perspective of a Preparation for Future Learning approach of the process of teaching and learning Physics effectively.

Keywords: Physics problem solving; physics learning; teaching of physics; quantitative reasoning.

 

Resumen

El gran número de artículos publicados en revistas de física bajo el título "Comentarios sobre ... " y "Replica a ... " es indicativo de que la comprensión conceptual de los fenómenos físicos es muy escurridiza y difícil de entender incluso para los expertos, pero ello no ha detenido el desarrollo de la Física. De hecho, de la historia del desarrollo de la Física rápidamente nos damos cuenta de que, independientemente del estado de comprensión conceptual, sin el razonamiento cuantitativo la Física no hubiese alcanzado el estado de desarrollo que tiene actualmente. En consecuencia, tanto razonamiento cuantitativo como habilidades en la resolución de problemas son resultados deseables a obtener del proceso de enseñanza y aprendizaje de la Física. Así, con apoyo en resultados de investigaciones publicadas, mostraremos evidencias de que cualquier estrategia para la resolución de problemas presentada como un proceso dinámico ofrece una forma viable para que los estudiantes aprendan física tanto cuantitativa como conceptualmente, mientras que al mismo tiempo los ayuda a alcanzar el estado de un experto adaptable altamente calificado en la innovación y la eficiencia, un resultado deseado desde la perspectiva del enfoque del proceso de enseñanza y aprendizaje de la Física con efectividad en función de una Preparación para el aprendizaje futuro.

Descriptores: Resolución de problemas en física; aprendizaje de física; enseñanza de la física; razonamiento cuantitativo.

 

PACS: 01.40.gb; 01.40.Ha; 01.40.Fk

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The author thanks the members of The Physics Education Research Laboratory (PERLab) at UMaine, USA, where this work was done while on Sabbatical in the Department of Physics and Astronomy.

 

References

1. D. L. Schwartz, J. D. Bransford, and D. Sears, Efficiency and innovation in transfer. In J. P. Mestre, editor, (Transfer of learning from a modern multidisciplinary perspective, Information Age Publishing, 2005). p. 1-52.         [ Links ]

2. G. Hatano and K. Inagaki, Two courses of expertise. In H. Stevenson, H. Azuma, and K. Hakuta, editors, Child development and education in japan, (W. H. Freeman and Company, New York. Available at 1986). p. 262-272. http://hdl.handle.net/2115/25206,         [ Links ]

3. C. Henderson and M. H. Dancy, Phys. Rev. ST Phys. Educ. Res. 5 020107 (2009) 1-9.         [ Links ]

4. J.L. Docktor and J.P. Mestre, A synthesis of discipline-based education research in physics (2011). http://www7.nationalacadermes.org/bose/DBER_Docktor_October_Paper.pdf        [ Links ]

5. T.A. Litzinger, L.R. Lattuca, R.G. Hadgraft, and W.C. Newstetter, J. Eng. Educ. 100 (2011) 123-150.         [ Links ]

6. S. A. Ambrose, M.W. Bridges, M. DiPietro, M. C. Lovett, and Norman M. K. How learning works: Seven research-based principles for smart teaching. (San Francisco, CA: Jossey-Bass, 2010).         [ Links ]

7. M. Sobel, Physics for the non-scientist: A middle way. Phys. Teach. 47 (2009) 346-349.         [ Links ]

8. N. Lasry, N. Finkelstein, and E. Mazur, Phys. Teach. 47 (2009) 418-422.         [ Links ]

9. M. Sobel, Phys. Teach. 47 (2009) 422-423.         [ Links ]

10. N. Finkelstein, E. Mazur, and N. Lasry, Phys. Teach. 47 (2009) 484-484.         [ Links ]

11. S. Glazek and D. Grayson, Phys. Today 61 (2008) 11-12.         [ Links ]

12. D. Klein, Am. J. Phys. 75 (2007) 101-102.         [ Links ]

13. L.J. Atkins, Comment on School math books, nonsense, and the National Science Foundation, by David Klein [12]. Am. J. Phys. 75 (2007) 773-775.         [ Links ]

14. T. Millar, Comment on School math books, nonsense, and the National Science Foundation, by David Klein [12]. Am. J. Phys. 75 (2007) 775-776.         [ Links ]

15 . D. Klein, Reply to comments on School math books, nonsense, and the National Science Foundation, by David Klein [12]. Am. J. Phys. 75 (2007) 776-778.         [ Links ]

16. C. Wieman, APS News 16 (2007) 8-8.         [ Links ]

17. J.F. Wagner, Cognition Instruct. 24 (2006) 1-71.         [ Links ]

18. F. Reif and S. Allen, Cognition Instruct. 9 (1992) 1-44.         [ Links ]

19. C. Hoellwarth and M.J. Moelter, Am. J. Phys. 79 (2011) 540-545.         [ Links ]

20. R. Mualem and B.S. Eylon, Phys. Teach. 45 (2007) 158-163. See also references there in.         [ Links ]

21. M.S. Sabella and E.F. Redish, Am. J. Phys. 75 (2007) 1017-1029.         [ Links ]

22. L.N.Walsh, R.G. Howard, and B. Bowe, Phys. Rev. ST Phys. Educ. Res. 3 (2007) 1-12.         [ Links ]

23. C. Hoellwarth, M.J. Moelter, and R.D. Knight, Am. J. Phys. 73 (2005) 459-462.         [ Links ]

24. K.S. Taber, Phys. Educ. 44 (2009) 336.         [ Links ]

25. R.D. Knight, Instructor Guide. Physics for scientists and engineers. A strategic approach second edition. (Pearson, Addison-Wesley, 2008).         [ Links ]

26. W.K. Adams, K.K. Perkins, N.S. Podolefsky, M. Dubson, N.D. Finkelstein, and C.E. Wieman, Phys. Rev. ST Phys. Educ. Res. 2 (2006) 1-14.         [ Links ]

27. S. Ates and E. Cataloglu, Eur. J. Phys. 28 (2007) 1161-1171.         [ Links ]

28. V.P. Coletta, J.A. Phillips, A. Savinainen, and J.J. Steinert. Eur. J. Phys. 29 (2008) L25-L27.         [ Links ]

29. S. Ates and E. Cataloglu, Eur. J. Phys. 29 (2008) L29-L31.         [ Links ]

30. L.E. Kost-Smith, S.J. Pollock, and N.D. Finkelstein, Phys. Rev. ST Phys. Educ. Res. 6 (2010) 1-17.         [ Links ]

31. C.S. Wallace and S.V. Chasteen, Phys. Rev. ST Phys. Educ. Res. 6 (2010) 1-8.         [ Links ]

32. J.R. Thompson, W.M. Christensen, E.B. Pollock, B.R. Bucy, and D.B. Mountcastle, Student understanding of thermal physics concepts and the underlying mathematics in the upper division In Proceedings of the Frontiers in Science Education Research Conference, 24-24 March 2009. (Eastern Mediterranean University, Famagusta, North Cyprus, 2009).         [ Links ]

33. D.C. Meredith and K.A. Marrongelle, Am. J. Phys. 76 (2008) 570-578.         [ Links ]

34. J.A. Marshall and D.J. Carrejo, J. Res. Sci. Teach. 45 (2008) 153-173.         [ Links ]

35. A. Boudreaux, P.S. Shaffer, P.R.L. Heron, and L.C. McDermott, Am. J. Phys. 76 (2008) 163-170.         [ Links ]

36. P.S. Shaffer and L.C. McDermott, Am. J. Phys. 73 (2005) 921-931.         [ Links ]

37. L.C. McDermott and P.S. Shaffer, Am. J. Phys. 60 (1992) 994-1003.         [ Links ]

38. J.H.P. vanWeeren, F.F.M. de Mul, M.J. Peters, H. Kramers-Pals, and H.J. Roossink, Am. J. Phys. 50 (1982) 725-732.         [ Links ]

39. J. Larkin, J. McDermott, D.P. Simon, and H.A. Simon, Science 208 (1980) 1335-1342.         [ Links ]

40. Z. Hrepic, D. Zollman, and N. Rebello, Journal of Science Education and Technology 16 (2007) 213-224.         [ Links ]

41. T.S. Biro. Is there a temperature? (Springer, 2011).         [ Links ]

42. A. Plotnitsky, Epistemology and Probability (Springer New York, 2010).         [ Links ]

43. M. Braga, A. Guerra, and Jose Reis, Sci. & Educ. (2010) 1-14.         [ Links ]

44. G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference (Cambridge University Press, 2009). Available at http://arxiv.org/abs/quant-ph/0609184v2.         [ Links ]

45. D. Lindley, Boltzmanns Atom: The Great Debate That Launched A Revolution In Physics (Free Press, 2001).         [ Links ]

46. K.L. Caneva, The British Journal for the History of Science 13 (1980) 121-138.         [ Links ]

47. E.T. Whittaker, A history of the theories of aether and electricity: from the age of Descartes to the close of the nineteenth century. (Longmans, Green and CO. 1910). Available at http://www.archive.org/details/historyoftheorie00whitrich,         [ Links ]

48. M. Janssen, Physics in Perspective (PIP) 4 (2002) 421-446.         [ Links ]

49. M. Lange, Am. J. Phys. 79 (2011) 380-388.         [ Links ]

50. M. Bunge, Am. J. Phys. 34 (1966) 585-596.         [ Links ]

51. R.H. Swendsen, Am. J. Phys. 79 (2011) 342-348.         [ Links ]

52. A. Hobson, by N.G. van kampen [am.j. phys. 76 (2008) 989990]. Am. J. Phys. 77 (2009) 293-293.         [ Links ]

53. N.G. van Kampen, Am. J. Phys. 76 (2008) 989-990.         [ Links ]

54. R. Baierlein, Am. J. Phys. 74 (2006) 193-195.         [ Links ]

55. F. Laloe, Am. J. Phys. 69 (2001) 655-701.         [ Links ]

56. J.D. Jackson, Eur. J. Phys. 21 (2000) L29.         [ Links ]

57. J. Roche, Eur. J. Phys. 21 (2000) L27.         [ Links ]

58. J.D. Jackson, Eur. J. Phys. 20 (1999) 495.         [ Links ]

59. F.J. Dyson, to teach or not to teach, Freeman J. Dyson's acceptance speech for the 1991 Oersted Medal presented by the American Association of Physics Teachers, 22 january 1991. Am. J. Phys. 59 (1991) 491-495.         [ Links ]

60. A.F. Chalmers, What Is This Thing Called Science? Hackett Pub Co Inc, 3 edition, (1999).         [ Links ]

61. C.J. Giunta, J. Chem. Educ. 78 (2001) 623.         [ Links ]

62. N. Kipnis, Sci. & Educ. 20 (2011) 655-685.         [ Links ]

63. H. Bassow, J. Chem. Educ. 68 (1991) 273.         [ Links ]

64. R. Peierls, More Surprises in Theoretical Physics (Princeton University Press, 1991).         [ Links ]

65. R. Peierls, Surprises in Theoretical Physics (Princeton University Press, 1979).         [ Links ]

66. J.L. Kolodner, Artif. Intell. Review 6 (1992) 3-34.         [ Links ]

67. P.S. Shaffer and L.C. McDermott, Am. J. Phys. 60 (1992) 1003-1013.         [ Links ]

68. J. Hawkins, (In preparation, 2011).

69. C. Singh, Am. J. Phys. 70 (2002) 1103-1109.         [ Links ]

70. D.L. Schwartz, M. Taylor, and P. Jay, J. Cogn. Dev. 6 (2005) 65-88.         [ Links ]

71. B.L. Sherin, Cognition Instruct. 19 (2001)479-541.         [ Links ]

72. P.G. Hewitt, Phys. Teach. 49 (2011) 264-264.         [ Links ]

73. D. Kahneman, Maps of bounded rationality: A perspective on intuitive judgment and choice. Economic Sciences Nobel Price Lecture, December 8, (2002) (pages 449-489). The lecture is available at http://nobelprize.org/nobel_prizes/economics/laureates/2002/kahnemann-lecture.pdf        [ Links ]

74. M. Bilalic, P. McLeod, and F. Gobet, Cognition 108 (2008) 652-661.         [ Links ]

75. F. Reif and J.I. Heller, Educ. Psychol. 17 (1982) 102-127.         [ Links ]

76. C.A. Ogilvie, Phys. Rev. ST Phys. Educ. Res. 5 (2009) 1-14.         [ Links ]

77. K.M. Hamed, Phys. Teach. 46 (2008) 290-293.         [ Links ]

78. A.A. Kamal, 1000 Solved Problems in Classical Physics (Springer Berlin Heidelberg, 2011).         [ Links ]

79. S. Rojas, Rev. Mex. Fis. E 56 (2010) 22-28.         [ Links ]

80. E. Kim and S. Pak, Am. J. Phys. 70 (2002) 759-765.         [ Links ]

81. G. Saccomandi, Eur. J. Phys. 31 (2010) 657-670.         [ Links ]

82. C.F. Bohren, Am. J. Phys. 77 (2009) 101-103.         [ Links ]

83. S. Hutzler, G. Delaney, D. Weaire, and F. MacLeod, Am. J. Phys. 72 (2004) 1508-1516.         [ Links ]

84. T.R. Sandin, Am. J. Phys. 41 (1973) 426-427.         [ Links ]

85. S. Rojas, A non-standard approach to introduce simple harmonic motion (2010). eprint arXiv:1011.0687, http://arxiv.org/abs/1011.0687v1        [ Links ]

86. S. Rojas, Rev. Mex. Fis. E 54 (2008) 75-80.         [ Links ]

87. D. Kuhn, M. Pease, and C. Wirkala, Journal of Experimental Child Psychology 103 (2009) 268-284.         [ Links ]

88. D. Kuhn, K. Iordanou, M. Pease, and C. Wirkala, Cognitive Development 23 (2008) 435-451.         [ Links ]

89. A.A. diSessa, Cognition Instruct. 26 (2008) 560-566.         [ Links ]

90. M.T.H. Chi, M. Bassok, M.W. Lewis, P. Reimann, and R. Glaser, Cognitive Science 13 (1989) 145-182.         [ Links ]

91. J. Osborne, Science 328 (2010) 463-466.         [ Links ]

92. D. Fortus, Sci. Educ. 93 (2009) 86-108.         [ Links ]

93. J.D. Slotta, Journal of the Learning Sciences 20 (2011) 151-162.         [ Links ]

94. D. Hammer, A. Gupta, and E.F. Redish, Journal of the Learning Sciences 20 (2011) 163-168.         [ Links ]

95. B.J. Feldman, Phys. Teach. 48 (2010) 541-542.         [ Links ]

96. S.H. Strogatz, D.M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, Nature 438 (2005) 43-44.         [ Links ]

97. J.I. Heller and F. Reif, Cognition Instruct. 1 (1984) 177-216.         [ Links ]

98. K.M. Higgins, The Journal of Experimental Education 66 (1997) 5-28.         [ Links ]

99 . G. Polya, How to Solve it. A new aspect of mathematical method 2nd. edition (Princeton University Press, 1973).         [ Links ]

100. A.H. Schoenfeld, Teaching problem-solvingskills. The American Mathematical Monthly 87 (1980) 794-805.         [ Links ]

101 . A.H. Schoenfeld Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics (In D. Grouws Ed., Handbook for Research on Mathematics Teaching and Learning, MacMillan, 1992). p.p. 334-370.         [ Links ]

102. F. Reif, Applying cognitive science to education: thinkingand learning in scientific and other complex domains (MIT Press, 2008).         [ Links ]

103. A.C. Graesser and N.K. Person, American Educational Research Journal 31 (1994) 104-137.         [ Links ]

104. E. V. Zee and J. Minstrell, The Journal of the Learning Sciences 6 (1997) 227-269.         [ Links ]

105 . K.A. Harper, E. Etkina, and Y. Lin, J. Res. Sci. Teach. 40 (2003) 776-791.         [ Links ]

106. C. Chin and J. Osborne, J. Learn. Sci. 19 (2010) 230-284.         [ Links ]

107. C. Chin and J. Osborne, J. Res. Sci. Teach. 47 (2010) 883-908.         [ Links ]

108. G. Arfken, Mathematical Methods for Physicist. 3rd. edition, (Academic Press, 1985).         [ Links ]

109. S. Weinberg, Phys. Today 58 (2005) 31-35.         [ Links ]

110. P.C.W. Davies, Astrophys. Space Sci. 244 (1996) 219-227.         [ Links ]

111 . E. Gaigher, J. Rogan, and M. Braun, Int. J. Sci. Educ. 29 (2007) 1089-1110.         [ Links ]

112. A. Mason and C. Singh, Am. J. Phys. 78 (2010) 748-754.         [ Links ]

113. M.T.H. Chi, Topics in Cognitive Science 1 (2009) 73-105.         [ Links ]

114. R.S. Nickerson, Review of Research in Education 15 (1988) 3-57.         [ Links ]

115. P. Labudde, F. Reif, and L. Quinn, Int. J. Sci. Educ. 66 (1988) 181-221.         [ Links ]

116. P.R.L. Heron and D.E. Meltzer, Am. J. Phys. 73 (2005) 390-394.         [ Links ]

117. F. Olness and R. Scalise, Am. J. Phys. 79 (2011) 306-312.         [ Links ]

118. M.A. Bernstein and W.A. Friedman, Thinking About Equations: A Practical Guide for Developing Mathematical Intuition in the Physical Sciences and Engineering (JohnWiley & Sons, New York, 2009).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License