SciELO - Scientific Electronic Library Online

 
vol.57 número1Design of 2nd order low-pass active filters by preserving the physical meaning of design variablesHow can acoustic resonance reduce the average velocity in a falling body? índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de física E

versão impressa ISSN 1870-3542

Rev. mex. fís. E vol.57 no.1 México Jun. 2011

 

Enseñanza

 

On the Sackur–Tetrode equation in an expanding universe

 

S.H. Pereira

 

Universidade Federal de Itajubá, Campus Itabira, Rua São Paulo, 377–35900–373, Itabira, MG, Brazil, e–mail: saulopereira@unifei.edu.br

 

Recibido el 5 de abril de 2010
Aceptado el 2 de febrero de 2011

 

Abstract

In this work we investigate the thermodynamic properties satisfied by an expanding universe filled with a monoatomic ideal gas. We show that the equations for the energy density, entropy density and chemical potential remain the same of an ideal gas confined to a constant volume V. In particular the Sackur–Tetrode equation for the entropy of the ideal gas is also valid in the case of an expanding universe, provided that the constant value that represents the current entropy of the universe is appropriately chosen.

Keywords: Expanding universe; ideal gas; Sackur–Tetrode equation.

 

Resumen

En el presente trabajo investigamos las propiedades termodinámicas que son satisfechas por un universo en expansión, el cual es lleno por un gas ideal monoatómico. Se prueba que las ecuaciones para la densidad de la energía, la densidad de la entropía y el potencial químico son las mismas que las de un gas ideal, el cual se encuentra confinado en un volumen V. En particular, la ecuación de Sackur–Tetrode, para la entropía del gas ideal continua siendo válido en el caso de un universo en expansión, siempre que el valor constante que representa la entropía del universo actual sea escogido adecuadamente.

Descriptores: Universo en expansión; gas ideal; ecuación de Sackur–Tetrode.

 

PACS: 95.30.Tg; 98.80.–k

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

I am grateful to Juan C.Z. Aguilar for reading the manuscript and to CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnologico, brazilian research agency, for the financial support, process number 477872/2010–7.

 

References

1. Y.A. Cengel, M.A. Boles, and A. Michael, Thermodynamics: An Engineering Approach (4th Edition, Mcgraw–Hill, 2001).         [ Links ]

2. J.C. Flores and S. Montecinos, Rev. Mex. Fis. 50 (2004) 221.         [ Links ]

3. J. Bernal, R. Flowers–Cano, and A. Carbajal–Dominguez, Rev. Mex. Fis. 55 (2009) 191.         [ Links ]

4. V. Romero–Rochín and V.S. Bagnato, Braz. J. Phys. 35 (2005) 607.         [ Links ]

5. L.M. Amador and J.F. Betancourt, Braz. J. Phys. 27 (2005) 428.         [ Links ]

6. R.A. Sussman and J. Triginer, Class. Quant. Grav. 16 (1999) 167;         [ Links ] Ying–Qiu Gu, arXiv:0708.2962v3 [physics.gen–ph] (2009).         [ Links ]

7. J.L.F. Barbon and C.A. Fuertes, Phys. Rev. D 80 (2009) 026006.         [ Links ]

8. A. Montakhab, M. Ghodrat, and M. Barati, Phys. Rev. E 79 (2009) 031124.         [ Links ]

9. J. Gersl, Int. J. Mod. Phys. D 18 (2009) 763.         [ Links ]

10. A.G. Riess et al., Astron. J. 116 (1998) 1009;         [ Links ] S. Perlmutter et al., Astrophys. J. 517 (1999) 565;         [ Links ] P. Astier et al., Astron. Astrophys. 447 (2006) 31;         [ Links ] A.G. Riess et al., Astro. J. 659 (2007) 98.         [ Links ]

11. T. Padmanabhan, Phys. Rept. 380 (2003) 235;         [ Links ] P.J.E. Peebles and B. Ratra, Rev. Mod. Phys. 75 (2003) 559;         [ Links ] J.A.S. Lima, Braz. J. Phys. 34 (2004) 194;         [ Links ] J.S. Alcaniz, Braz. J. Phys. 36 (2006) 1109;         [ Links ] V. Sahni and A. Starobinsky, IJMP D15 (2006) 2105.         [ Links ]

12. J.A.S. Lima and S.H. Pereira, Phys. Rev. D78 (2008) 083504.         [ Links ]

13. R.R. Caldwell, Phys. Lett. B 545 (2002) 23;         [ Links ] S.M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68 (2003) 023509;         [ Links ] B. McInnes, [astro–ph/0210321]         [ Links ]; V. Faraoni, Int. J. Mod. Phys. D 11 (2002) 471;         [ Links ] P.F. Gonzalez–Diaz, Phys. Rev. D 68 (2003) 021303;         [ Links ] Y.S. Piao and E. Zhou, Phys. Rev. D 68 (2003) 083515;         [ Links ] M. Sami and A. Toporensky, [gr–qc/0312009]         [ Links ]; J.M. Cline, S. Jeon, and G.D. Moore, [hep–ph/0311312]         [ Links ]; R. Silva, J.S. Alcaniz, and J.A.S. Lima, Int. J. Mod. Phys. D 16 (2007) 469.         [ Links ]

14. S.H. Pereira and J.A.S. Lima, Phys. Lett. B669 (2008) 266.         [ Links ]

15. S.R.A. Salinas, Introducão à Física Estatística (EDUSP, São Paulo, Brasil, 1997);         [ Links ] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics 2nd Edition, (John Willey, New York, 1985).         [ Links ]

16. G. Cook and R.H. Dickerson, Am. J. Phys. 63 (1995) 737.         [ Links ]

17. S. Weinberg, Cosmology (Oxford University Press, New York, USA 2008);         [ Links ] E.W. Kolb and M.S. Turner, The Early Universe (Westview Press, USA, 1990);         [ Links ] V. Mukhanov, Physical Foundations of Cosmology, (Cambridge University Press, 2005).         [ Links ]

18. E.W. Kolb and M.S. Turner, The Early Universe (Westview Press, USA, 1990).         [ Links ]

19. S. Weinberg, Astrop. J. 168 (1971) 175;         [ Links ] R. Silva, J.A.S. Lima, and M.O. Calvão, Gen. Rel. Grav. 34 (2002) 865.         [ Links ]

20. In natural units the following conversion factors are valid (see page 499 of [18] for more conversion factors): 1 GeV=1.7827 × 10–27kg; 1 GeV–1 = 1.9733 × 10–16m; 1 GeV = 1.1605 × 1013K.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons